Medicine (all); Computer Science Applications; History; Education
Résumé :
[en] Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Gargiulo, Ernesto ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Viry, Elodie ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Morande, Pablo Elías ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg ; Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
Largeot, Anne ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Gonder, Susanne ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Xian, Feng ; Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
Ioannou, Nikolaos ; School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
BENZARTI, Mohaned ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) ; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Borgmann, Felix Bruno Kleine; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg ; Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg ; Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
MITTELBRONN, Michel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuropathology ; Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg ; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
DITTMAR, Gunnar ; University of Luxembourg ; Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
NAZAROV, Petr ; University of Luxembourg ; Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
MEISER, Johannes ; University of Luxembourg ; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Stamatopoulos, Basile ; Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
Ramsay, Alan G. ; School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
MOUSSAY, Etienne ✱; University of Luxembourg ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
PAGGETTI, Jerome ✱; University of Luxembourg ; Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg European Commission Fonds De La Recherche Scientifique - FNRS Fonds De La Recherche Scientifique - FNRS Fonds De La Recherche Scientifique - FNRS Fonds De La Recherche Scientifique - FNRS
Subventionnement (détails) :
G. Dittmar reports grants from Luxembourg National Research Fund (FNR) during the conduct of the study. J. Meiser reports grants from Luxembourg Research Foundation during the conduct of the study; grants from FNR-ATTRACT outside the submitted work. No disclosures were reported by the other authors.We thank Pr. Carlo Croce and Pr. John Byrd (Ohio State University) for the kind gift of Eμ-TCL1 mouse, and Pr. Miguel Seabra and Dr Tanya Tolmachova (Imperial College London, UK) for the RAB27DKO mouse. We thank Dr Javier Alves Ferreira (JAF, Laboratoire National de Santé, Luxembourg) for the histopathology expertise. We thank the National Cytometry Platform (LIH; Dr Antonio Cosma, Dr Céline Hoffmann, Thomas Cerutti, Fanny Hedin, and Maria Konstantinou) for assistance in flow cytometry, imaging flow cytometry, confocal microscopy and FACS experiments, the LUXGEN platform (LIH/LNS; Nathalie Nicot, Elise Mommaerts, Arnaud Muller and Dr Daniel Stieber) for RNA sequencing, the bioinformatics platform (LIH; Tony Kaoma and Kim Sang Yoon) for assistance, and the Animal Facility (LIH) staff. We thank the Metabolomics Platform (University of Luxembourg, Christian Jäger) for GC-MS measurements and Xiangyi Dong and Floriane Vanhalle for providing technical and analytical support. Furthermore, we thank the Metabolomics core facility (LIH, Antoine Lesur and François Bernardin) for technical and analytical support. Special thanks to Dr Martina Seiffert (DKFZ, Germany) for the useful scientific discussions and for providing the Eμ-TCL1 animals. Finally, we thank Dr Marina Wierz, Bil-gee Bayanaa, and Sandrine Pierson (LIH) for technical support. This work was supported by grants from the Luxembourg National Research Fund (FNR) to E. Gargiulo, E. Moussay, and J. Paggetti (PRIDE15/10675146/ CANBIO, INTER/DFG/16/11509946, C20/BM/14582635, and C20/ BM/14592342), to J. Meiser (ATTRACT grant A18/BM/11809970), and to M. Mittelbronn (PEARL grant P16/BM/11192868), from FNRS-Télévie to E. Viry, P.E. Morande, A. Largeot, and S. Gonder (7.4509.20, 7.8506.19, 7.4503.19, and 7.6604.21), from the European Commission to P.E. Morande (H2020-MSCA-IF-2020: 101029602).We thank Pr. Carlo Croce and Pr. John Byrd (Ohio State University) for the kind gift of Eμ-TCL1 mouse, and Pr. Miguel Seabra and Dr Tanya Tolmachova (Imperial College London, UK) for the RAB27DKO mouse. We thank Dr Javier Alves Ferreira (JAF, Laboratoire National de Santé, Luxembourg) for the histopathology expertise. We thank the National Cytometry Platform (LIH; Dr Antonio Cosma, Dr Céline Hoffmann, Thomas Cerutti, Fanny Hedin, and Maria Konstantinou) for assistance in flow cytometry, imaging flow cytometry, confocal microscopy and FACS experiments, the LUXGEN platform (LIH/LNS; Nathalie Nicot, Elise Mommaerts, Arnaud Muller and Dr Daniel Stieber) for RNA sequencing, the bioinformatics platform (LIH; Tony Kaoma and Kim Sang Yoon) for assistance, and the Animal Facility (LIH) staff. We thank the Metabolomics Platform (University of Luxembourg, Christian Jäger) for GC-MS measurements and Xiangyi Dong and Floriane Vanhalle for providing technical and analytical support. Furthermore, we thank the Metabolomics core facility (LIH, Antoine Lesur and François Bernardin) for technical and analytical support. Special thanks to Dr Martina Seiffert (DKFZ, Germany) for the useful scientific discussions and for providing the Eμ-TCL1 animals. Finally, we thank Dr Marina Wierz, Bilgee Bayanaa, and Sandrine Pierson (LIH) for technical support. This work was supported by grants from the Luxembourg National Research Fund (FNR) to E. Gargiulo, E. Moussay, and J. Paggetti (PRIDE15/10675146/CANBIO, INTER/DFG/16/11509946, C20/BM/14582635, and C20/BM/14592342), to J. Meiser (ATTRACT grant A18/BM/11809970), and to M. Mittelbronn (PEARL grant P16/BM/11192868), from FNRSTélévie to E. Viry, P.E. Morande, A. Largeot, and S. Gonder (7.4509.20, 7.8506.19, 7.4503.19, and 7.6604.21), from the European Commission to P.E. Morande (H2020-MSCA-IF-2020: 101029602).
Beach A, Zhang HG, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 2014;7:14.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83.
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013;126:5553-65.
Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 2018;32:575-87.
Prieto D, Sotelo N, Seija N, Sernbo S, Abreu C, Durán R, et al. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-kappaB activity during disease progression. Blood 2017;130: 777-88.
Mannavola F, Tucci M, Felici C, Passarelli A, D'Oronzo S, Silvestris F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J Transl Med 2019;17:230.
Gargiulo E, Paggetti J, Moussay E. Hematological malignancy-derived small extracellular vesicles and tumor microenvironment: the art of turning foes into friends. Cells 2019;8:511.
Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood 2002;99:1030-7.
Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009;114:3367-75.
Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood 2018;131:1617-21.
Radulovic K, Rossini V, Manta C, Holzmann K, Kestler HA, Niess JH. The early activation marker CD69 regulates the expression of chemo-kines and CD4 T cell accumulation in intestine. PLoS One 2013;8: e65413.
Shiow LR, Rosen DB, Brdicková N, Xu Y, An J, Lanier LL, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 2006;440:540-4.
Smallwood DT, Apollonio B, Willimott S, Lezina L, Alharthi A, Ambrose AR, et al. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells. Blood 2016;128:542-52.
Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 2015;126:1106-17.
Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol 2017;2:eaah5509.
Filarsky K, Garding A, Becker N, Wolf C, Zucknick M, Claus R, et al. Kruppel-like factor 4 (KLF4) inactivation in chronic lymphocytic leukemia correlates with promoter DNA-methylation and can be reversed by inhibition of NOTCH signaling. Haematologica 2016;101: e249-253.
Hsu C, Morohashi Y, Yoshimura S-I, Manrique-Hoyos N, Jung S, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 2010;189: 223-32.
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513-25.
Matsui T, Osaki F, Hiragi S, Sakamaki Y, Fukuda M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep 2021;22:e51475.
Paggetti J, Berchem G, Moussay E. Stromal cell-induced miRNA alteration in chronic lymphocytic leukemia: how a minute and unavoidable cell contamination impairs miRNA profiling. Leukemia 2013; 27:1773-6.
Gonder S, Largeot A, Gargiulo E, Pierson S, Fernandez Botana I, Pagano G, et al. The tumor microenvironment-dependent transcription factors AHR and HIF-1α Are dispensable for leukemogenesis in the Eμ-TCL1 mouse model of chronic lymphocytic leukemia. Cancers 2021;13:4518.
Schiller LT, Lemus-Diaz N, Ferreira RR, Boker KO, Gruber J. Enhanced production of Exosome-associated AAV by overexpression of the tetraspanin CD9. Mol Ther Methods Clin Dev 2018;9:278-87.
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2021;31:157-77.
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977.
Moussay E, Wang K, Cho J-H, van Moer K, Pierson S, Paggetti J, et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2011;108:6573-8.
Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasLbearing microvesicles. J Exp Med 2002;195:1303-16.
Chen Z, You L, Wang L, Huang X, Liu H, Wei JY, et al. Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo. J Exp Clin Cancer Res 2018; 37:190.
Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, et al. Glutathione primes T cell metabolism for inflammation. Immunity 2017;46:1089-90.
Schurich A, Pallett LJ, Jajbhay D, Wijngaarden J, Otano I, Gill US, et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep 2016;16:1243-52.
Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 2021;374:abe6474.
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, et al. Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8(+) T cell responses. Immunity 2019;50:738-50.
Kim T-D, Lee SU, Yun S, Sun H-N, Lee SH, Kim JW, et al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood 2011;118:5476-86.
Wang P, Gu Y, Zhang Q, Han Y, Hou J, Lin L., et al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol 2012;189:211.
Trotta R, Chen L, Costinean S, Josyula S, Mundy-Bosse BL, Ciarlariello D, et al. Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells. Blood 2013;121:3126-34.
Kim N, Kim M, Yun S, Doh J, Greenberg PD, Kim T-D, et al. MicroRNA-150 regulates the cytotoxicity of natural killers by targeting perforin-1. J Allergy Clin Immunol 2014;134:195-203.
Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 2012;72:4920-30.
Jae N, McEwan DG, Manavski Y, Boon RA, Dimmeler S. Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Lett 2015;589(20 Pt B):3182-8.
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010;12:19-30; sup 11-13.
Xing C, Li H, Li RJ, He H, Wu Z, Song B, et al. The roles of exosomal immune checkpoint proteins in tumors. Mil Med Res 2021;8:56.
Moussay E, Palissot V, Vallar L, Poirel HA, Wenner T, El Khoury V, et al. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 2010;9:115.
Yeh Y-Y, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ, et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 2015;125:3297-305.
Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 2010;5:e11469.
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 2011;187:676-83.
Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab 2021;33:2040-58.
Li C, Phoon YP, Karlinsey K, Tian YF, Thapaliya S, Thongkum A, et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J Exp Med 2022;219:e20202084.
Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, et al. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell 2020;182:1252-70.
Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC. Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci U S A 2007;104:5872-7.
Stinchcombe JC, Barral DC, Mules EH, Booth S, Hume AN, Machesky LM, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 2001;152:825-34.
Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 2008;6:372-82.
Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 2017;129:3419-27.
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and therapeutic potential of extracellular vesicles in B-Cell malignancies. Front Oncol 2020;10:580874.
Stamatopoulos B, Van Damme M, Crompot E, Dessars B, El Housni H, Mineur P, et al. Opposite prognostic significance of cellular and serum circulating microRNA-150 in patients with chronic lymphocytic leukemia. Mol Med 2015;21:123-33.
Stamatopoulos B, Smith T, Crompot E, Pieters K, Clifford R, Mraz M, et al. The light chain IgLV3-21 defines a new poor prognostic subgroup in chronic lymphocytic leukemia: results of a multicenter study. Clin Cancer Res 2018;24:5048-57.
Wierz M, Pierson S, Gargiulo E, Guerin C, Moussay E, Paggetti J. Purification of leukemia-derived exosomes to study microenvironment modulation. Methods Mol Biol 2019;1884:231-45.
Collot M, Ashokkumar P, Anton H, Boutant E, Faklaris O, Galli T, et al. MemBright: a family of fluorescent membrane probes for advanced cellular imaging and neuroscience. Cell Chem Biol 2019; 26:600-14.
Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006;30:3.22.1-3.22.29.
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018;67:940-54.
Ioannou N, Hagner PR, Stokes M, Gandhi AK, Apollonio B, Fanous M, et al. Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood 2021;137:216-31.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21: 2213-23.
Meiser J, Schuster A, Pietzke M, Vande Voorde J, Athineos D, Oizel K, et al. Increased formate overflow is a hallmark of oxidative cancer. Nat Commun 2018;9:1368.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.
Nazarov PV, Wienecke-Baldacchino AK, Zinovyev A, Czerwińska U, Muller A, Nashan D, et al. Deconvolution of transcriptomes and miRNomes by independent component analysis provides insights into biological processes and clinical outcomes of melanoma patients. BMC Med Genomics 2019;12:132.
Coll-de la Rubia E, Martinez-Garcia E, Dittmar G, Nazarov PV, Bebia V, Cabrera S, et al. In silico approach for validating and unveiling new applications for prognostic biomarkers of endometrial cancer. Cancers (Basel) 2021;13:5052.