This article is licensed undera Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
[en] This new approach allows the user to experiment with model choices
easily and quickly without requiring in-depth expertise, as constitutive models can be modified by one line of code only. This ease in building new models makes SOniCS ideal to develop surrogate, reduced order mod- els and to train machine learning algorithms for uncertainty quantification or to enable patient-specific simulations. SOniCS is thus not only a tool that facilitates the development of surgical training simulations but also, and perhaps more importantly, paves the way to increase the intuition of users or otherwise non-intuitive behaviors of (bio)mechanical systems. The plugin uses new developments of the FEniCSx project enabling au- tomatic generation with FFCx of finite element tensors such as the local residual vector and Jacobian matrix. We validate our approach with nu- merical simulations such as manufactured solutions, cantilever beams, and benchmarks provided by FEBio. We reach machine precision accuracy and demonstrate the use of the plugin for a real-time haptic simulation involv- ing a surgical tool controlled by the user in contact with a hyperelastic liver. We include complete examples showing the use of our plugin for sim- ulations involving Saint Venant-Kirchhoff, Neo-Hookean, Mooney-Rivlin, and Holzapfel Ogden anisotropic models as supplementary material.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
MAZIER, Arnaud ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
El Hadramy, Sidaty
Brunet, Jean-Nicolas
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Cotin, Stephane
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
SOniCS: Develop intuition on biomechanical systems through interactive error controlled simulations
Date de publication/diffusion :
septembre 2023
Titre du périodique :
Engineering with Computers
ISSN :
0177-0667
eISSN :
1435-5663
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet européen :
H2020 - 764644 - RAINBOW - Rapid Biomechanics Simulation for Personalized Clinical Design H2020 - 811099 - DRIVEN - Increasing the scientific excellence and innovation capacity in Data-Driven Simulation of the University of Luxembourg
Projet FnR :
FNR16399490 - Understanding Keloid Disorders: A Multi-scale In Vitro/In Vivo/In Silico Approach Towards Digital Twins Of Skin Organoids On The Chip, 2021 (01/01/2022-31/12/2025) - Stéphane Bordas
Mazier A, El Hadramy S, Brunet J-N, Hale JS, Cotin S, Bordas SPA (2022) Supplementary material for SOniCS: develop intuition on biomechanical systems through interactive error controlled simulations. https://doi.org/10.6084/m9.figshare.21120118
Smith M (2009) ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp, United States
DeSalvo GJ, Swanson JA (1985) ANSYS engineering analysis system users manual. Swanson analysis systems. Houston, PA
Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79:1309–1331. 10.1002/nme.2579 DOI: 10.1002/nme.2579
Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large data visualization. Visualization Handbook
Jasak H, Jemcov A, Kingdom U (2007) Openfoam: a c++ library for complex physics simulations. International workshop on coupled methods in numerical dynamics, IUC, pp 1–20
Bordas S, Nguyen VP, Dunant C, Nguyen Dang H, Guidoum A (2006) An extended finite element library. Int J Numer Meth Eng 2:1–33
Jansari C, Natarajan S, Beex L, Kannan K (2019) Adaptive smoothed stable extended finite element method for weak discontinuities for finite elasticity. Eur J Mech A Solids 78:103824. 10.1016/j.euromechsol.2019.103824 DOI: 10.1016/j.euromechsol.2019.103824
Jacquemin T, Bordas SPA (2021) A unified algorithm for the selection of collocation stencils for convex, concave, and singular problems. Int J Numer Meth Eng 122(16):4292–4312. 10.1002/nme.6703 DOI: 10.1002/nme.6703
Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813. 10.1016/j.matcom.2008.01.003 DOI: 10.1016/j.matcom.2008.01.003
Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2013) A computational library for multiscale modeling of material failure. Comput Mech 53(5):1047–1071. 10.1007/s00466-013-0948-2 DOI: 10.1007/s00466-013-0948-2
Sinaie S, Nguyen VP, Thanh Nguyen C, Bordas S (2017) Programming the material point method in Julia. Adv Eng Softw. 10.1016/j.advengsoft.2017.01.008 DOI: 10.1016/j.advengsoft.2017.01.008
Gibbons CH (1934) History of testing machines for materials. Trans Newcomen Soc 15(1):169–184. 10.1179/tns.1934.011 DOI: 10.1179/tns.1934.011
Payan Y, Ohayon J (2017) Preface. In: Payan Y, Ohayon J (eds) Biomechanics of living organs. Translational epigenetics, vol 1. Academic Press, Oxford. 10.1016/B978-0-12-804009-6.10000-8 DOI: 10.1016/B978-0-12-804009-6.10000-8
Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A (2017) A family of hyperelastic models for human brain tissue. J Mech Phys Solids 106:60–79. 10.1016/j.jmps.2017.05.015 DOI: 10.1016/j.jmps.2017.05.015
Zhou J, Fung YC (1997) The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc Natl Acad Sci 94(26):14255–14260. 10.1073/pnas.94.26.14255 DOI: 10.1073/pnas.94.26.14255
Picinbono G, Delingette H, Ayache N (2003) Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models 65(5):305–321. 10.1016/S1524-0703(03)00045-6. (Special Issue on SMI 2002) DOI: 10.1016/S1524-0703(03)00045-6
Flynn C, Taberner A, Nielsen P (2011) Mechanical characterisation of in vivo human skin using a 3d force-sensitive micro-robot and finite element analysis. Biomech Model Mechanobiol 10:27–38. 10.1007/s10237-010-0216-8 DOI: 10.1007/s10237-010-0216-8
Boyer G, Molimard J, Ben Tkaya M, Zahouani H, Pericoi M, Avril S (2013) Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device. J Mech Behav Biomed Mater 27:273–282. 10.1016/j.jmbbm.2013.05.024 DOI: 10.1016/j.jmbbm.2013.05.024
Elouneg A, Sutula D, Chambert J, Lejeune A, Bordas SPA, Jacquet E (2021) An open-source fenics-based framework for hyperelastic parameter estimation from noisy full-field data: application to heterogeneous soft tissues. Comput. Struct. 255:106620. 10.1016/j.compstruc.2021.106620 DOI: 10.1016/j.compstruc.2021.106620
Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3):135–147. 10.1111/j.1475-1305.2006.00257.x DOI: 10.1111/j.1475-1305.2006.00257.x
Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Numer Meth Eng 50(8):1777–1799. 10.1002/nme.86 DOI: 10.1002/nme.86
Mihai LA, Chin L, Janmey P, Goriely A (2015) A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J R Soc Interface 12:1–12. 10.1098/rsif.2015.0486 DOI: 10.1098/rsif.2015.0486
Chagnon G, Rebouah M, Favier D (2014) Hyperelastic energy densities for soft biological tissues: a review. J Elast. 10.1007/s10659-014-9508-z DOI: 10.1007/s10659-014-9508-z
Zeraatpisheh M, Bordas SPA, Beex LAA (2021) Bayesian model uncertainty quantification for hyperelastic soft tissue models. Data-Centric Eng 2:9. 10.1017/dce.2021.9 DOI: 10.1017/dce.2021.9
Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J Biomech Eng 123:418–24. 10.1115/1.1388292 DOI: 10.1115/1.1388292
Haj-Ali RM, Muliana AH (2004) Numerical finite element formulation of the schapery non-linear viscoelastic material model. Int J Numer Meth Eng 59(1):25–45. 10.1002/nme.861 DOI: 10.1002/nme.861
Marchesseau S, Heimann T, Chatelin S, Willinger R, Delingette H (2010) Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery. Prog Biophys Mol Biol 103(2):185–196. 10.1016/j.pbiomolbio.2010.09.005. (Special Issue on Biomechanical Modelling of Soft Tissue Motion) DOI: 10.1016/j.pbiomolbio.2010.09.005
Urcun S, Rohan P-Y, Skalli W, Nassoy P, Bordas SPA, Sciumè G (2021) Digital twinning of cellular capsule technology: emerging outcomes from the perspective of porous media mechanics. PLoS One 16(7):1–30. 10.1371/journal.pone.0254512 DOI: 10.1371/journal.pone.0254512
Simon BR (1992) Multiphase poroelastic finite element models for soft tissue structures. Appl Mech Rev 45(6):191–218. 10.1115/1.3121397 DOI: 10.1115/1.3121397
Stokes I, Chegini S, Ferguson S, Gardner-Morse M, Iatridis J, Laible J (2010) Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading. Ann Biomed Eng 38:1780–1788. 10.1007/s10439-010-9938-0 DOI: 10.1007/s10439-010-9938-0
Richardson SIH, Gao H, Cox J, Janiczek R, Griffith BE, Berry C, Luo X (2021) A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction. Int J Numer Meth Biomed Eng 37(5):3446. 10.1002/cnm.3446 DOI: 10.1002/cnm.3446
Barrera O (2021) A unified modelling and simulation for coupled anomalous transport in porous media and its finite element implementation. Comput Mech. 10.1007/s00466-021-02067-5 DOI: 10.1007/s00466-021-02067-5
Bulle R, Alotta G, Marchiori G, Berni M, Lopomo NF, Zaffagnini S, Bordas S, Barrera O (2021) The human meniscus behaves as a functionally graded fractional porous medium under confined compression conditions. Appl Sci 11:9405. 10.3390/app11209405 DOI: 10.3390/app11209405
Lavigne T, Sciumè G, Laporte S, Pillet H, Urcun S, Wheatley B, Rohan P-Y (2022) Société de biomécanique young investigator award 2021: numerical investigation of the time-dependent stress-strain mechanical behaviour of skeletal muscle tissue in the context of pressure ulcer prevention. Clin Biomech 93:105592. 10.1016/j.clinbiomech.2022.105592 DOI: 10.1016/j.clinbiomech.2022.105592
Han L, Hipwell J, Tanner C, Taylor Z, Mertzanidou T, Cardoso MJ, Ourselin S, Hawkes D (2011) Development of patient-specific biomechanical models for predicting large breast deformation. Phys Med Biol 57:455–472. 10.1088/0031-9155/57/2/455 DOI: 10.1088/0031-9155/57/2/455
Urcun S, Rohan P-Y, Sciumè G, Bordas S (2021) Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model. J Mech Behav Biomed Mater 126:104952. 10.1016/j.jmbbm.2021.104952 DOI: 10.1016/j.jmbbm.2021.104952
Tagliabue E, Piccinelli M, Dall’Alba D, Verde J, Pfeiffer M, Marin R, Speidel S, Fiorini P, Cotin S (2021) Intra-operative update of boundary conditions for patient-specific surgical simulation. Med Image Comput Comput Ass Interv MICCAI 2021:373–382
Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410. 10.1016/j.media.2013.11.001 DOI: 10.1016/j.media.2013.11.001
MiguezPacheco V, Hench L, Boccaccini A (2014) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomaterialia. 10.1016/j.actbio.2014.11.004 DOI: 10.1016/j.actbio.2014.11.004
Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Visual Comput Graphics 5(1):62–73. 10.1109/2945.764872 DOI: 10.1109/2945.764872
Lim Y-J, Hu J, Chang C-Y, Tardella N (2006) Soft tissue deformation and cutting simulation for the multimodal surgery training. In: 19th IEEE symposium on computer-based medical systems (CBMS’06), pp 635–640. 19th IEEE symposium on computer-based medical systems
Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116. 10.1016/j.cma.2013.01.010 DOI: 10.1016/j.cma.2013.01.010
Bianchi D, Monaldo E, Gizzi A, Marino M, Filippi S, Vairo G (2017) A fsi computational framework for vascular physiopathology: a novel flow-tissue multiscale strategy. Med Eng Phys 47:25–37. 10.1016/j.medengphy.2017.06.028 DOI: 10.1016/j.medengphy.2017.06.028
Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1):107–128. 10.1016/0045-7825(96)01035-3 DOI: 10.1016/0045-7825(96)01035-3
Mazier A, Bilger A, Forte A, Peterlik I, Hale J, Bordas S (2022) Inverse deformation analysis: an experimental and numerical assessment using the fenics project. Eng Comput. 10.1007/s00366-021-01597-z DOI: 10.1007/s00366-021-01597-z
Allard J, Courtecuisse H, Faure F (2012) Chapter 21—implicit fem solver on gpu for interactive deformation simulation. In: Hwu WMW (ed) GPU computing gems, Jade. Applications of GPU computing series. Morgan Kaufmann, Boston, pp 281–294. 10.1016/B978-0-12-385963-1.00021-6 DOI: 10.1016/B978-0-12-385963-1.00021-6
Rappel H, Beex L, Hale J, Noels L, Bordas S (2019) A tutorial on Bayesian inference to identify material parameters in solid mechanics. Arch Comput Methods Eng. 10.1007/s11831-018-09311-x DOI: 10.1007/s11831-018-09311-x
Rappel H, Beex LAA, Noels L, Bordas SPA (2019) Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty. Probab Eng Mech 55:28–41. 10.1016/j.probengmech.2018.08.004 DOI: 10.1016/j.probengmech.2018.08.004
Hauseux P, Hale JS, Bordas SPA (2017) Accelerating Monte Carlo estimation with derivatives of high-level finite element models. Comput Methods Appl Mech Eng 318:917–936. 10.1016/j.cma.2017.01.041 DOI: 10.1016/j.cma.2017.01.041
Hauseux P, Hale JS, Cotin S, Bordas SPA (2018) Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Appl Math Model 62:86–102. 10.1016/j.apm.2018.04.021 DOI: 10.1016/j.apm.2018.04.021
Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas SPA (2018) Real-time error control for surgical simulation. IEEE Trans Biomed Eng 65(3):596–607. 10.1109/TBME.2017.2695587 DOI: 10.1109/TBME.2017.2695587
Odot A, Haferssas R, Cotin S (2022) Deepphysics: a physics aware deep learning framework for real-time simulation. Int J Numer Meth Eng 123(10):2381–2398. 10.1002/nme.6943 DOI: 10.1002/nme.6943
Deshpande S, Lengiewicz J, Bordas SPA (2022) Probabilistic deep learning for real-time large deformation simulations. Comput Methods Appl Mech Eng 398:115307. 10.1016/j.cma.2022.115307 DOI: 10.1016/j.cma.2022.115307
Menard M (2011) Game development with unity, 1st edn. Course Technology Press, Boston
Sanders A (2016) An introduction to unreal engine 4. A. K. Peters Ltd, Natick DOI: 10.1201/9781315382555
Comas O, Taylor Z, Allard J, Ourselin S, Cotin S, Passenger J (2008) Efficient nonlinear fem for soft tissue modelling and its gpu implementation within the open source framework sofa. Springer, New York, pp 28–39. 10.1007/978-3-540-70521-5_4 DOI: 10.1007/978-3-540-70521-5_4
Verschoor M, Lobo D, Otaduy MA (2018) Soft hand simulation for smooth and robust natural interaction. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp 183–190. https://doi.org/10.1109/VR.2018.8447555. IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Turini G, Condino S, Fontana U, Piazza R, Howard J, Celi S, Positano V, Ferrari M, Ferrari V (2019) Software framework for vr-enabled transcatheter valve implantation in unity, pp 376–384. https://doi.org/10.1007/978-3-030-25965-5_28. International conference on augmented reality, virtual reality and computer graphics
Niroomandi S, González D, Alfaro I, Bordeu F, Leygue A, Cueto E, Chinesta F (2013) Real time simulation of biological soft tissues: a pgd approach. Int J Numer Meth Biomed Eng. 10.1002/cnm.2544 DOI: 10.1002/cnm.2544
Wu J, Westermann R, Dick C (2014) Real-time haptic cutting of high-resolution soft tissues. Stud Health Technol Inform 196:469–75. 10.3233/978-1-61499-375-9-469 DOI: 10.3233/978-1-61499-375-9-469
Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elastic models. ACM Trans Graph. 10.1145/1944846.1944855 DOI: 10.1145/1944846.1944855
Malgat R, Gilles B, Levin DIW, Nesme M, Faure F (2015) Multifarious hierarchies of mechanical models for artist assigned levels-of-detail. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation. SCA ’15, New York, NY, USA, pp 27–36. Association for computing machinery. https://doi.org/10.1145/2786784.2786800
Guo G, Zou Y, Liu PX (2021) A new rendering algorithm based on multi-space for living soft tissue. Comput Graph 98:242–254. 10.1016/j.cag.2021.06.003 DOI: 10.1016/j.cag.2021.06.003
Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S (2012) SOFA: a multi-model framework for interactive physical simulation. In: Payan Y (ed) Soft tissue biomechanical modeling for computer assisted surgery. Studies in mechanobiology, tissue engineering and biomaterials, vol 11. Springer, Berlin, pp 283–321. 10.1007/8415_2012_125 DOI: 10.1007/8415_2012_125
Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations. Primer. 10.1007/978-3-319-02865-1 DOI: 10.1007/978-3-319-02865-1
Goury O, Amsallem D, Bordas S, Liu W, Kerfriden P (2016) Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization. Comput Mech. 10.1007/s00466-016-1290-2 DOI: 10.1007/s00466-016-1290-2
Goury O, Duriez C (2018) Fast, generic, and reliable control and simulation of soft robots using model order reduction. IEEE Trans Rob 34(6):1565–1576. 10.1109/TRO.2018.2861900 DOI: 10.1109/TRO.2018.2861900
Duriez C, Andriot C, Kheddar A (2004) A multi-threaded approach for deformable/rigid contacts with haptic feedback. In: 12th international symposium on haptic interfaces for virtual environment and teleoperator systems, 2004. HAPTICS ’04. Proceedings, pp 272–279. https://doi.org/10.1109/HAPTIC.2004.1287206
Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) Gpu-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(2):159–168. 10.1016/j.pbiomolbio.2010.09.016. (Special Issue on Biomechanical Modelling of Soft Tissue Motion) DOI: 10.1016/j.pbiomolbio.2010.09.016
Courtecuisse H, Allard J, Duriez C, Cotin S (2011) Preconditioner-based contact response and application to cataract surgery. In: Fichtinger G, Martel A, Peters T (eds) Med Image Comput Comput Assisted Interv MICCAI 2011. Springer, Berlin, pp 315–322
Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, A Logg CR, Ring J, Rognes ME, Wells GN (2015) The FEniCS project version 1.5. Arch Numer Softw. https://doi.org/10.11588/ans.2015.100.20553
Lengiewicz J, Habera M, Zilian A, Bordas S (2021) Interfacing acegen and fenics for advanced constitutive models. In: Baratta I, Dokken JS, Richarson C, Scroggs MW (eds) Proceedings of FEniCS 2021, Online, 22–26 March, p 474. https://doi.org/10.6084/m9.figshare.14495463. http://mscroggs.github.io/fenics2021/talks/lengiewicz.html
Maas S, Ellis B, Ateshian G, Weiss J (2012) Febio: finite elements for biomechanics. J Biomech Eng 134:011005. 10.1115/1.4005694 DOI: 10.1115/1.4005694
Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Visual Comput Graphics 12(1):36–47. 10.1109/TVCG.2006.13 DOI: 10.1109/TVCG.2006.13
Duriez C (2013) Control of elastic soft robots based on real-time finite element method. In: 2013 IEEE international conference on robotics and automation, pp 3982–3987. https://doi.org/10.1109/ICRA.2013.6631138. 2013 IEEE international conference on robotics and automation
Courtecuisse H, Allard J, Duriez C, Cotin S (2010) Asynchronous Preconditioners for Efficient Solving of Non-linear Deformations. In: VRIPHYS—virtual reality interaction and physical simulation. Eurographics Association, Copenhagen, Denmark, pp 59–68. https://doi.org/10.2312/PE/vriphys/vriphys10/059-068. https://hal.inria.fr/hal-00688865
Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412. 10.1016/0022-5096(93)90013-6 DOI: 10.1016/0022-5096(93)90013-6
Costa KD, Holmes JW, Mcculloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond Ser A 359(1783):1233–1250. 10.1098/rsta.2001.0828 DOI: 10.1098/rsta.2001.0828
Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592. 10.1063/1.1712836 DOI: 10.1063/1.1712836
Ogden RW (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326(1567):565–584. 10.1098/rspa.1972.0026 DOI: 10.1098/rspa.1972.0026
Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformations. J Biomech 3(1):111–124. 10.1016/0021-9290(70)90055-2 DOI: 10.1016/0021-9290(70)90055-2
Brunet J-N (2020) Exploring new numerical methods for the simulation of soft tissue deformations in surgery assistance. Theses, Université de Strasbourg, 4 Rue Blaise Pascal. https://hal.inria.fr/tel-03130643
Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans Math Softw 40(2):9–1937. 10.1145/2566630. (Accessed 2015-03-10) DOI: 10.1145/2566630
Kirby RC, Logg A (2006) A compiler for variational forms. ACM Trans Math Softw 32(3):417–444. 10.1145/1163641.1163644. (Accessed 2018-01-31) DOI: 10.1145/1163641.1163644
Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, Mcrae ATT, Bercea G-T, Markall GR, Kelly PHJ (2016) Firedrake: automating the finite element method by composing abstractions. ACM Trans Math Softw (TOMS) 43(3):24–12427. 10.1145/2998441. (Accessed 2020-01-20) DOI: 10.1145/2998441
Bastian P, Blatt M, Dedner A, Dreier N-A, Engwer C, Fritze R, Gräser C, Grüninger C, Kempf D, Klöfkorn R, Ohlberger M, Sander O (2021) The Dune framework: basic concepts and recent developments. Comput Math Appl 81:75–112. 10.1016/j.camwa.2020.06.007. (Accessed 2022-06-01) DOI: 10.1016/j.camwa.2020.06.007
Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18:312–327. 10.1007/s003660200028 DOI: 10.1007/s003660200028
Ølgaard KB, Wells GN (2020) Applications in solid mechanics. In: Logg A, Mardal K-A, Wells G (eds) Automated solution of differential equations by the finite element method: the FEniCS Book. Lecture notes in computational science and engineering. Springer, Berlin, Heidelberg, pp 505–524. https://doi.org/10.1007/978-3-642-23099-8_26. Accessed 2022-07-04
Narayanan H (2012) A computational framework for nonlinear elasticity. In: Logg A, Mardal K-A, Wells G (eds) Automated solution of differential equations by the finite element method. Lecture notes in computational science and engineering. Springer, pp 525–541. https://doi.org/10.1007/978-3-642-23099-8_27 Accessed 2015-03-10
Baroli D, Quarteroni A, Ruiz-Baier R (2012) Convergence of a stabilized discontinuous galerkin method for incompressible nonlinear elasticity. Adv Comput Math 39(2):425–443. 10.1007/s10444-012-9286-8 DOI: 10.1007/s10444-012-9286-8
Phunpeng V, Baiz PM (2015) Mixed finite element formulations for strain-gradient elasticity problems using the fenics environment. Finite Elem Anal Des 96:23–40. 10.1016/j.finel.2014.11.002 DOI: 10.1016/j.finel.2014.11.002
Weis JA, Miga MI, Yankeelov TE (2017) Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy. Comput Methods Appl Mech Eng 314:494–512. 10.1016/j.cma.2016.08.024. (Special Issue on Biological Systems Dedicated to William S. Klug) DOI: 10.1016/j.cma.2016.08.024
Nguyen-Thanh VM, Zhuang X, Rabczuk T (2019) A deep energy method for finite deformation hyperelasticity. Eur J Mech A/Solids. 10.1016/j.euromechsol.2019.103874 DOI: 10.1016/j.euromechsol.2019.103874
Patte C, Genet M, Chapelle D (2022) A quasi-static poromechanical model of the lungs. Biomech Model Mechanobiol 21(2):527–551. 10.1007/s10237-021-01547-0 DOI: 10.1007/s10237-021-01547-0
Scroggs MW, Baratta IA, Richardson CN, Wells GN (2022) Basix: a runtime finite element basis evaluation library. submitted to Journal of Open Source Software
Kirby RC (2004) Algorithm 839: FIAT, a new paradigm for computing finite element basis functions. ACM Trans Math Softw 30(4):502–516. 10.1145/1039813.1039820. (Accessed 2018-01-31) DOI: 10.1145/1039813.1039820
..Balay S, Abhyankar S, Adams MF, Benson S, Brown J, Brune P, Buschelman K, Constantinescu E, Dalcin L, Dener A, Eijkhout V, Faibussowitsch J, Gropp WD, Hapla V, Isaac T, Jolivet P, Karpeev D, Kaushik D, Knepley MG, Kong F, Kruger S, May DA, McInnes LC, Mills RT, Mitchell L, Munson T, Roman JE, Rupp K, Sanan P, Sarich J, Smith BF, Zampini S, Zhang H, Zhang H, Zhang J (2022) PETSc/TAO users manual. Technical Report ANL-21/39—Revision 3.18, Argonne National Laboratory
Rodenberg B, Desai I, Hertrich R, Jaust A, Uekermann B (2021) FEniCS-preCICE: coupling FEniCS to other simulation software. SoftwareX 16:100807. 10.1016/j.softx.2021.100807. (Accessed 2022-07-05) DOI: 10.1016/j.softx.2021.100807
Arnold DN, Awanou G (2011) The serendipity family of finite elements. Found Comput Math 11(3):337–344. 10.1007/s10208-011-9087-3. (Accessed 2022-07-05) DOI: 10.1007/s10208-011-9087-3
Arbogast T, Tao Z, Wang C (2022) Direct serendipity and mixed finite elements on convex quadrilaterals. Numer Math 150(4):929–974. 10.1007/s00211-022-01274-3. (Accessed 2022-07-05) DOI: 10.1007/s00211-022-01274-3
Zienkiewicz OC, Taylor RL, Fox D (2014) The finite element method for solid and structural mechanics, 7th edn. Butterworth-Heinemann, Oxford. 10.1016/B978-1-85617-634-7.00016-8 DOI: 10.1016/B978-1-85617-634-7.00016-8
Ralston A, Rabinowitz P (2001) A first course in numerical analysis, 2nd edn. Dover Publications, New York
Chamberland É, Fortin A, Fortin M (2010) Comparison of the performance of some finite element discretizations for large deformation elasticity problems. Comput Struct 88(11–12):664–673. 10.1016/j.compstruc.2010.02.007 DOI: 10.1016/j.compstruc.2010.02.007
..Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka V, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) Sympy: symbolic computing in python. PeerJ Comput Sci 3:103. 10.7717/peerj-cs.103 DOI: 10.7717/peerj-cs.103
Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3445–3475. 10.1098/rsta.2009.0091 DOI: 10.1098/rsta.2009.0091
Pezzuto S, Ambrosi D, Quarteroni A (2014) An orthotropic active–strain model for the myocardium mechanics and its numerical approximation. Eur J Mech A Solids 48:83–96. 10.1016/j.euromechsol.2014.03.006 DOI: 10.1016/j.euromechsol.2014.03.006
Courtecuisse H, Allard J, Kerfriden P, Bordas S, Cotin S, Duriez C (2013) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410. 10.1016/j.media.2013.11.001 DOI: 10.1016/j.media.2013.11.001
Korelc J (2022) AceGen/AceFEM website and user manuals. http://symech.fgg.uni-lj.si/ Accessed 20 Jun 2022