Article (Périodiques scientifiques)
Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma
Bintener, Tamara; PIRES PACHECO, Maria Irene; PHILIPPIDOU, Demetra et al.
2023In Cell Death and Disease, 14 (468)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s41419-023-05955-1.pdf
Postprint Éditeur (4 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
metabolic; modelling; melanoma; cancer; drug discovery; drug repoposing
Résumé :
[en] Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non- responders or upon acquired resistance to conventional melanoma treatments
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Bintener, Tamara
PIRES PACHECO, Maria Irene ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
PHILIPPIDOU, Demetra ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
MARGUE, Christiane  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
KISHK, Ali ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Del Mistro, Greta
Di Leo, Luca
MOSCARDO GARCIA, Maria ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
HALDER, Rashi  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services
SINKKONEN, Lasse  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
De Zio, Daniela
KREIS, Stephanie ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Kulms, Dagmar
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Plus d'auteurs (4 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma
Date de publication/diffusion :
26 juillet 2023
Titre du périodique :
Cell Death and Disease
eISSN :
2041-4889
Maison d'édition :
Nature Publishing Group, London, Royaume-Uni
Volume/Tome :
14
Fascicule/Saison :
468
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 27 août 2023

Statistiques


Nombre de vues
281 (dont 21 Unilu)
Nombre de téléchargements
90 (dont 3 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu