Humans; Female; CD8-Positive T-Lymphocytes; Cell Differentiation; Immunologic Memory; Parkinson Disease/genetics; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Capelle, Christophe M; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg ; Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8049, Zurich, Switzerland
Ciré, Séverine ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg ; Eligo Bioscience, 111 Av. de France, 75013, Paris, France
Hedin, Fanny; National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
HANSEN, Maxime ; University of Luxembourg ; Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
PAVELKA, Lukas ; University of Luxembourg ; Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg ; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
KYRIAKIS, Dimitrios ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Integrative Cell Signalling > Team Alexander SKUPIN ; Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
Hunewald, Oliver ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Konstantinou, Maria; National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Revets, Dominique; National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
TSLAF, Vera ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg ; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
Marques, Tainá M ; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
GOMES, Clarissa ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Translational Neuroscience
BARON, Alexandre ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Translational Neuroscience ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Domingues, Olivia; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Gomez, Mario; National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Zeng, Ni ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Av. de Université, L-4365, Esch-sur-Alzette, Luxembourg
BETSOU, Fay ; University of Luxembourg ; Integrated Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (LIH), 1 Rue Louis Rech, L-3555, Dudelange, Luxembourg ; CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
SKUPIN, Alexander ; University of Luxembourg ; Department of Neurosciences, University California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0662, USA
COSMA, Antonio ; University of Luxembourg ; National Cytometry Platform, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
Balling, Rudi ; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg ; Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
Krüger, Rejko; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Av. du Swing, L-4367, Belvaux, Luxembourg ; Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg ; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B Rue Thomas Edison, L-1445, Strassen, Luxembourg
OLLERT, Markus ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg. Markus.ollert@lih.lu ; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000C, Denmark. Markus.ollert@lih.lu
Hefeng, Feng Q ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg. feng.he@lih.lu ; Data Integration and Analysis Unit, Luxembourg Institute of Health (LIH), L-1445, Strassen, Luxembourg. feng.he@lih.lu
Fonds National de la Recherche Luxembourg Integrated BioBank of Luxembourg
Funding text :
We thank all the anonymous participants of the Luxembourg Parkinson’s Study for their support of our research and acknowledge the joint effort of the National Centre of Excellence in Research on Parkinson’s Disease (NCER-PD) Consortium members generally contributing to the Luxembourg Parkinson’s Study (the full list of consortium members are provided in Supplementary Note ). We thank the CIEC of LIH (especially Daniela Valoura Esteves), the processing and biorepository teams of IBBL (especially Wim Ammerlann and Sabrina Saracino) and the LuxGen sequencing platform (especially Arnaud Muller and Nathalie Nicot) for their support. This study was initially supported by the Luxembourg Personalized Medicine Consortium (PMC) (CoPImmunoPD, PMC/2018/01, F.Q.H.). The study was also partially supported by Luxembourg National Research Fund (FNR) CORE program grant (CORE/14/BM/8231540/GeDES, F.Q.H.), Luxembourg Government via the CoVaLux programme (M.O.), FNR AFR-RIKEN bilateral programme (TregBAR, 11228353, F.Q.H., R.B. and M.O.) and several PRIDE programme grants (PRIDE/11012546/NEXTIMMUNE, PRIDE/10907093/CRITICS and PRIDE/14254520/i2TRON, F.Q.H., R.K., M.O.) and an individual AFR grant (PHD-2015-1/9989160, N.Z. via the group of F.Q.H.). The Luxembourg Parkinson’s study is funded within NCER-PD by FNR (R.K., NCER13/BM/11264123). R.K. was further supported by an Excellence Grant in Research within the FNR PEARL programme (P13/6682797). D.K. was supported by FNR through PRIDE17/12244779/PARK-QC. We also thank Fondation Jean Think for their kind support (F.Q.H.). Some icons in several schematic figures (a and were created with BioRender.com.We thank all the anonymous participants of the Luxembourg Parkinson’s Study for their support of our research and acknowledge the joint effort of the National Centre of Excellence in Research on Parkinson’s Disease (NCER-PD) Consortium members generally contributing to the Luxembourg Parkinson’s Study (the full list of consortium members are provided in Supplementary Note 1). We thank the CIEC of LIH (especially Daniela Valoura Esteves), the processing and biorepository teams of IBBL (especially Wim Ammerlann and Sabrina Saracino) and the LuxGen sequencing platform (especially Arnaud Muller and Nathalie Nicot) for their support. This study was initially supported by the Luxembourg Personalized Medicine Consortium (PMC) (CoPImmunoPD, PMC/2018/01, F.Q.H.). The study was also partially supported by Luxembourg National Research Fund (FNR) CORE program grant (CORE/14/BM/8231540/GeDES, F.Q.H.), Luxembourg Government via the CoVaLux programme (M.O.), FNR AFR-RIKEN bilateral programme (TregBAR, 11228353, F.Q.H., R.B. and M.O.) and several PRIDE programme grants (PRIDE/11012546/NEXTIMMUNE, PRIDE/10907093/CRITICS and PRIDE/14254520/i2TRON, F.Q.H., R.K., M.O.) and an individual AFR grant (PHD-2015-1/9989160, N.Z. via the group of F.Q.H.). The Luxembourg Parkinson’s study is funded within NCER-PD by FNR (R.K., NCER13/BM/11264123). R.K. was further supported by an Excellence Grant in Research within the FNR PEARL programme (P13/6682797). D.K. was supported by FNR through PRIDE17/12244779/PARK-QC. We also thank Fondation Jean Think for their kind support (F.Q.H.). Some icons in several schematic figures (1 a and 6a) were created with BioRender.com.
Dorsey, E. R. et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007). DOI: 10.1212/01.wnl.0000247740.47667.03
Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017). DOI: 10.1038/nrdp.2017.13
Wang, Q., Liu, Y. & Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4, 19 (2015). DOI: 10.1186/s40035-015-0042-0
Qin, X. Y., Zhang, S. P., Cao, C., Loh, Y. P. & Cheng, Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 73, 1316–1324 (2016). DOI: 10.1001/jamaneurol.2016.2742
Reale, M. et al. “Peripheral cytokines profile in Parkinson’s disease. Brain Behav. Immun. 23, 55–63 (2009). DOI: 10.1016/j.bbi.2008.07.003
Jiang, S., Gao, H., Luo, Q., Wang, P. & Yang, X. “The correlation of lymphocyte subsets, natural killer cell, and Parkinson’s disease: a meta-analysis. Neurol. Sci. 38, 1373–1380 (2017). DOI: 10.1007/s10072-017-2988-4
Kustrimovic, N. et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4 + Th1/Th2/T17 and Treg in drug-naive and drug-treated patients. J. Neuroinflammation 15, 205 (2018). DOI: 10.1186/s12974-018-1248-8
Sommer, A. et al. “Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell 23, 123–131 e126 (2018). DOI: 10.1016/j.stem.2018.06.015
Storelli, E., Cassina, N., Rasini, E., Marino, F. & Cosentino, M. “Do Th17 lymphocytes and IL-17 contribute to Parkinson’s disease? a systematic review of available evidence. Front. Neurol. 10, 13 (2019). DOI: 10.3389/fneur.2019.00013
Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020). DOI: 10.1038/s41586-019-1895-7
Galiano-Landeira, J., Torra, A., Vila, M. & Bove, J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143, 3717–3733 (2020). DOI: 10.1093/brain/awaa269
Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature 546, 656–661 (2017). DOI: 10.1038/nature22815
Lindestam Arlehamn, C. S. et al. alpha-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat. Commun. 11, 1875 (2020). DOI: 10.1038/s41467-020-15626-w
Matheoud, D. et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1(-/-) mice. Nature 571, 565–569 (2019). DOI: 10.1038/s41586-019-1405-y
Shutinoski, B. et al. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci. Transl. Med. 11, eaas9292 (2019). DOI: 10.1126/scitranslmed.aas9292
Deleidi, M., Jäggle, M. & Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front. Neurosci. 9, 172 (2015). DOI: 10.3389/fnins.2015.00172
Zeng, N. et al. DJ-1 depletion prevents immunoaging in T-cell compartments. EMBO Rep. 23, e53302 (2022). DOI: 10.15252/embr.202153302
Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017). DOI: 10.1038/ni.3768
Delhalle, S., Bode, S. F. N., Balling, R., Ollert, M. & He, F. Q. A roadmap towards personalized immunology. npj Syst. Biol. Appl. 4 9 (2018).
Wang, P. et al. “Single-cell transcriptome and TCR profiling reveal activated and expanded T cell populations in Parkinson’s disease. Cell Discov. 7, 52 (2021). DOI: 10.1038/s41421-021-00280-3
Parnetti, L. et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 18, 573–586 (2019). DOI: 10.1016/S1474-4422(19)30024-9
Hipp, G. et al. The Luxembourg Parkinson’s study: a comprehensive approach for stratification and early diagnosis. Front. Aging Neurosci. 10, 326 (2018). DOI: 10.3389/fnagi.2018.00326
Capelle, C. M. et al. Standard peripheral blood mononuclear cell cryopreservation selectively decreases detection of nine clinically relevant T cell markers. Immunohorizons 5, 711–720 (2021). DOI: 10.4049/immunohorizons.2100049
Henson, S. M., Riddell, N. E. & Akbar, A. N. Properties of end-stage human T cells defined by CD45RA re-expression. Curr. Opin. Immunol. 24, 476–481 (2012). DOI: 10.1016/j.coi.2012.04.001
Wertheimer, A. M. et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192, 2143–2155 (2014). DOI: 10.4049/jimmunol.1301721
Liu, J. et al. The peripheral differentiation of human natural killer T cells. Immunol. Cell Biol. 97, 586–596 (2019). DOI: 10.1111/imcb.12248
Wang, Y. et al. Principal component analysis of routine blood test results with Parkinson’s disease: A case-control study. Exp. Gerontol. 144, 111188 (2021). DOI: 10.1016/j.exger.2020.111188
Munoz-Delgado, L. et al. Peripheral immune profile and neutrophil-to-lymphocyte ratio in Parkinson’s disease. Mov Disord. 36, 2426–2430 (2021).
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010). DOI: 10.1038/nature08636
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013). DOI: 10.1038/nature12526
Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003). DOI: 10.1038/ni1009
Intlekofer, A. M. et al. Effector and memory CD8+T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005). DOI: 10.1038/ni1268
Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl Acad. Sci. USA 100, 15818–15823 (2003). DOI: 10.1073/pnas.2636938100
Akimova, T., Beier, U. H., Wang, L., Levine, M. H. & Hancock, W. W. Helios expression is a marker of T cell activation and proliferation. PLoS ONE 6, e24226 (2011). DOI: 10.1371/journal.pone.0024226
Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+CD28- and CD8+CD57+T cells and their role in health and disease. Immunology 134, 17–32 (2011). DOI: 10.1111/j.1365-2567.2011.03470.x
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011). DOI: 10.1038/ni.2035
Chou, J. P. & Effros, R. B. T cell replicative senescence in human aging. Curr. Pharm. Des. 19, 1680–1698 (2013).
Galkina, E. et al. Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J. Clin. Investig 115, 3473–3483 (2005). DOI: 10.1172/JCI24482
Sasaki, K. et al. Preferential expression of very late antigen-4 on type 1 CTL cells plays a critical role in trafficking into central nervous system tumors. Cancer Res. 67, 6451–6458 (2007). DOI: 10.1158/0008-5472.CAN-06-3280
Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature 356, 63–66 (1992). DOI: 10.1038/356063a0
Knox, J. J., Cosma, G. L., Betts, M. R. & McLane, L. M. Characterization of T-Bet and eomes in peripheral human immune cells. Front. Immunol. 5, 217 (2014). DOI: 10.3389/fimmu.2014.00217
Cayrol, C. & Girard, J. P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31, 31–37 (2014). DOI: 10.1016/j.coi.2014.09.004
Josefowicz, S. Z., Lu, L.-F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012). DOI: 10.1146/annurev.immunol.25.022106.141623
Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008). DOI: 10.1016/j.cell.2008.05.009
Schmidt, A., Oberle, N. & Krammer, P. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012). DOI: 10.3389/fimmu.2012.00051
He, F. & Balling, R. “The role of regulatory T cells in neurodegenerative diseases. Wiley Interdiscip. Rev. Syst. Biol. Med 5, 153–180 (2013). DOI: 10.1002/wsbm.1187
Thome, A. D. et al. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson’s disease. NPJ Parkinsons Dis. 7, 41 (2021). DOI: 10.1038/s41531-021-00188-5
Churlaud, G. et al. Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol. 6, 171 (2015). DOI: 10.3389/fimmu.2015.00171
Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 13, 6947–6958 (2007). DOI: 10.1158/1078-0432.CCR-07-0842
Li, S. et al. A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cell. Mol. Immunol. 11, 326–331 (2014). DOI: 10.1038/cmi.2014.25
Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499, 485–490 (2013). DOI: 10.1038/nature12297
Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5, 1315–1316 (2010). DOI: 10.1097/JTO.0b013e3181ec173d
Lemieux, J., Jobin, C., Simard, C. & Néron, S. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J. Immunol. Methods 434, 73–82 (2016). DOI: 10.1016/j.jim.2016.04.010
Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK(+) CD8(+) T Cells as Conserved Hallmark of Inflammaging. Immunity 54, 99–115 e112 (2021). DOI: 10.1016/j.immuni.2020.11.005
Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015). DOI: 10.1038/nri3839
Philip, M. & Schietinger, A. CD8(+) T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022). DOI: 10.1038/s41577-021-00574-3
Brzostek, J. et al. T cell receptor and cytokine signal integration in CD8(+) T cells is mediated by the protein Themis. Nat. Immunol. 21, 186–198 (2020). DOI: 10.1038/s41590-019-0570-3
Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005). DOI: 10.1038/nsmb1016
Moore, M. J. et al. ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity. Elife 7, e33057 (2018). DOI: 10.7554/eLife.33057
Kim, J. et al. Coactosin-Like 1 antagonizes cofilin to promote lamellipodial protrusion at the immune synapse. PLoS ONE 9, e85090 (2014). DOI: 10.1371/journal.pone.0085090
Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020). DOI: 10.1038/s41590-020-0791-5
Sjolin, H. et al. Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J. Exp. Med. 195, 825–834 (2002). DOI: 10.1084/jem.20011427
Weng, N.-P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012). DOI: 10.1038/nri3173
Staab, J. F., Ginkel, D. L., Rosenberg, G. B. & Munford, R. S. A saposin-like domain influences the intracellular localization, stability, and catalytic activity of human acyloxyacyl hydrolase. J. Biol. Chem. 269, 23736–23742 (1994). DOI: 10.1016/S0021-9258(17)31577-6
Billerbeck, E. et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc. Natl Acad. Sci. USA 107, 3006–3011 (2010). DOI: 10.1073/pnas.0914839107
Fergusson, J. R. et al. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep. 9, 1075–1088 (2014). DOI: 10.1016/j.celrep.2014.09.045
Omilusik, K. D. et al. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J. Exp. Med. 212, 2027–2039 (2015).
Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005). DOI: 10.1016/j.ccr.2005.10.012
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018). DOI: 10.1186/s12864-018-4772-0
Saito, T. & Yamasaki, S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol. Rev. 192, 143–160 (2003). DOI: 10.1034/j.1600-065X.2003.00022.x
Willinger, T. et al. Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo1. J. Immunol. 176, 1439–1446 (2006). DOI: 10.4049/jimmunol.176.3.1439
Labuda, T. et al. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells. Eur. J. Immunol. 36, 2076–2084 (2006). DOI: 10.1002/eji.200535163
Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12, 1221–1229 (2011). DOI: 10.1038/ni.2158
Zhou, X. & Xue, H. H. Cutting edge: generation of memory precursors and functional memory CD8+ T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. J. Immunol. 189, 2722–2726 (2012). DOI: 10.4049/jimmunol.1201150
Happel, N. & Doenecke, D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431, 1–12 (2009). DOI: 10.1016/j.gene.2008.11.003
Sollberger, G. et al. Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. eLife 9, e52563 (2020). DOI: 10.7554/eLife.52563
Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8(+) T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018). DOI: 10.1038/nri.2017.146
Pipkin, M. E. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol. Rev. 300, 100–124 (2021). DOI: 10.1111/imr.12954
Wang, D. et al. The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 48, 659–674 e656 (2018). DOI: 10.1016/j.immuni.2018.03.028
Kersh, E. N. et al. TCR signal transduction in antigen-specific memory CD8 T cells. J. Immunol. 170, 5455–5463 (2003). DOI: 10.4049/jimmunol.170.11.5455
Nicolet, B. P. et al. CD29 identifies IFN-gamma-producing human CD8(+) T cells with an increased cytotoxic potential. Proc. Natl Acad. Sci. USA 117, 6686–6696 (2020). DOI: 10.1073/pnas.1913940117
Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003). DOI: 10.1007/s00702-002-0808-2
Rietdijk, C. D., Perez-Pardo, P., Garssen, J., van Wezel, R. J. & Kraneveld, A. D. Exploring Braak’s hypothesis of Parkinson’s disease. Front. Neurol. 8, 37 (2017). DOI: 10.3389/fneur.2017.00037
Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577 (2015). DOI: 10.1016/j.it.2015.08.006
Inzelberg, R. & Jankovic, J. Are Parkinson disease patients protected from some but not all cancers?. Neurology 69, 1542–1550 (2007). DOI: 10.1212/01.wnl.0000277638.63767.b8
Correale, J. & Villa, A. Role of CD8+CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann. Neurol. 67, 625–638 (2010). DOI: 10.1002/ana.21944
Alvarez-Luquin, D. D. et al. Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: other regulatory populations are also involved. J. Neuroinflammation 16, 212 (2019). DOI: 10.1186/s12974-019-1606-1
Danileviciute, E. et al. PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nat. Metab. 4, 589–607 (2022). DOI: 10.1038/s42255-022-00576-y
Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7, 207–219 (2006). DOI: 10.1038/nrn1868
Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 216–231 (2016). DOI: 10.1111/jnc.13731
Park, J. S., Davis, R. L. & Sue, C. M. “Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 18, 21 (2018). DOI: 10.1007/s11910-018-0829-3
Golebski, K. et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291–307.e297 (2021). DOI: 10.1016/j.immuni.2020.12.013
Fung, I. T. H. et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217, e20190915 (2020). DOI: 10.1084/jem.20190915
Russi, A. E., Walker-Caulfield, M. E., Ebel, M. E. & Brown, M. A. Cutting edge: c-Kit signaling 86. differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J. Immunol. 194, 5609–5613 (2015). DOI: 10.4049/jimmunol.1500068
Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K. & Patrie, J. Are men at greater risk for Parkinson’s disease than women?”. J. Neurol. Neurosurg. Psychiatry 75, 637–639 (2004). DOI: 10.1136/jnnp.2003.020982
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016). DOI: 10.1038/nri.2016.90
Rubtsov, A. V., Rubtsova, K., Kappler, J. W. & Marrack, P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun. Rev. 9, 494–498 (2010). DOI: 10.1016/j.autrev.2010.02.008
Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001). DOI: 10.1038/ni0901-777
Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex- and age-related functional regulation. Nat. Aging 1, 715–733 (2021). DOI: 10.1038/s43587-021-00086-8
Williams-Gray, C. H. et al. Abnormalities of age-related T cell senescence in Parkinson’s disease. J. Neuroinflammation 15, 166 (2018). DOI: 10.1186/s12974-018-1206-5
Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013). DOI: 10.1038/ni.2588
Weng, N. P. Aging of the immune system: how much can the adaptive immune system adapt?. Immunity 24, 495–499 (2006). DOI: 10.1016/j.immuni.2006.05.001
Koch, S. et al. Cytomegalovirus Infection. Ann. N. Y. Acad. Sci. 1114, 23–35 (2007). DOI: 10.1196/annals.1396.043
Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021). DOI: 10.1038/s41568-021-00347-z
Glier, H. et al. Standardization of 8-color flow cytometry across different flow cytometer instruments: a feasibility study in clinical laboratories in Switzerland. J. Immunol. Methods 475, 112348 (2019). DOI: 10.1016/j.jim.2017.07.013
Kalina, T. Reproducibility of flow cytometry through standardization: opportunities and challenges. Cytometry A 97, 137–147 (2020). DOI: 10.1002/cyto.a.23901
Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023). DOI: 10.1038/s41586-023-05788-0
Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002). DOI: 10.1038/nm0402-379
Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8 + T cells. J. Exp. Med. 186, 1407–1418 (1997). DOI: 10.1084/jem.186.9.1407
Eidson, L. N. et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J. Neuroinflammation 14, 164 (2017). DOI: 10.1186/s12974-017-0935-1
Mogi, M. et al. Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210 (1994). DOI: 10.1016/0304-3940(94)90746-3
Reeve, A., Simcox, E. & Turnbull, D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor?”. Ageing Res. Rev. 14, 19–30 (2014). DOI: 10.1016/j.arr.2014.01.004
Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018). DOI: 10.1038/s41590-017-0006-x
Jergovic, M., Contreras, N. A. & Nikolich-Zugich, J. Impact of CMV upon immune aging: facts and fiction. Med. Microbiol. Immunol. 208, 263–269 (2019). DOI: 10.1007/s00430-019-00605-w
Lachmann, R. et al. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS ONE 13, e0200267 (2018). DOI: 10.1371/journal.pone.0200267
Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017). DOI: 10.1016/j.immuni.2016.12.011
Picozza, M., Battistini, L. & Borsellino, G. Mononuclear phagocytes and marker modulation: when CD16 disappears, CD38 takes the stage. Blood 122, 456–457 (2013). DOI: 10.1182/blood-2013-05-500058
Lopez-Vergès, S. et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116, 3865–3874 (2010). DOI: 10.1182/blood-2010-04-282301
Capelle, C. M. et al. Combinatorial analysis reveals highly coordinated early-stage immune reactions that predict later antiviral immunity in mild COVID-19 patients. Cell Rep. Med. 3, 100600 (2022). DOI: 10.1016/j.xcrm.2022.100600
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). DOI: 10.1038/nbt.3192
Capelle, C. M. et al. CyTOF and Flow Cytometry dataset assocaited with Early-to-mid stage idiopathic Parkinson’s disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females. Zenodo. https://doi.org/10.5281/zenodo.8382970 (2023).
Hunewald, O. “DII-LIH-Luxembourg/CoPImmunoPD_Clustering: main. Zenodo. https://doi.org/10.5281/ZENODO.8398047 (2023).
Kyriakis, D. KyriakisDimitrios/CoPImmunoPD: v.1.0.0. Zenodo. https://doi.org/10.5281/ZENODO.8395536 (2023).