[en] The growing adoption of Electric vehicles (EVs) puts pressure on the power grid, and implementing smart solutions can ease this pressure. Smart charging at home is a solution where users offer flexibility in their charging schedule, which energy suppliers and/or other aggregators can exploit by charging during times of low demand and low market prices. However, giving charging control to the energy provider can concern EV users, particularly about driving range, and give a sense of loss of control. We conducted an experimental online survey with EV users (n = 289), examining the effect and perception of different behavioral interventions to improve flexibility provision. We found that all monetary incentives (high, low, credit points) resulted in higher flexibility, while environmental framing, feedback and badges, default-setting, and battery-related tips had no effect. The perception of all behavioral interventions did not correlate significantly with the flexibility offered for any of the interventions.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Disciplines :
Management information systems Computer science
Author, co-author :
MARXEN, Hanna ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
ANSARIN, Mohammad ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > FINATRAX > Team Gilbert FRIDGEN ; Trinomics BV, Rotterdam, Netherlands
CHEMUDUPATY, Raviteja ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
FRIDGEN, Gilbert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
External co-authors :
yes
Language :
English
Title :
Empirical evaluation of behavioral interventions to enhance flexibility provision in smart charging
Publication date :
October 2023
Journal title :
Transportation Research. Part D, Transport and Environment
ISSN :
1361-9209
eISSN :
1879-2340
Publisher :
Elsevier Ltd
Volume :
123
Pages :
103897
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Security, Reliability and Trust
Development Goals :
9. Industry, innovation and infrastructure 11. Sustainable cities and communities 13. Climate action
FNR13342933 - Paypal-fnr Pearl Chair In Digital Financial Services, 2019 (01/01/2020-31/12/2024) - Gilbert Fridgen
Name of the research project :
U-AGR-8002 - Enovos Inductive (01/01/2021 - 31/12/2022) - CORDY Maxime
Funders :
FNR - Fonds National de la Recherche [LU]] Paypal Fondation Enovos
Funding number :
13342933/Gilbert Fridgen
Funding text :
This research was funded in part by the Luxembourg National Research Fund (FNR) and PayPal, PEARL grant reference 13342933 /Gilbert Fridgen. For the purpose of open access, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. Additionally, the authors gratefully acknowledge the Fondation Enovos under the aegis of the Fondation de Luxembourg in the frame of the philanthropic funding for the research project INDUCTIVE which is the initiator of this applied research . We thank Dr. Valerie Graf-Drasch for her input regarding the study design, Dr. Michael Schöpf for practice-related input and Orestis Papageorgiou for consultations around the statistical analysis.This research was funded in part by the Luxembourg National Research Fund (FNR) and PayPal, PEARL grant reference 13342933/Gilbert Fridgen. For the purpose of open access, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. Additionally, the authors gratefully acknowledge the Fondation Enovos under the aegis of the Fondation de Luxembourg in the frame of the philanthropic funding for the research project INDUCTIVE which is the initiator of this applied research. We thank Dr. Valerie Graf-Drasch for her input regarding the study design, Dr. Michael Schöpf for practice-related input and Orestis Papageorgiou for consultations around the statistical analysis.
AlSkaif, T., Lampropoulos, I., van den Broek, M., van Sark, W., Gamification-based framework for engagement of residential customers in energy applications. Energy Res. Soc. Sci. 44 (2018), 187–195, 10.1016/j.erss.2018.04.043 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629618304420.
Asensio, O.I., Delmas, M.A., Nonprice incentives and energy conservation. Proc. Natl. Acad. Sci. 112 (2015), E510–E515.
Baumgartner, N., Kellerer, F., Ruppert, M., Hirsch, S., Mang, S., Fichtner, W., Does experience matter? assessing user motivations to accept a vehicle-to-grid charging tariff. Transp. Res. D: Transp. Environ., 113, 2022, 103528.
Beck, A.L., Chitalia, S., Rai, V., Not so gameful: A critical review of gamification in mobile energy applications. Energy Res. Soc. Sci. 51 (2019), 32–39, 10.1016/j.erss.2019.01.006 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629618309034.
Berger, M., Greinacher, E., Wolf, L., 2022. Digital Nudging to Promote Energy Conservation Behavior: Framing and Default Rules in a Smart Home App. In: ECIS 2022 Proceedings. Timisora, pp. 1–17.
Cho, J.Y., Lee, E.H., Reducing confusion about grounded theory and qualitative content analysis: Similarities and differences. Qualitative Report 19, 2014, 10.46743/2160-3715/2014.1028.
Cominola, A., Giuliani, M., Castelletti, A., Fraternali, P., Gonzalez, S.L.H., Herrero, J.C.G., Novak, J., Rizzoli, A.E., Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. NPJ Clean Water 4 (2021), 1–10, 10.1038/s41545-021-00119-0.
Delmonte, E., Kinnear, N., Jenkins, B., Skippon, S., What do consumers think of smart charging? Perceptions among actual and potential plug-in electric vehicle adopters in the United Kingdom. Energy Res. Soc. Sci. 60 (2020), 1–12, 10.1016/j.erss.2019.101318 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629619301422.
Dutta, G., Mitra, K., A literature review on dynamic pricing of electricity. J. Oper. Res. Soc. 68 (2017), 1131–1145, 10.1057/s41274-016-0149-4 URL https://link.springer.com/article/10.1057/s41274-016-0149-4.
Ensslen, A., Ringler, P., Dörr, L., Jochem, P., Zimmermann, F., Fichtner, W., Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets. Energy Res. Soc. Sci. 42 (2018), 112–126, 10.1016/j.erss.2018.02.013 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629618301865.
Eurostat, Electricity and gas prices in the first half of 2022. 2022 URL https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20221031-1.
Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 (2007), 175–191, 10.3758/bf03193146 iSBN: 1554-351X Publisher: Springer.
FleetCarma, Is Gamification the Solution to Electric Vehicle Load Management?. 2018 URL https://www.fleetcarma.com/gamification-for-electric-vehicle-load-management/.
Force, E.T., Engaging EV users in smart charging and energy services. Work package. Energy Task Force UK, 2019, Westminster URL https://www.zemo.org.uk/assets/reports/EVET_WP2-Engaging-EV-users-in-smart-charging-and-energy-services.pdf.
Franke, T., Günther, M., Trantow, M., Krems, J.F., Does this range suit me? range satisfaction of battery electric vehicle users. Appl. Ergon. 65 (2017), 191–199.
Frenzel, I., Jarass, J., Trommer, S., Lenz, B., Erstnutzer Von Elektrofahrzeugen in Deutschland - Erstnutzer Von Elektrofahrzeugen in Deutschland: Technical Report., 2015, DLR Institut für Verkehrsforschung, Berlin.
Fridgen, G., Häfner, L., König, C., Sachs, T., Providing utility to utilities: the value of information systems enabled flexibility in electricity consumption. J. Assoc. Inf. Syst. 17 (2016), 537–563.
Geske, J., 2014. Präferenzen, Geschäftsmodelle und Marktpotential der V2G-Technologie -Geschäftsmodelle und Marktpotential der V2G-Technologie. In: 13. Symposium Energieinnovation, Graz. pp. 1–9, Event-place: Graz.
Geske, J., Schumann, D., Willing to participate in vehicle-to-grid (V2G)? Why not!. Energy Policy 120 (2018), 392–401, 10.1016/j.enpol.2018.05.004 URL https://linkinghub.elsevier.com/retrieve/pii/S0301421518302982.
Goody, M., Lepold, S., Koke, H., Smallacombe, K., 2020. Charge the North: findings from the complete data set of the world's largest electric vehicle study. In: 33rd Electric Vehicle Symposium. p. 12.
Greenflux, 2020. Powered Up: Charging Evs Without Stressing the Electricity Network. Technical Report, Electricnation. UK, URL.
Hair, J.F. Jr., Hult, G.T.M., Ringle, C.M., Sarstedt, M., A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2021, Sage publications.
He, X., Zhan, W., Hu, Y., Consumer purchase intention of electric vehicles in China: The roles of perception and personality. J. Clean. Prod. 204 (2018), 1060–1069, 10.1016/j.jclepro.2018.08.260 publisher: Elsevier.
Herberz, M., Hahnel, U.J.J., Brosch, T., Counteracting electric vehicle range concern with a scalable behavioural intervention. Nat. Energy 7 (2022), 503–510, 10.1038/s41560-022-01028-3 URL https://www.nature.com/articles/s41560-022-01028-3.
HHU, G * Power 3.1 Manual: Technical Report., 2021, HHU Düsseldorf. Düsseldorf.
Hsieh, F.Y., Bloch, D.A., Larsen, M.D., A simple method of sample size calculation for linear and logistic regression. Stat. Med. 17 (1998), 1623–1634, 10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S URL https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S.
Huber, J., Jung, D., Schaule, E., Weinhardt, C., 2019a. Goal framing in smart charging - increasing BEV users’ charging flexibility with digital nudges. In: 27th European Conference on Information Systems (ECIS), Stockholm. pp. 1–16, Event-place: Uppsala.
Huber, J., Schaule, E., Jung, D., Weinhardt, C., Quo vadis smart charging? A literature review and expert survey on technical potentials and user acceptance of smart charging systems. World Electr. Veh. J. 10 (2019), 1–19, 10.3390/wevj10040085 URL https://www.mdpi.com/2032-6653/10/4/85.
Huber, J., Weinhardt, C., Waiting for the sun - can temporal flexibility in BEV charging avoid carbon emissions?. Energy Inform. 1 (2018), 116–428, 10.1186/s42162-018-0026-2 URL https://energyinformatics.springeropen.com/articles/10.1186/s42162-018-0026-2.
IEA, Global EV Outlook 2022 Securing Supplies for an Electric Future: Technical Report., 2022, International Energy Agency.
IRENA, Innovation LAndscape Brief: Electric-Vehicle Smart Charging: Technical Report., 2019, International Renewable Energy Agency (IRENA). Abu Dhabi.
Jochem, P., Kaschub, T., Paetz, A.G., Fichtner, W., Integrating electric vehicles into the German electricity grid – an interdisciplinary analysis. World Electr. Veh. J. 5 (2012), 763–770, 10.3390/wevj5030763 URL http://www.mdpi.com/2032-6653/5/3/763.
Kacperski, C., Ulloa, R., Klingert, S., Kirpes, B., Kutzner, F., Impact of incentives for greener battery electric vehicle charging–A field experiment. Energy Policy, 161, 2022, 112752 Publisher: Elsevier.
Kramer, J., Petzoldt, T., A matter of behavioral cost: Contextual factors and behavioral interventions interactively influence pro-environmental charging decisions. J. Environ. Psychol. 84 (2022), 1–9, 10.1016/j.jenvp.2022.101878 publisher: Elsevier.
Kubli, M., Ev drivers’ willingness to accept smart charging: Measuring preferences of potential adopters. Transp. Res. D: Transp. Environ., 109, 2022, 103396.
Lagomarsino, M., van der Kam, M., Parra, D., Hahnel, U.J., Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging. Energy Policy, 162, 2022, 112818, 10.1016/j.enpol.2022.112818 URL https://linkinghub.elsevier.com/retrieve/pii/S030142152200043X.
Libertson, F., Requesting control and flexibility: Exploring swedish user perspectives of electric vehicle smart charging. Energy Res. Soc. Sci., 92, 2022, 102774.
López-Bonilla, L.M., López-Bonilla, J.M., From the new environmental paradigm to the brief ecological paradigm: A revised scale in golf tourism. Anatolia 27 (2016), 227–236, 10.1080/13032917.2015.1100128 publisher: Taylor & Francis.
Mandrik, C.A., Bao, Y., Exploring the concept and measurement of general risk aversion. ACR North Am. Adv. 32 (2005), 531–539.
Marxen, H., Chemudupaty, R., Graf-Drasch, V., Schoepf, M., Fridgen, G., 2022. Towards an evaluation of incentives and nudges for smart charging. In: Proceedings of the 30th European Conference on Information Systems (ECIS 2022), Timisora. pp. 1–12.
Momsen, K., Stoerk, T., From intention to action: Can nudges help consumers to choose renewable energy?. Energy Policy 74 (2014), 376–382, 10.1016/j.enpol.2014.07.008 URL https://linkinghub.elsevier.com/retrieve/pii/S0301421514004121.
Morganti, L., Pallavicini, F., Cadel, E., Candelieri, A., Archetti, F., Mantovani, F., Gaming for earth: Serious games and gamification to engage consumers in pro-environmental behaviours for energy efficiency. Energy Res. Soc. Sci. 29 (2017), 95–102, 10.1016/j.erss.2017.05.001 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629617301093.
Newsham, G.R., Bowker, B.G., The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review. Energy Policy 38 (2010), 3289–3296, 10.1016/j.enpol.2010.01.027 URL https://www.sciencedirect.com/science/article/pii/S0301421510000510.
Paetz, A.G., Jochem, P., Fichtner, W., 2012a. Demand Side Management mit Elektrofahrzeugen – Ausgestaltungsmöglichkeiten und Kundenakzeptanz. In: Symposium Energieinnovation, Graz. pp. 1–14. http://dx.doi.org/10.5445/IR/1000036422, event-place: Graz.
Paetz, A.G., Kaschub, T., Jochem, P., Fichtner, W., Demand response with smart homes and electric scooters: An experimental study on user acceptance. ACEEE Summer Stud. 22 (2012), 4–236, 10.5445/IR/1000050664.
Pan, L., Yao, E., MacKenzie, D., Modeling EV charging choice considering risk attitudes and attribute non-attendance. Transp. Res. C 102 (2019), 60–72, 10.1016/j.trc.2019.03.007 publisher: Elsevier.
Plötz, P., Schneider, U., Globisch, J., Dütschke, E., Who will buy electric vehicles? Identifying early adopters in Germany. Trans. Res. A: Policy Pract. 67 (2014), 96–109, 10.1016/j.tra.2014.06.006 publisher: Elsevier.
Reis, I.F., Lopes, M.A., Antunes, C.H., Energy literacy: an overlooked concept to end users’ adoption of time-differentiated tariffs. Energy Effic. 14 (2021), 1–28, 10.1007/s12053-021-09952-1 publisher: Springer.
Schaule, E., Meinzer, N., Behavioral Aspects of Load Shifting in Household Appliances. 2020, Science Lab, Berlin, 1–5.
Schmalfuß, F., Mair, C., Döbelt, S., Kämpfe, B., Wüstemann, R., Krems, J.F., Keinath, A., User responses to a smart charging system in Germany: Battery electric vehicle driver motivation, attitudes and acceptance. Energy Res. Soc. Sci. 9 (2015), 60–71, 10.1016/j.erss.2015.08.019 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629615300426.
Schmidt, J., Busse, S., 2013. The Value of IS to Ensure the Security of Energy Supply – The Case of Electric Vehicle Charging. In: AMCIS 2013 Proceedings. URL.
Schuitema, G., Ryan, L., Aravena, C., The consumer's role in flexible energy systems: An interdisciplinary approach to changing consumers’ behavior. IEEE Power Energy Mag. 15 (2017), 53–60.
Shin, H.S., Farkas, Z.A., Nickkar, A., An analysis of attributes of electric vehicle owners’ travel and purchasing behavior: the case of Maryland. International Conference on Transportation and Development 2019: Innovation and Sustainability in Smart Mobility and Smart Cities, 2019, American Society of Civil Engineers Reston, VA, Alexandria, Virginia, 77–90, 10.1061/9780784482582.008.
Sovacool, B.K., Axsen, J., Sorrell, S., Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Res. Soc. Sci. 45 (2018), 12–42.
Sovacool, B.K., Kester, J., Noel, L., de Rubens, G.Z., The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Global Environ. Change 52 (2018), 86–100, 10.1016/j.gloenvcha.2018.06.008 publisher: Elsevier.
Steinhorst, J., Klöckner, C.A., Effects of monetary versus environmental information framing: Implications for long-term pro-environmental behavior and intrinsic motivation. Environ. Behav. 50 (2018), 997–1031.
Tamis, M., Wolbertus, R., van den Hoed, R., 2018. User motivations and requirements for Vehicle2Grid systems. In: European Electric Vehicle Convention on Infrastructure. pp. 1–7, Event-place: Geneva.
Tan, K.M., Ramachandaramurthy, V.K., Yong, J.Y., Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 53 (2016), 720–732, 10.1016/j.rser.2015.09.012 publisher: Elsevier.
Tarroja, B., Hittinger, E., The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California. Energy, 229, 2021, 120691, 10.1016/j.energy.2021.120691 URL https://linkinghub.elsevier.com/retrieve/pii/S0360544221009397.
Tiefenbeck, V., Wörner, A., Schöb, S., Fleisch, E., Staake, T., Real-time feedback reduces energy consumption among the broader public without financial incentives. Nat. Energy 4 (2019), 831–832, 10.1038/s41560-019-0480-5 URL http://www.nature.com/articles/s41560-019-0480-5.
Tijs, M.S., Karremans, J.C., Veling, H., de Lange, M.A., van Meegeren, P., Lion, R., Saving water to save the environment: contrasting the effectiveness of environmental and monetary appeals in a residential water saving intervention. Soc. Influence 12 (2017), 69–79, 10.1080/15534510.2017.1333967 URL https://www.tandfonline.com/doi/full/10.1080/15534510.2017.1333967.
Toft, M.Broman., Schuitema, G., Thø gersen, J., The importance of framing for consumer acceptance of the smart grid: A comparative study of Denmark, Norway and Switzerland. Energy Res. Soc. Sci. 3 (2014), 113–123, 10.1016/j.erss.2014.07.010 URL https://linkinghub.elsevier.com/retrieve/pii/S2214629614000887,.
Van Der Laan, J.D., Heino, A., Waard, D.De., A simple procedure for the assessment of acceptance of advanced transport telematics. Transp. Res. C 5 (1997), 1–10, 10.1016/S0968-090X(96)00025-3 publisher: Elsevier.
Verbong, G.P., Beemsterboer, S., Sengers, F., Smart grids or smart users? Involving users in developing a low carbon electricity economy. Energy Policy 52 (2013), 117–125, 10.1016/j.enpol.2012.05.003 URL https://linkinghub.elsevier.com/retrieve/pii/S0301421512004004.
Vetter, M., Kutzner, F., Nudge me if you can - how defaults and attitude strength interact to change behavior. Compr. Results Soc. Psychol. 1 (2016), 1–28, 10.1080/23743603.2016.1139390 URL https://www.tandfonline.com/doi/full/10.1080/23743603.2016.1139390.
Wang, X.W., Cao, Y.M., Zhang, N., The influences of incentive policy perceptions and consumer social attributes on battery electric vehicle purchase intentions. Energy Policy, 151, 2021, 112163, 10.1016/j.enpol.2021.112163 URL https://linkinghub.elsevier.com/retrieve/pii/S030142152100032X.
Werner, J., Risk aversion. The New Palgrave Dictionary of Economics, 2008, 1–6.
Will, C., Schuller, A., Understanding user acceptance factors of electric vehicle smart charging. Transp. Res. C 71 (2016), 198–214, 10.1016/j.trc.2016.07.006 URL https://linkinghub.elsevier.com/retrieve/pii/S0968090X16301127.
Wong, S.D., Shaheen, S.A., Martin, E., Uyeki, R., Do incentives make a difference? understanding smart charging program adoption for electric vehicles. Transp. Res. C, 151, 2023, 104123.
Xing, Q., Chen, Z., Zhang, Z., Wang, R., Zhang, T., Modelling driving and charging behaviours of electric vehicles using a data-driven approach combined with behavioural economics theory. J. Clean. Prod., 324, 2021, 129243, 10.1016/j.jclepro.2021.129243 publisher: Elsevier.
Zhang, X., Liang, Y., Zhang, Y., Bu, Y., Zhang, H., Charge Pricing Optimization Model for Private Charging Piles in Beijing. Sustainability 9 (2017), 1–15, 10.3390/su9112075.