[en] Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Soriano-Baguet, Leticia; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Grusdat, Melanie; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Kurniawan, Henry; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Benzarti, Mohaned; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg,
Binsfeld, Carole; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Ewen, Anouk; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
LONGWORTH, Joseph ; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Bonetti, Lynn; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Guerra, Luana; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Franchina, Davide G; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Kobayashi, Takumi; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Horkova, Veronika; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Verschueren, Charlène; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Helgueta, Sergio; Luxembourg Center of Neuropathology, Dudelange, Luxembourg ; Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
GERARD, Déborah ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
More, Tushar H; Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Germany
Henne, Antonia; Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Germany
Dostert, Catherine; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Farinelle, Sophie; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
Lesur, Antoine; Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Gérardy, Jean-Jacques; Luxembourg Center of Neuropathology, Dudelange, Luxembourg ; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg.
JÄGER, Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Metabolomics Platform
MITTELBRONN, Michel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuropathology
SINKKONEN, Lasse ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Hiller, Karsten; Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Germany
Meiser, Johannes; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
Brenner, Dirk; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
Basu, R., Hatton, R.D., Weaver, C.T., The Th17 family: flexibility follows function. Immunol. Rev. 252 (2013), 89–103, 10.1111/imr.12035.
Wu, B., Wan, Y., Molecular control of pathogenic Th17 cells in autoimmune diseases. Int. Immunopharm., 80, 2020, 106187, 10.1016/j.intimp.2020.106187.
Franchina, D.G., Dostert, C., Brenner, D., Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 39 (2018), 489–502, 10.1016/j.it.2018.01.005.
Guerra, L., Bonetti, L., Brenner, D., Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep., 32, 2020, 107848, 10.1016/j.celrep.2020.107848.
Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38 (2013), 633–643, 10.1016/j.immuni.2013.04.005.
Buck, M.D., O'Sullivan, D., Pearce, E.L., T cell metabolism drives immunity. J. Exp. Med. 212 (2015), 1345–1360, 10.1084/jem.20151159.
Kurniawan, H., Soriano-Baguet, L., Brenner, D., Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. Eur. J. Immunol. 50 (2020), 1626–1642, 10.1002/eji.201948470.
Rangel Rivera, G.O., Knochelmann, H.M., Dwyer, C.J., Smith, A.S., Wyatt, M.M., Rivera-Reyes, A.M., Thaxton, J.E., Paulos, C.M., Fundamentals of T Cell metabolism and strategies to enhance cancer immunotherapy. Front. Immunol., 12, 2021, 645242, 10.3389/fimmu.2021.645242.
Chapman, N.M., Chi, H., Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55 (2022), 14–30, 10.1016/j.immuni.2021.12.012.
Wang, R., Green, D.R., Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249 (2012), 14–26, 10.1111/j.1600-065X.2012.01155.x.
Zhao, S., Torres, A., Henry, R.A., Trefely, S., Wallace, M., Lee, J.V., Carrer, A., Sengupta, A., Campbell, S.L., Kuo, Y.-M., et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 17 (2016), 1037–1052, 10.1016/j.celrep.2016.09.069.
Koundouros, N., Poulogiannis, G., Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122 (2020), 4–22, 10.1038/s41416-019-0650-z.
Li, B., Carey, M., Workman, J.L., The role of chromatin during transcription. Cell 128 (2007), 707–719, 10.1016/j.cell.2007.01.015.
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F., Kroemer, G., Acetyl coenzyme A: a central metabolite and second messenger. Cell Metabol. 21 (2015), 805–821, 10.1016/j.cmet.2015.05.014.
Sivanand, S., Viney, I., Wellen, K.E., Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43 (2018), 61–74, 10.1016/j.tibs.2017.11.004.
Yang, W., Pang, D., Chen, M., Du, C., Jia, L., Wang, L., He, Y., Jiang, W., Luo, L., Yu, Z., et al. Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev. Cell 56 (2021), 811–825.e6, 10.1016/j.devcel.2021.02.022.
Baricza, E., Marton, N., Királyhidi, P., Kovács, O.T., Kovácsné Székely, I., Lajkó, E., Kőhidai, L., Rojkovich, B., Érsek, B., Buzás, E.I., Nagy, G., Distinct in vitro T-helper 17 differentiation capacity of peripheral naive T cells in rheumatoid and psoriatic arthritis. Front. Immunol., 9, 2018, 606, 10.3389/fimmu.2018.00606.
Macintyre, A.N., Gerriets, V.A., Nichols, A.G., Michalek, R.D., Rudolph, M.C., Deoliveira, D., Anderson, S.M., Abel, E.D., Chen, B.J., Hale, L.P., Rathmell, J.C., The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metabol. 20 (2014), 61–72, 10.1016/j.cmet.2014.05.004.
Zou, C., Wang, Y., Shen, Z., 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 64 (2005), 207–215, 10.1016/j.jbbm.2005.08.001.
Katsen, M., Soderman, D., Nitowsky, M., Kinetic and electrophoretic evidence for multiple forms of glucose-ATP phosphotransferase activity from human cell cultures and rat liver. Biochem. Biophys. Res. Commun., 19, 1965, 6.
Buescher, J.M., Antoniewicz, M.R., Boros, L.G., Burgess, S.C., Brunengraber, H., Clish, C.B., DeBerardinis, R.J., Feron, O., Frezza, C., Ghesquiere, B., et al. A roadmap for interpreting 13 C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34 (2015), 189–201, 10.1016/j.copbio.2015.02.003.
Angela, M., Endo, Y., Asou, H.K., Yamamoto, T., Tumes, D.J., Tokuyama, H., Yokote, K., Nakayama, T., Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat. Commun., 7, 2016, 13683, 10.1038/ncomms13683.
Wipperman, M.F., Montrose, D.C., Gotto, A.M., Hajjar, D.P., Mammalian target of rapamycin. Am. J. Pathol. 189 (2019), 492–501, 10.1016/j.ajpath.2018.11.013.
Takahara, T., Amemiya, Y., Sugiyama, R., Maki, M., Shibata, H., Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J. Biomed. Sci., 27, 2020, 87, 10.1186/s12929-020-00679-2.
Izzo, L., Trefely, S., Demetriadou, C., Drummond, J., Mizukami, T., Kuprasertkul, N., Farria, A., Nguyen, P., Reich, L., Shaffer, J., et al. The carnitine shuttle links mitochondrial metabolism to histone acetylation and lipogenesis. Cell Biol., 2022, 10.1101/2022.09.24.509197.
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10 (2013), 1213–1218, 10.1038/nmeth.2688.
Bulusu, V., Tumanov, S., Michalopoulou, E., van den Broek, N.J., MacKay, G., Nixon, C., Dhayade, S., Schug, Z.T., Vande Voorde, J., Blyth, K., et al. Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18 (2017), 647–658, 10.1016/j.celrep.2016.12.055.
Qiu, J., Villa, M., Sanin, D.E., Buck, M.D., O'Sullivan, D., Ching, R., Matsushita, M., Grzes, K.M., Winkler, F., Chang, C.-H., et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27 (2019), 2063–2074.e5, 10.1016/j.celrep.2019.04.022.
Comerford, S.A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A.K., Walters, H., Tantawy, M.N., Fu, A., Manning, H.C., et al. Acetate dependence of tumors. Cell 159 (2014), 1591–1602, 10.1016/j.cell.2014.11.020.
Chapman, N.M., Boothby, M.R., Chi, H., Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20 (2020), 55–70, 10.1038/s41577-019-0203-y.
Dang, E.V., Barbi, J., Yang, H.-Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.-R., et al. Control of TH17/treg balance by hypoxia-inducible factor 1. Cell 146 (2011), 772–784, 10.1016/j.cell.2011.07.033.
Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., Sullivan, S.A., Nichols, A.G., Rathmell, J.C., Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J. Immunol. 186 (2011), 3299–3303, 10.4049/jimmunol.1003613.
Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., Chi, H., HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208 (2011), 1367–1376, 10.1084/jem.20110278.
Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., Green, D.R., The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35 (2011), 871–882, 10.1016/j.immuni.2011.09.021.
Zhang, D., Jin, W., Wu, R., Li, J., Park, S.-A., Tu, E., Zanvit, P., Xu, J., Liu, O., Cain, A., Chen, W., High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51 (2019), 671–681.e5, 10.1016/j.immuni.2019.08.001.
Xu, K., Yin, N., Peng, M., Stamatiades, E.G., Chhangawala, S., Shyu, A., Li, P., Zhang, X., Do, M.H., Capistrano, K.J., et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 54 (2021), 976–987.e7, 10.1016/j.immuni.2021.04.008.
Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.-C., Cox, J.E., Cardon, C.M., Van Vranken, J.G., Dephoure, N., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337 (2012), 96–100, 10.1126/science.1218099.
Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.-L., Zamboni, N., Westermann, B., Kunji, E.R.S., Martinou, J.-C., Identification and functional expression of the mitochondrial pyruvate carrier. Science 337 (2012), 93–96, 10.1126/science.1218530.
Zangari, J., Petrelli, F., Maillot, B., Martinou, J.-C., The multifaceted pyruvate metabolism: role of the mitochondrial pyruvate carrier. Biomolecules, 10, 2020, 1068, 10.3390/biom10071068.
Johnson, M.O., Wolf, M.M., Madden, M.Z., Andrejeva, G., Sugiura, A., Contreras, D.C., Maseda, D., Liberti, M.V., Paz, K., Kishton, R.J., et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175 (2018), 1780–1795.e19, 10.1016/j.cell.2018.10.001.
Wenes, M., Jaccard, A., Wyss, T., Maldonado-Pérez, N., Teoh, S.T., Lepez, A., Renaud, F., Franco, F., Waridel, P., Yacoub Maroun, C., et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metabol. 34 (2022), 731–746.e9, 10.1016/j.cmet.2022.03.013.
Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T.H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E., Michelakis, E.D., A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158 (2014), 84–97, 10.1016/j.cell.2014.04.046.
Jun, S., Mahesula, S., Mathews, T.P., Martin-Sandoval, M.S., Zhao, Z., Piskounova, E., Agathocleous, M., The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metabol. 33 (2021), 1777–1792.e8, 10.1016/j.cmet.2021.07.016.
Marelli-Berg, F.M., Fu, H., Mauro, C., Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity: the metabolic control of T-cell immunity. Immunology 136 (2012), 363–369, 10.1111/j.1365-2567.2012.03583.x.
Mak, T.W., Grusdat, M., Duncan, G.S., Dostert, C., Nonnenmacher, Y., Cox, M., Binsfeld, C., Hao, Z., Brüstle, A., Itsumi, M., et al. Glutathione primes T cell metabolism for inflammation. Immunity 46 (2017), 675–689, 10.1016/j.immuni.2017.03.019.
Kurniawan, H., Franchina, D.G., Guerra, L., Bonetti, L., - Baguet, L.S., Grusdat, M., Schlicker, L., Hunewald, O., Dostert, C., Merz, M.P., et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metabol. 31 (2020), 920–936.e7, 10.1016/j.cmet.2020.03.004.
Gerriets, V.A., Kishton, R.J., Nichols, A.G., Macintyre, A.N., Inoue, M., Ilkayeva, O., Winter, P.S., Liu, X., Priyadharshini, B., Slawinska, M.E., et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125 (2015), 194–207, 10.1172/JCI76012.
Nagai, S., Kurebayashi, Y., Koyasu, S., Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation: Th17 cells and PI3K-Akt-mTOR complexes. Ann. N. Y. Acad. Sci. 1280 (2013), 30–34, 10.1111/nyas.12059.
Salmond, R.J., mTOR regulation of glycolytic metabolism in T cells. Front. Cell Dev. Biol., 6, 2018, 122, 10.3389/fcell.2018.00122.
Peng, M., Yin, N., Chhangawala, S., Xu, K., Leslie, C.S., Li, M.O., Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354 (2016), 481–484, 10.1126/science.aaf6284.
Soriano-Baguet, L., Brenner, D., Metabolism and epigenetics at the heart of T cell function. Trends Immunol., 2023.
Hochrein, S.M., Wu, H., Eckstein, M., Arrigoni, L., Herman, J.S., Schumacher, F., Gerecke, C., Rosenfeldt, M., Grün, D., Kleuser, B., et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metabol. 34 (2022), 516–532.e11, 10.1016/j.cmet.2022.02.015.
Brüstle, A., Brenner, D., Knobbe, C.B., Lang, P.A., Virtanen, C., Hershenfield, B.M., Reardon, C., Lacher, S.M., Ruland, J., Ohashi, P.S., Mak, T.W., The NF-κB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J. Clin. Invest. 122 (2012), 4698–4709, 10.1172/JCI63528.
Cossarizza, A., Chang, H., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W.W., Aghaeepour, N., Akdis, M., Allez, M., et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 49 (2019), 1457–1973, 10.1002/eji.201970107.
Battello, N., Zimmer, A.D., Goebel, C., Dong, X., Behrmann, I., Haan, C., Hiller, K., Wegner, A., The role of HIF-1 in oncostatin M-dependent metabolic reprogramming of hepatic cells. Cancer Metabol., 4, 2016, 3, 10.1186/s40170-016-0141-0.
Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., Schomburg, D., MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81 (2009), 3429–3439, 10.1021/ac802689c.
Lauterbach, M.A., Hanke, J.E., Serefidou, M., Mangan, M.S.J., Kolbe, C.-C., Hess, T., Rothe, M., Kaiser, R., Hoss, F., Gehlen, J., et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51 (2019), 997–1011.e7, 10.1016/j.immuni.2019.11.009.
Meiser, J., Tumanov, S., Maddocks, O., Labuschagne, C.F., Athineos, D., Van Den Broek, N., Mackay, G.M., Gottlieb, E., Blyth, K., Vousden, K., et al. Serine one-carbon catabolism with formate overflow. Sci. Adv., 2, 2016, e1601273, 10.1126/sciadv.1601273.
Seim, G.L., Britt, E.C., John, S.V., Yeo, F.J., Johnson, A.R., Eisenstein, R.S., Pagliarini, D.J., Fan, J., Two-stage metabolic remodelling in macrophages in response to lipopolysaccharide and interferon-γ stimulation. Nat. Metab. 1 (2019), 731–742, 10.1038/s42255-019-0083-2.
Andrews, S., FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010.
Schubert, M., Ermini, L., Der Sarkissian, C., Jónsson, H., Ginolhac, A., Schaefer, R., Martin, M.D., Fernández, R., Kircher, M., McCue, M., et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9 (2014), 1056–1082, 10.1038/nprot.2014.063.
Kopylova, E., Noé, L., Touzet, H., SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28 (2012), 3211–3217, 10.1093/bioinformatics/bts611.
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14 (2017), 417–419, 10.1038/nmeth.4197.
Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47 (2019), D766–D773, 10.1093/nar/gky955.
Love, M.I., Soneson, C., Hickey, P.F., Johnson, L.K., Pierce, N.T., Shepherd, L., Morgan, M., Patro, R., Tximeta: reference sequence checksums for provenance identification in RNA-seq. PLoS Comput. Biol., 16, 2020, e1007664, 10.1371/journal.pcbi.1007664.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 2014, 550, 10.1186/s13059-014-0550-8.
Yu, G., Wang, L.-G., Han, Y., He, Q.-Y., clusterProfiler: an R Package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16 (2012), 284–287, 10.1089/omi.2011.0118.
Luo, W., Brouwer, C., Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29 (2013), 1830–1831, 10.1093/bioinformatics/btt285.
Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong, N.A., Vesuna, S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B., et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14 (2017), 959–962, 10.1038/nmeth.4396.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25 (2009), 2078–2079, 10.1093/bioinformatics/btp352.
Stark, R., Brown, G., DiffBind: differential binding analysis of ChIP-Seq peak data. Bioconductor, 75, 2022, 10.18129/B9.bioc.DiffBind.
Amemiya, H.M., Kundaje, A., Boyle, A.P., The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep., 9, 2019, 9354, 10.1038/s41598-019-45839-z.
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., Manke, T., deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44 (2016), W160–W165, 10.1093/nar/gkw257.