Proteins; Humans; Knowledge Bases; Signal Transduction; Arthritis, Rheumatoid/genetics; Systems Biology; Arthritis, Rheumatoid; Information Systems; Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Disciplines :
Biotechnology
Author, co-author :
Singh, Vidisha; Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
Kalliolias, George D; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA ; Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
OSTASZEWSKI, Marek ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Veyssiere, Maëva; Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
Gawron, Piotr; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
MAZEIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Bonnet, Eric; Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
Petit-Teixeira, Elisabeth; Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
Niarakis, Anna; Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
External co-authors :
yes
Language :
English
Title :
RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis.
Publication date :
01 January 2020
Journal title :
Database: The Journal of Biological Databases and Curation
McInnes, I.B. and Schett, G. (2011) The pathogenesis of rheumatoid arthritis. N. Engl. J. Med., 365, 2205-2219.
Frank-Bertoncelj, M., Klein, K. and Gay, S. (2017) Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics, 9, 493-504.
Tripathi, S., Flobak, Å., Chawla, K. et al. (2015) The gastrin and cholecystokinin receptors mediated signaling network: a scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Syst. Biol., 9, 40.
Kawakami, E., Singh, V.K., Matsubara, K. et al. (2016) Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways. npj Syst. Biol. Appl., 2, 15018.
Niarakis, A., Bounab, Y., Grieco, L. et al. (2014) Computational modeling of the main signaling pathways involved in mast cell activation. Curr. Top. Microbiol. Immunol., 382, 69-93.
Grieco, L., Calzone, L., Bernard-Pierrot, I. et al. (2013) Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol., 9, e1003286.
Fujita, K.A., Ostaszewski, M., Matsuoka, Y. et al. (2014) Integrating pathways of Parkinson's disease in a molecular interaction map. Mol. Neurobiol., 49, 88-102.
Mizuno, S., Iijima, R., Ogishima, S. et al. (2012) AlzPathway: a comprehensive map of signaling pathways of Alzheimer's disease. BMC Syst. Biol., 6, 52.
Matsuoka, Y., Matsumae, H., Katoh, M. et al. (2013) A comprehensive map of the influenza a virus replication cycle. BMC Syst. Biol., 7, 97.
Mazein, A., Knowles, R.G., Adcock, I. et al. (2018) AsthmaMap: an expert-driven computational representation of disease mechanisms. Clin. Exp. Allergy, 48, 916-918.
Kuperstein, I., Bonnet, E., Nguyen, H.A. et al. (2015) Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps. Oncogenesis, 4, e160.
Singh, V., Ostaszewski, M., Kalliolias, G.D. et al. (2018) Computational systems biology approach for the study of rheumatoid arthritis: from a molecular map to a dynamical model. Genomics Comput. Biol., 4.
Mazein, A., Ostaszewski, M., Kuperstein, I. et al. (2018) Systems medicine diseasemaps: community-driven comprehensive representation of disease mechanisms. npj Syst. Biol. Appl., 4, 21.
Ostaszewski, M., Gebel, S., Kuperstein, I. et al. (2019) Community-driven roadmap for integrated disease maps. Brief. Bioinformatics, 20, 659-670.
Le Novère, N., Hucka, M., Mi, H. et al. (2009) The systems biology graphical notation. Nat. Biotechnol., 27, 735-741.
Lhomond, S., Avril, T., Dejeans, N. et al. (2018) Dual IRE1 RNase functions dictate glioblastoma development. EMBO Mol. Med., 10.
Shannon, P., Markiel, A., Ozier, O. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498-2504.
Matsuoka, Y., Funahashi, A., Ghosh, S. et al. (2014) Modeling and simulation using CellDesigner. Methods Mol. Biol., 1164, 121-145.
Gawron, P., Ostaszewski, M., Satagopam, V. et al. (2016) MINERVA-a platform for visualization and curation of molecular interaction networks. npj Syst. Biol. Appl., 2, 16020.
Hucka, M., Finney, A., Sauro, H.M. et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524-531.
Kitano, H., Funahashi, A., Matsuoka, Y. et al. (2005) Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol., 23, 961-966.
Wang, P., Lü, J. and Yu, X. (2014) Identification of important nodes in directed biological networks: a network motif approach. PLoS ONE, 9, e106132.
Wu, G., Zhu, L., Dent, J.E. et al. (2010) A comprehensive molecular interaction map for rheumatoid arthritis. PLoS ONE, 5, e10137.
Kanehisa, M. (2009) Representation and analysis of molecular networks involving diseases and drugs. Genome Inform., 23, 212-213.
Kanehisa, M., Sato, Y., Furumichi, M. et al. (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res., 47, D590-D595.
Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27-30.
Kanehisa (2019) Toward understanding the origin and evolution of cellular organisms. Protein Sci., 28, 1947-1951.
Krämer, A., Green, J., Pollard, J. et al. (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics, 30, 523-530.
Le Novère, N., Finney, A., Hucka, M. et al. (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol., 23, 1509-1515.
Le Novère (2015) Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet., 16, 146-158.
Rohn, H., Junker, A., Hartmann, A. et al. (2012) VANTED v2: a framework for systems biology applications. BMC Syst. Biol., 6, 139.
Czauderna, T., Klukas, C. and Schreiber, F. (2010) Editing, validating and translating of SBGN maps. Bioinformatics, 26, 2340-2341.
Wishart, D. S., Feunang, Y. D., Guo, A. C., et al. (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, D1074-D1082.
Gaulton, A., Hersey, A., Nowotka, M. et al. (2017) The ChEMBL database in 2017. Nucleic Acids Res., 45, D945-D954.
Davis, A.P., Grondin, C.J., Johnson, R.J. et al. (2019) The comparative toxicogenomics database: update 2019. Nucleic Acids Res., 47, D948-D954.
Chou, C.-H., Shrestha, S., Yang, C.-D. et al. (2018) miRTar-Base update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 46, D296-D302.
Ashburner, M., Ball, C.A., Blake, J.A. et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25-29.
The Gene Ontology Consortium (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330-D338.
Köhler, S., Carmody, L., Vasilevsky, N. et al. (2019) Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res., 47, D1018-D1027.
Smith, C.L. and Eppig, J.T. (2009) The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip. Rev. Syst. Biol. Med., 1, 390-399.
Jassal, B., Matthews, L., Viteri, G. et al. (2019) The reactome pathway knowledgebase. Nucleic Acids Res.
Fabregat, A., Jupe, S., Matthews, L. et al. (2018) The reactome pathway knowledgebase. Nucleic Acids Res., 46, D649-D655.
Fabregat, A., Sidiropoulos, K., Viteri, G. et al. (2017) Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics, 18, 142.
Moutselos, K., Maglogiannis, I. and Chatziioannou, A. (2011) GOrevenge: a novel generic reverse engineering method for the identification of critical molecular players, through the use of ontologies. IEEE Trans Biomed Eng, 58, 3522-3527.
Koutsandreas, T., Binenbaum, I., Pilalis, E. et al. (2016) Analyzing and visualizing genomic complexity for the derivation of the emergent molecular networks. Int J Monit Surveill Technol Res IJMSTR, 4, 30-49.
Rougny, A., Touré, V., Moodie, S. et al. (2019) Systems biology graphical notation: process description language level 1 version 2.0. J. Integr. Bioinform., 16.
Kalliolias, G.D. and Ivashkiv, L.B. (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol., 12, 49-62.
Noack, M. and Miossec, P. (2017) Selected cytokine pathways in rheumatoid arthritis. Semin. Immunopathol., 39, 365-383.
Hwang, D. and Kim, W.-U. (2017) Rheumatoid arthritis: Modelling cytokine signalling networks. Nat. Rev. Rheumatol., 13, 5-6.
Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med., 9, 59-71.
Malemud, C.J. (2007) Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin. Chim. Acta, 375, 10-19.
Kim, S.-J., Chen, Z., Chamberlain, N.D. et al. (2014) Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. J. Immunol., 193, 3902-3913.
Zhu, W., Meng, L., Jiang, C. et al. (2011) Arthritis is associated with T-cell-induced upregulation of Toll-like receptor 3 on synovial fibroblasts. Arthritis Res. Ther., 13, R103.
Elshabrawy, H.A., Essani, A.E., Szekanecz, Z. et al. (2017) TLRs, future potential therapeutic targets for RA. Autoimmun. Rev., 16, 103-113.
Cho, M.-L., Ju, J.-H., Kim, H.-R. et al. (2007) Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol. Lett., 108, 121-128.
Xu, L., Feng, X., Tan, W. et al. (2013) IL-29 enhances toll-like receptor-mediated IL-6 and IL-8 production by the synovial fibroblasts from rheumatoid arthritis patients. Arthritis Res. Ther., 15, R170.
Ivashkiv, L.B. and Hu, X. (2003) The JAK/STAT pathway in rheumatoid arthritis: pathogenic or protective? Arthritis Rheum., 48, 2092-2096.
Schinnerling, K., Aguillón, J.C., Catalán, D. et al. (2017) The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis. Clin. Exp. Immunol., 189, 12-20.
Malemud, C.J. (2017) Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int. J. Mol. Sci., 18.
Han, Z., Boyle, D.L., Manning, A.M. et al. (1998) AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity, 28, 197-208.
Clark, A.R. and Dean, J.L. (2012) The p38 MAPK pathway in rheumatoid arthritis: a sideways look. Open Rheumatol. J., 6, 209-219.
Schett, G., Zwerina, J. and Firestein, G. (2008) The p38 mitogenactivated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann. Rheum. Dis., 67, 909-916.
Malemud, C.J. (2013) Intracellular signaling pathways in rheumatoid arthritis. J. Clin. Cell. Immunol., 4, 160.
Higgs, R. (2010) Rheumatoid arthritis: synergistic effects of growth factors drive an RA phenotype in fibroblast-like synoviocytes. Nat. Rev. Rheumatol., 6, 383.
Rosengren, S., Corr, M. and Boyle, D.L. (2010) R65, plateletderived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res. Ther., 12.
Müller-Ladner, U., Ospelt, C., Gay, S. et al. (2007) Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther., 9, 223.
Demoruelle, M.K., Deane, K.D. and Holers, V.M. (2014) When and where does inflammation begin in rheumatoid arthritis? Curr. Opin. Rheumatol., 26, 64-71.
Mellado, M., Martínez-Muñoz, L., Cascio, G. et al. (2015) T cell migration in rheumatoid arthritis. Front. Immunol., 6, 384.
Goddard, D.H., Kirk, A.P., Kirwan, J.R. et al. (1984) Impaired polymorphonuclear leucocyte chemotaxis in rheumatoid arthritis. Ann. Rheum. Dis., 43, 151-156.
Yoshihara, Y. and Yamada, H. (2007) Matrix metalloproteinases and cartilage matrix degradation in rheumatoid arthritis. Clin. Calcium, 17, 500-508.
Ainola, M.M., Mandelin, J.A., Liljeström, M.P. et al. (2005) Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta. Clin. Exp. Rheumatol., 23, 644-650.
Shiozawa, S., Tsumiyama, K., Yoshida, K. et al. (2011) Pathogenesis of joint destruction in rheumatoid arthritis. Arch Immunol Ther Exp (Warsz), 59, 89-95.
Sato, K. and Takayanagi, H. (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr. Opin. Rheumatol., 18, 419-426.
Schett, G. (2007) Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther., 9, 203.
Goldring, S.R. (2002) Pathogenesis of bone erosions in rheumatoid arthritis. Curr. Opin. Rheumatol., 14, 406-410.
Panagopoulos, P.K. and Lambrou, G.I. (2018) Bone erosions in rheumatoid arthritis: recent developments in pathogenesis and therapeutic implications. J. Musculoskelet. Neuronal Interact., 18, 304-319.
Elshabrawy, H.A., Chen, Z., Volin, M.V. et al. (2015) The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 18, 433-448.
Szekanecz, Z., Besenyei, T., Paragh, G. et al. (2009) Angiogenesis in rheumatoid arthritis. Autoimmunity, 42, 563-573.
Li, H. and Wan, A. (2013) Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm., 2013, 953462.
Ichikawa, K., Liu, W., Fleck, M. et al. (2003) TRAIL-R2 (DR5) mediates apoptosis of synovial fibroblasts in rheumatoid arthritis. J. Immunol., 171, 1061-1069.
Firestein, G.S., Yeo, M. and Zvaifler, N.J. (1995) Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest., 96, 1631-1638.
Korb, A., Pavenstädt, H. and Pap, T. (2009) Cell death in rheumatoid arthritis. Apoptosis, 14, 447-454.
Kramer, I., Wibulswas, A., Croft, D. et al. (2003) Rheumatoid arthritis: targeting the proliferative fibroblasts. Prog.Cell Cycle Res., 5, 59-70.
Jacobs, R.A., Perrett, D., Axon, J.M. et al. (1995) Rheumatoid synovial cell proliferation, transformation and fibronectin secretion in culture. Clin. Exp. Rheumatol., 13, 717-723.
Mongan, E.S. and Jacox, R.F. (1964) Erythrocyte survival in rheumatoid arthritis. Arthritis Rheum., 7, 481-489.
Hoksza, D., Gawron, P., Ostaszewski, M. et al. (2019) MINERVA API and plugins: opening molecular network analysis and visualization to the community. Bioinformatics.
Woetzel, D., Huber, R., Kupfer, P. et al. (2014) Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res. Ther., 16, R84.
Ma, X. and Xu, S. (2013) TNF inhibitor therapy for rheumatoid arthritis. Biomed. Rep., 1, 177-184.
Monaco, C., Nanchahal, J., Taylor, P. et al. (2015) Anti-TNF therapy: past, present and future. Int. Immunol., 27, 55-62.
Barabási, A.-L. (2009) Scale-free networks: a decade and beyond. Science, 325, 412-413.
Liu, T., Zhang, L., Joo, D. et al. (2017) NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2.
Noort, A.R., Tak, P.P. and Tas, S.W. (2015) Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res. Ther., 17, 15.
García, S., Liz, M., Gómez-Reino, J.J. et al. (2010) Akt activity protects rheumatoid synovial fibroblasts from Fas-induced apoptosis by inhibition of bid cleavage. Arthritis Res. Ther., 12, R33.
Mountz, J.D., Hsu, H.C., Matsuki, Y. et al. (2001) Apoptosis and rheumatoid arthritis: past, present, and future directions. Curr. Rheumatol. Rep., 3, 70-78.
Nevius, E., Gomes, A.C. and Pereira, J.P. (2016) Inflammatory cell migration in rheumatoid arthritis: a comprehensive review. Clin. Rev. Allergy Immunol., 51, 59-78.
Hanlon, S.M., Panayi, G.S. and Laurent, R. (1980) Defective polymorphonuclear leucocyte chemotaxis in rheumatoid arthritis associated with a serum inhibitor. Ann. Rheum. Dis., 39, 68-74.
Hannemann, N., Jordan, J., Paul, S. et al. (2017) The AP-1 transcription factor c-Jun promotes arthritis by regulating cyclooxygenase-2 and arginase-1 expression in macrophages. J. Immunol., 198, 3605-3614.
Han, Z., Boyle, D.L., Chang, L. et al. (2001) C-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest., 108, 73-81.
Thalhamer, T., McGrath, M.A. and Harnett, M.M. (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford), 47, 409-414.
Namba, S., Nakano, R., Kitanaka, T. et al. (2017) ERK2 and JNK1 contribute to TNF-α-induced IL-8 expression in synovial fibroblasts. PLoS ONE, 12, e0182923.
Bartok, B., Hammaker, D. and Firestein, G.S. (2014) Phosphoinositide 3-kinase δ regulates migration and invasion of synoviocytes in rheumatoid arthritis. J. Immunol., 192, 2063-2070.
Shigeyama, Y., Pap, T., Kunzler, P. et al. (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum., 43, 2523-2530.
Seemayer, C.A., Kuchen, S., Neidhart, M. et al. (2003) p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann. Rheum. Dis., 62, 1139-1144.
Tak, P.P., Zvaifler, N.J., Green, D.R. et al. (2000) Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today, 21, 78-82.
Malemud, C.J. (2018) Defective T-cell apoptosis and T-regulatory cell dysfunction in rheumatoid arthritis. Cells, 7.
Baier, A., Meineckel, I., Gay, S. et al. (2003) Apoptosis in rheumatoid arthritis. Curr. Opin. Rheumatol., 15, 274-279.
Rodríguez-Jorge, O., Kempis-Calanis, L.A., Abou-Jaoudé, W. et al. (2019) Cooperation between T cell receptor and tolllike receptor 5 signaling for CD4+ T cell activation. Sci. Signal., 12.