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Abstract
We describe the SOniCS (SOFA + FEniCS) plugin to help develop an intuitive understanding of complex biomechanics 
systems. This new approach allows the user to experiment with model choices easily and quickly without requiring in-depth 
expertise. Constitutive models can be modified by one line of code only. This ease in building new models makes SOniCS 
ideal to develop surrogate, reduced order models and to train machine-learning algorithms for enabling real-time patient-
specific simulations. SOniCS is thus not only a tool that facilitates the development of surgical training simulations but 
also, and perhaps more importantly, paves the way to increase the intuition of users or otherwise non-intuitive behaviors 
of (bio)mechanical systems. The plugin uses new developments of the FEniCSx project enabling automatic generation 
with FFCx of finite-element tensors, such as the local residual vector and Jacobian matrix. We verify our approach with 
numerical simulations, such as manufactured solutions, cantilever beams, and benchmarks provided by FEBio. We reach 
machine precision accuracy and demonstrate the use of the plugin for a real-time haptic simulation involving a surgical tool 
controlled by the user in contact with a hyperelastic liver. We include complete examples showing the use of our plugin for 
simulations involving Saint Venant–Kirchhoff, Neo-Hookean, Mooney–Rivlin, and Holzapfel Ogden anisotropic models as 
supplementary material.
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1  Introduction

Designing efficient finite-element (FE) simulation soft-
ware is a challenging task. Indeed, as FEM is a vast field, 
numerous pieces of software emerged to fill different 
gaps. For instance, commercial software, such as Abaqus 
[2] or Ansys [3], focuses on user-friendly Graphical User 
Interfaces (GUIs) guiding the user from pre-processing to 
post-processing. This has the advantage of allowing users 
to perform complex simulations with a relatively basic 
theoretical knowledge of FE. Meanwhile, other pieces of 
software focused on specific domains, such as Gmsh [4] for 
FE meshing, Paraview [5] for FE visualization, OpenFoam 
[6] for CFD (Computational Fluid Dynamic) simulations, 
OpenXFEM [7] for extended finite elements [8], colloca-
tion methods [9], meshfree methods [10], multi-scale prob-
lems [11], or material point methods (MPM) [12]. This 
historical perspective explains the countless FE solvers 
which makes an exhaustive state-of-the-art review quasi-
impossible. Before selecting one piece of FE software, user 
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should consider the benefits and disadvantages associated 
with each (i.e., meshing, parallel support, solvers, coding 
language, and visualization). However, generally, simplic-
ity of use and the ability to easily test modeling hypotheses 
appear like the most important considerations in selecting 
such a computational tool.

In the medical simulation context, several specific aspects 
have to be considered.

•	 The material model complexity: Contrary to engineer-
ing materials, such as steel or copper, the mechanical 
properties of living organs were only recently quanti-
fied [13, 14] (early 90s against 1700 for copper) and 
show immense variability [15]. Various models have 
been proposed, e.g., anisotropic [16–20], hyperelastic 
[21–25], viscoelastic [26–29], or poroelastic [30–36] to 
accurately depict their complex mechanical behaviors. 
Indeed, predicting the deformations of bio-materials 
can only be achieved through complex material models 
(sometimes even multi-scale), which are rarely imple-
mented in commercial software. One major difficulty of 
this implementation remains the differentiation of highly 
non-linear equations. Indeed, predicting the deformations 
of such materials can only be achieved through complex 
material models, rarely implemented in commercial 
software. One major difficulty of this implementation 
remains the linearization of highly non-linear equations. 
For instance, hyperelasticity equations can be written as 
a minimization of a tensorial function. In most cases, this 
minimization is solved using gradient-descent algorithms 
requiring the first and second derivatives of the func-
tional. Therefore, obtaining such high-order non-linear 
derivatives is not straightforward and can be prone to 
manual errors.

•	 The complexity of the simulation: In addition to the com-
plexity of the material model, the simulation setup itself 
can be problematic. For instance, the material parameters 
are patient-specific and require data-driven or inference 
methods [37, 38]. The simulations can also (partially) 
involve unknown boundary conditions [39], contact 
with other organs [40, 41], or surgical tools [42, 43]. 
The problem can also require multi-physics models [such 
as Fluid–Structure Interactions (FSI) [44, 45]] or incom-
pressibility [46, 47], where classical displacement-based 
finite elements are prone to locking.

•	 The error control and uncertainty of the solution: When 
dealing with biomechanical simulations, several uncer-
tainties always arise from the material parameters, loads, 
geometry, or boundary conditions. This is mainly due 
to the difficulty in estimating the mechanical properties 

through ex vivo methods or the topology of biological 
tissues using medical imaging. Similarly, error control 
and mesh adaptivity are necessary to ensure homoge-
neous convergence of the solution over the domain and 
that the mesh is optimal given a quantity of interest [48]. 
Therefore, quantifying the uncertainty or controlling 
the error on quantities of interests often requires mak-
ing a very large number of simulations [49, 50] which is 
incompatible with surgical timing [51, 52]. Meanwhile, 
those approaches could be functional in clinical settings 
using accelerated simulations [53] to build surrogate 
models or/and machine learning models for faster solu-
tions of those highly non-linear parametric problems.

•	 The real-time aspect: In addition to the previous point, 
for clinical environments, the run time of the numerical 
simulation is crucial. When performing an operation, 
the surgeon cannot, in general, spend minutes waiting 
for the model predictions. Eventually, this aspect is also 
applicable to artificial intelligence. Indeed, to build an 
efficient machine-learning model, a significant amount 
of data is necessary. Using numerical simulations to cre-
ate synthetic data is now standard and directly depend-
ent on the simulation time [54, 55]. Consequently, the 
run time of the simulation can be considered a principal 
feature of biomechanics simulations, and indeed, of any 
non-intuitive non-linear problems subject to significant 
uncertainties in loading, boundary and initial conditions, 
and parameters. Nowadays, gaming engines, such as Uni-
ty3D [56] or Unreal Engine [57], offer real-time anima-
tion where physics-based algorithms can be included 
[58–60].

•	 The interaction with the user: In a surgical simulation 
setting, external variables can impact the simulation dur-
ing the execution. For example, the exact movement of 
the surgeon’s tool influences the simulation at run time. 
Thus, the parameters of the simulation must be tuned, 
“live”, to integrate interactions between the user and the 
simulation [61, 62].

•	 The visual rendering: Depending on the research field, 
visualization can play a critical role in understanding 
the results. For instance, in the computer graphics com-
munity, photo-realistic visualization is one of the main 
objectives [63, 64]. Contrastingly, in the mechanical 
engineering culture, visualization is a manner of extract-
ing and understanding quantitatively a solution or data 
set (i.e., stress or displacement fields). For medical simu-
lations, an optimal solution must combine both the accu-
racy of the results and photo-realistic rendering reflecting 
the clinical ground truth all within clinical time frames 
[65].
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According to the state-of-the-art, Simulation Open Frame-
work Architecture (SOFA) [66] appears to be a suitable 
compromise. Indeed, SOFA employs efficient rendering 
while providing the possibility to interact in real time with 
the running simulation. One can note that real-time com-
puting is only possible depending on the complexity of 
the problem. Indeed, using excessive numbers of degrees 
of freedom (DOFs) or solving a highly non-linear problem 
cannot result in a real-time simulation (without using model 
order reduction [67–69] or machine learning [55]). SOFA 
can also manage complex simulations through an efficient 
implementation of contact [70–72], for example, or ena-
bling multi-physics coupling. At the time of writing, only 
a few finite elements are available in SOFA. We remark 
that in this the manuscript, the finite element refers to the 
choice of basis functions via the Ciarlet triple (cell topology, 
polynomial space, and dual basis) plus a specific choice of 
weak form. A similar issue is observed for material models 
where numerous implementations only focused on a three-
dimensional isotropic behavior. Therefore, coding a new 
finite element (Ciarler triple + weak form) in SOFA requires 
advanced C++ skills that may discourage individuals from 
using the software.

To alleviate the problem of complex material models, 
FEniCS [73] seems like an appropriate solution. Indeed, 
FEniCS may not possess all of SOFA’s features, but defi-
nitely overcomes SOFA’s capabilities for material model 
complexity. With FEniCS, the user can generate any material 
model, regardless of the element’s geometry or interpolation. 
Plus, it authorizes an export of the pertinent finite-element 
tensors in C code to be efficiently plugged into SOFA. The 
benefits of the synergy are considerable. Using SOFA’s 
interactivity and real-time features, the user can easily pro-
totype a real-time simulation. Indeed, by modifying "live" 
various boundary conditions, geometries, or topologies, the 
user can effortlessly and rapidly verify modeling hypotheses 
for a specific problem. Combined with the specificities of 
FEniCS, the user can additionally smoothly prototype com-
plex material models for modeling elaborate scenarios. Such 
feature has already been used by coupling FEniCS and Ace-
gen but with different objectives [74]. To the authors’ knowl-
edge, this paper is the first to use FEniCS code generation 
capabilities for such an endeavor and is the first coupling 
between FEniCS and SOFA.

This paper has the following outline. We will first briefly 
introduce SOFA and FEniCS, highlighting the relative 
advantages and design choices in each. Section 2 will detail 
the plugin functionalities and a short tutorial for importing 
a Saint Venant–Kirchhoff model from FEniCS in SOFA. 

Then, Sect. 3 will focus on confirming our implementation 
for various numerical tests. We will use a manufactured 
solution in Sect.  3.1 as validation and compare our solu-
tions for a cantilever beam problem with SOFA in Sect.  3.2. 
The last test consists in implementing a new material model 
(Mooney–Rivlin) in SOFA and benchmarking it with FEBio 
[75] in Sect.  3.3. Finally, in Sect. 4, we will use our plugin 
in a complex haptic simulation that cannot be implemented 
in FEniCS, using a custom material model inexistent in 
SOFA.

1.1 � SOFA

SOFA was created in 2007 by a joint effort from Inria, 
CNRS, USTL, UJF, and MGH. This piece of software aims 
to provide an efficient framework dedicated to research, pro-
totyping, and the development of physics-based simulations. 
It is an open-source library distributed under the LGPL 
license, hosted on GitHub at https://​github.​com/​sofa-​frame​
work/​sofa, and developed by an international community. 
SOFA is modular. Users can create public or private plugins 
to include additional features.

SOFA is a C++ library, including Python wrappers 
for a user-friendly prototyping interface. It was originally 
designed for deformable solid mechanics but has been 
extended to various domains, such as robotics, registration, 
fluid simulations, model-order reduction, and haptic simula-
tions [76–78]. SOFA exhibits many attractive features, but 
among them, the combination of multi-model representa-
tions and mappings differentiates it from other software.

Multi-model representation: Most classical FE soft-
ware uses an identical discretization for the whole model. 
Consequently, if one user wants to refine the mesh along a 
contact surface, the FE mesh will undergo the same refine-
ment in the contact region. It can induce slow simulations 
for solving the FE system, while the user was initially only 
interested in the contact part. Conversely, utilizing a multi-
model representation approach, users can split the principal 
model into three distinct sub-models: deformation, collision, 
and visual. Thus, the user can decide to have high-fidelity 
deformations with flawed contact detection while maintain-
ing a fine rendering, or vice versa. Similarly, an object can 
be made of several deformation models. For example, one 
can model a muscle by the interaction of FE 3D tetrahedra 
for the volume and 1D beams for modeling ligaments, using 
two different solvers.

Mappings: In SOFA, the “mappings” are responsible for 
the communication between the different models. The mod-
els have parent–child relationships constructing a hierarchy 

https://github.com/sofa-framework/sofa
https://github.com/sofa-framework/sofa
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(and a DOF hierarchy by extension). It enables propagating 
the positions, velocities, accelerations, and forces across the 
different models. For example, if the contact model calcu-
lates a force, it is mapped on the deformation model that will 
communicate back the computed displacement.

Finally, by combining the multi-model representation 
with the mappings, SOFA can build complex real-time sim-
ulations with high-fidelity rendering. In addition to a scen-
egraph structure and visitors (responsible for going through 
the model hierarchy) implementation, it can account for 
interactivity with the users.

Despite the advantages provided by SOFA, some draw-
backs have to be acknowledged. First, in terms of solid 
mechanics simulations, only a few elements and material 
models are available. Indeed, SOFA only proposes Lagrange 
linear elements, and the cell topologies are limited to seg-
ments, triangles, quadrangles, tetrahedra, and hexahe-
dra. The following material models are coded: Boyce and 
Aruda [79], Costa [80], isotropic and anisotropic Hookean, 
Mooney–Rivlin (two invariants) [81], classical and stabi-
lized Neo-Hookean, Ogden [82], Saint Venant–Kirchhoff, 
and Veronda Westman [83]. Despite a reasonable number of 
mechanical models, a few of them are actually implemented 
for each cell topology. Second, the benefits provided by the 
mappings can also turn out to be a disadvantage when it 
comes to implementation. Indeed, the structure of the map-
pings is usually complex for unexperimented C++ users, 
and the mechanical tensors such as the Cauchy–Green or 
Piola–Kirchhoff are rarely computed. The two previous 
drawbacks are associated with the same flaw: the strong cou-
pling between the material models and the topology of the 
element assumed within SOFA’s architecture. This coupling 
implies that changing an element’s topology or interpolation 
will involve a new mapping or the rewriting of the material 
model, even in the case of a similar material model.

1.2 � The modular mechanics plugin (Caribou)

The initial goal of the plugin (called Caribou at the time of 
writing, https://​github.​com/​mimes​is-​inria/​carib​ou) was to 
quickly implement new shape functions and their derivatives 
for different Immersed-Boundary and meshless domain dis-
cretization while keeping the compatibility with the existing 
SOFA surgical simulations [84]. Besides, the plugin enabled 
to effortlessly implement different volumetric quadrature 
schemes and several hyperelastic material models. Hence, 
the software design had to be generic enough to combine all 
the previous requirements. It also had to be efficient enough 
to avoid the creation of a bottleneck that would prevent the 

biomechanical model from meeting its computational speed 
requirement. Hence, the plugin was made as an extension to 
SOFA, bringing a redesigned software architecture.

In the plugin, the authors implemented a compile-time 
polymorphism design using generic C++ template program-
ming. The idea is to write the code as close as possible to 
equations found in the traditional FE books. Then, the C++ 
compiler optimizes the set of operations executed during 
the simulation while keeping an object-oriented code. In 
this design, the “Element” concept was created as a generic 
computational class that would be inherited by all element 
types. Similarly to OpenXFEM++ [7], it provides a flex-
ible implementation to add interpolation and quadrature 
numerical procedures quickly. Since standard isoparametric 
elements have a number of nodes, quadrature points, and 
shape functions already known at compile-time, most mod-
ern compilers will be able to aggressively inline the code to 
optimize the computation.

Finally, the plugin allows the creation of additional mate-
rial models by simply defining three methods per material: 
the strain energy density function, the second Piola–Kirch-
hoff stress tensor function, and its derivative functions. 
These three functions are evaluated at a given integration 
point automatically provided by the plugin. This design 
delivers an undeniable advantage: writing a new material 
model is now independent of the topology and integration 
scheme. However, it comes with a non-negligible cost. The 
author of the new material model has to manually differ-
entiate the strain energy twice and write it in C++. This 
manual intervention is error-prone and can quickly become 
a substantial drawback for complex materials.

1.3 � FEniCS

The FEniCS Project (FEniCS) [73] is a collection of tools 
for the automated solution of partial differential equations 
using the finite-element method. Like SOFA, the FEniCS 
components are distributed under open-source licenses 
(LGPL v3 or later, and MIT) and development is hosted on 
GitHub at https://​github.​com/​fenics.

A distinguishing feature of FEniCS is the ability to allow 
the user to write variational of weak formulations of finite-
element methods in a high-level Python-based domain-spe-
cific language (DSL), the Unified Form Language (UFL) 
[85]. Subsequently, that high-level description can be com-
piled/transformed using the FEniCS Form Compiler (FFC) 
[86] into low-level and high-performance kernels. These 
kernels can calculate the corresponding local finite-element 

https://github.com/mimesis-inria/caribou
https://github.com/fenics
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tensor for a given cell in the mesh. UFL is also used by other 
finite-element solvers with independently developed auto-
matic code generation capabilities, notably Firedrake [87], 
Dune [88]. The AceGen software also supports automatic 
differentiation and support for automaticaly generating low-
level code [89]. Compared with SOFA, FEniCS is limited in 
scope; its primary focus is the specification and solution of 
partial differential equations via the finite-element method, 
leaving difficult problems like mesh generation, post-pro-
cessing, and visualization to leading third-party packages, 
such as Gmsh [4] and Paraview [5].

In the context of implementing finite-element models of 
hyperelastic materials, this automatic approach has a number 
of advantages over the traditional route used by most finite-
element codes (including, to some extent, SOFA); differenti-
ating analytical expressions for the residual (first derivative) 
and Jacobian (second derivative) of the energy functional 
for the hyperelastic model, picking a suitable finite-element 
basis, and then hand-coding the corresponding finite-ele-
ment kernels in a low-level language (C, Fortran, and C++) 
for performance. Specifically: 

1.	 The symbolic residual and Jacobian can be derived auto-
matically using the symbolic differentiation capabilities 
of UFL. By contrast, taking these derivatives by hand 
can be tedious and error-prone.

2.	 The compilation of the UFL description of the problem 
by FFC into the associated low-level kernels is entirely 
automated. Again, this step is often time-consuming and 
difficult to perform manually.

3.	 Because of the high-level description of the problem, 
it is possible to experiment quickly with different con-
crete finite-element formulations (material models, basis 
functions, element topology, etc.) without manually 
modifying low-level kernel code.

The potential of this high-level approach for solid mechan-
ics was recognized early on in the development of FEniCS, 
with two chapters in the FEniCS Book [90, 91] promoting 
this direction. Since then, FEniCS has been used in a large 
number of publications on the topic of hyperelastic large-
deformation elasticity, e.g., [92–96].

Recently, the FEniCS Project has undergone a major 
redevelopment, resulting in the new FEniCSx components; 
DOLFINx (the finite-element problem solving environment, 
replacing DOLFIN), FFCx (the FEniCSx Form Compiler, 
replacing FFC), and Basix [97] (a finite element basis 
function tabulator, replacing FIAT [98]). UFL is largely 
unchanged from the version used in the old FEniCS compo-
nents and Firedrake.

In this work, we do not use DOLFINx. DOLFINx con-
tains the basic finite-element data structures and algorithms 
(e.g., meshes, function spaces, assembly, interfacing with 
linear algebra data structures in, e.g., PETSc [99]), and 
therefore, there is a significant overlap with the functionality 
already available in SOFA. Directly interfacing DOLFINx 
and SOFA at the Application Programming Interface (API) 
level would be a significant technical challenge due to the 
substantial differences in their internal data structures. Dedi-
cated weak coupling libraries such as PreCICE [100] could 
be an interesting alternative to API coupling, but it is not a 
path that we explore in this work.

Instead, the approach taken by SOniCS is to only use 
UFL and FFCx (which in turn depends on Basix) to con-
vert the high-level description of the finite-element problem 
into low-level C code, which are then called using SOFA’s 
existing C++ finite-element data structures and algorithms. 
Compared with coupling DOLFINx and SOFA directly, our 
approach creates a relatively light compile–time coupling 
between FEniCS (specifically, the generated C code) and 
SOFA (a large complex C++ code with many dependen-
cies). Consequently, no additional runtime dependencies 
required for SOFA. This methodology will be familiar to 
users of the DOLFINx C++ interface where C finite-ele-
ment kernels are generated in a first step using UFL and 
FFCx and are then integrated into the DOLFINx solver 
in a second step through a standard compile/include/link 
approach. Without going into excessive detail, three changes 
in the redeveloped FEniCSx components have made SOniCS 
significantly easier to realize: 

1.	 FFCx (and also DOLFINx) now support code genera-
tions using finite elements defined on quadrilateral and 
hexahedral cells, the default in SOFA.

2.	 Basix and FFCx have full support for Serendipity finite 
elements of arbitrary polynomial order following the 
construction of Arnold and Awanou [101]. Serendipity 
elements are used in SOFA and there was a desire to 
continue supporting Serendipity basis function due to 
their lower number of degrees of freedom per cell and 
generally lower number of local computations compared 
with standard tensor-product Lagrange elements. We 
remark that despite the widespread use of Serendipity 
elements in many solvers, they can only obtain optimal 
order convergence on affinely mapped meshes; see, e.g., 
[102] for more details.

3.	 FFCx outputs C99 compliant code according to the 
UFCx interface, which is specified as a C header file 
included with FFCx. This is in contrast with FFC, 
which outputs C++03 compliant code conforming to an 
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interface specified with a C++ header file. This switch 
makes it significantly easier to call FFCx generated ker-
nels from libraries with a C Foreign Function Interface 
(FFI) such as Python and Julia, or any language which 
can easily call functions with a C ABI (e.g., Fortran). 
Although SOFA is a C++ libraries and could certainly 
call C++ generated kernels, the C interface is simpler 
to use, consisting only of structs containing basic native 
data types and functions.

2 � SOniCS

In this section, we present more in-depth the SOniCS 
(SOFA + FEniCS). The plugin is available on a develop-
ment branch in GitHub https://​github.​com/​mimes​is-​inria/​
carib​ou/​tree/​FeniCS-​featu​res and will soon be merged into 
the main branch. We first introduce the procedure for defin-
ing the material model, the element, and the quadrature rule 
or degree using the UFL (Python) syntax. For simplicity, we 
only focused on a Saint Venant–Kirchhoff model. However, 

the method can be generalized to all element types follow-
ing the pipeline shown in Fig. 1. Second, we explain the 
methodology for converting the UFL script into efficient C 
kernels. Finally, we show the interface between the SOn-
iCS plugin and SOFA, stating the conceptual and coding 
differences. For simplicity and as the modular mechanics 
plugin’s name (Caribou) might change, we use the name 
SOFA to denote the combination of SOFA and the modular 
mechanics plugin.

2.1 � UFL: from FE model to Python code

The first step is to define the FE model using the UFL syntax 
in a Python script. As an example, in listing 1, we describe 
the 3D simplest hyperelastic model and element: Saint 
Venant–Kirchhoff with linear Lagrange finite elements on 
tetrahedra. In the context of hyperelastic simulations, we will 
exclusively describe features that users could be interested 
in customizing.

Fig. 1   Description of the SOn-
iCS pipeline (on the right) and 
differences with SOFA (on the 
left). In SOFA, each element 
has to be defined, embedding 
cell geometry, shape functions 
(including derivatives), and the 
quadrature scheme and degree. 
In SOniCS, it has been replaced 
by two Python lines of code for 
describing the element and its 
quadrature. The same benefit 
goes for the material model 
description. In SOFA, each 
material has to be created in a 
separate file stating its strain 
energy, derivating by hand the 
second Piola–Kirchhoff tensor 
(S) and its Jacobian. It was 
replaced in SOniCS by only 
defining the strain energy of the 
desired material model in UFL. 
The derivative of the strain 
energy will then be automati-
cally calculated using the FFCX 
module. Finally, both plugins 
share the same Forcefield meth-
ods for assembling the global 
residual vector ( Ω ⊂ R3 ) and 
stiffness matrix ( u ∶ Ω → R3)

https://github.com/mimesis-inria/caribou/tree/FeniCS-features
https://github.com/mimesis-inria/caribou/tree/FeniCS-features
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2 from ufl import (Coefficient , Constant , Identity ,
3 TestFunction , TrialFunction , inner , ds,
4 VectorElement , derivative , dx, grad ,
5 tetrahedron , tr, variable)
6

7 # Function spaces
8 cell = tetrahedron
9 d = cell.geometric_dimension ()

10 element = VectorElement("Lagrange", cell , 1)
11

12 # Trial and test functions
13 du = TrialFunction(element) # Incremental displacement
14 v = TestFunction(element) # Test function
15

16 # Functions
17 u = Coefficient(element) # Displacement from previous iteration
18 B = Coefficient(element) # Body forces
19 B = Coefficient(element) # Traction forces
20

21 # Kinematics
22 I = Identity(d) # Identity tensor
23 F = variable(I + grad(u)) # Deformation gradient
24 C = variable(F.T * F) # Right Cauchy -Green tensor
25 E = variable (0.5 * (C - I)) # Green -Lagrange tensor
26

27 # Elasticity parameters
28 young = Constant(cell)
29 poisson = Constant(cell)
30 mu = young / (2 * (1 + poisson))
31 lmbda = young * poisson / ((1 + poisson) * (1 - 2 * poisson))
32

33 # Stored strain energy density (compressible Neo -Hookean model)
34 psi = (lmbda / 2) * tr(E) ** 2 + mu * tr(E * E)
35

36 # Total potential energy
37 Pi = psi * dx(degree =1) - inner(B, u) * dx(degree =1) - inner(T, u) * ds(

degree =1)
38

39 # First variation of Pi (directional derivative about u in the direction of
v)

40 F = derivative(Pi, u, v)
41

42 # Compute Jacobian of F
43 J = derivative(F, u, du)
44

45 # Export forms
46 forms = [F, J, Pi]

1 # material.py

Listing 1: Python code example (material.py) of a Saint Venant-Kirchhoff
material model using Lagrange linear tetrahedron.

Listing 1: Python code example (material.py) of a Saint Venant-Kirchhoffmaterial model using Lagrange linear tetrahedron.

Element: After importing the necessary packages, 
we can define the element geometry. In listing 1, on line 
10, we used a linear Lagrange tetrahedron. The user 
can easily modify different parameters of the element, 
such as the geometry, the family type, or the interpola-
tion degree. For example, by only changing line 10 to 
element = VectorElement (" Serendipity", hexahedron , 2)  
the element is now a quadratic Serendipity hexahedron. 
Note that VectorElement creates by default a function space of 
vector field equal to the spatial dimension. A complete list 
of the element available in the Basix documentation [97].

Material model: By definition, boundary value prob-
lems for hyperelastic media can be expressed as minimi-
zation problems. For a domain Ω ⊂ R3 , the goal is to find 
the displacement field u ∶ Ω → R3 that minimizes the total 
potential energy Π . The potential energy is given by

where � is the elastic stored energy density, B is a body 
force (per unit reference volume), and T is a traction force 
(per unit reference area) prescribed on a boundary �Ω (of 
measure ds ) of the domain Ω (of measure dx).

In listing 1, at line 37, we define the strain energy of a 
Saint Venant–Kirchhoff material model as

(1)Π(u) = ∫
Ω

�(u) dx − ∫
Ω

B ⋅ u dx − ∫
�Ω

T ⋅ u ds,

where � and � are Lamé material constants, while E is the 
Green Lagrange strain tensor defined as 1

2
(C − I) , where I 

is the identity matrix and C the right Cauchy–Green tensor 
C = FTF = (∇u + I)T (∇u + I) . Therefore, we observe that 
tensor E is expressed with respect to the displacement u , 
which is the unknown displacement field. Moreover, � and 
� are a function of the Young’s modulus and of Poisson’s 
ratio that are assumed to be known constants.

If the user would like to change the material model for 
Neo-Hookean with the strain energy density

It would only require in replacing line 31 with: 
psi = (mu / 2) * (Ic - 3) - mu * ln(J) + (lmbda / 2) * (ln(J)) ** 2  in 
addition to previously defining the corresponding kinematics 
variables J = det(F) and IC = tr(C).

J = det(F)
I_C = tr(C)

Quadrature rule: In listing 1, at line 37, when calculat-
ing the total potential energy, it is also possible to choose the 

(2)� =
�

2
tr(E)2 + �tr(E2

),

(3)� =
�

2
(IC − 3) − �ln(J) +

�

2
ln(J)2.
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quadrature rule and the degree. In our example, we selected 
a quadrature degree of 1, triggering by default the Zienk-
iewicz and Taylor scheme [103] for tetrahedra. Hence, the 
user could also choose to use a Gauss–Jacobi quadrature of 
degree 2 [104] by replacing line 37 with:

Pi = psi * dx(degree=2, scheme ="Gauss -Jacobi ") - inner(B, u) * dx(degree
=2, scheme ="Gauss -Jacobi ") - inner(T, u) * ds(degree=2, scheme ="Gauss -
Jacobi ")

.

2.2 � FFCx: from Python code to efficient C kernels

In the particular case of static hyperelastic simulations, we 
solve the following non-linear system of equation:

The R tensor is called the residual vector and is defined as 
the Gâteaux derivative of the total potential energy Π with 
respect to change in the displacement u in direction v

The tensor K is the Jacobian (also called stiffness in the 
context of mechanics) matrix and corresponds to the deriva-
tive of R

Solving the non-linear system in Eq. 4 can be achieved using 
the Newton–Raphson algorithm that will iteratively solve a 
set of linear systems, assuming an initial guess un

The two tensors can be derived symbolically and exported 
using the UFL syntax with the function derivative, as 
shown at lines 40 and 43 in listing 1. A simple call to ffcx 
will create a.c and.h files containing the code for generating 
the local R and K tensors.

(4)K(u) ⋅ du = R(u) − f (u).

(5)R =
dΠ(u + �v)

d�
|�=0.

(6)K =
dR(u + �du)

d�
|�=0.

(7)un+1 = un − du.

$ ffcx material.py

2.3 � Integration in SOniCS

In SOFA, the definitions of the residual and stiffness ten-
sors are carried out within a C++ file, Hyperelastic-
Forcefield.cpp. Each material model is in a separate 
file. So far, only Saint Venant–Kirchhoff and Neo-Hookean 
models have been implemented. The users can easily access 
those functionalities through Python wrappers:

node.addObject("SaintVenantKirchhoffMaterial", young_modulus=E,
poisson_ratio=nu)
node.addObject(’HyperelasticForcefield ’)

The HyperelasticForcefield.cpp contains several 
functions, but we are particularly focusing on two of them. 
The addForce and assemble_stiffness functions are 
assembling the global residual and stiffness tensors, respec-
tively. Algorithm 1 details the addForce function, while 
algorithm 2 presents our reimplementation of the procedure. 
We did not detail the assemble_stiffness as it involves 
the exact same differences between the two implementations.
Algorithm 1 SOFA addForce function. The addForce function is in charge
of assembling the global residual vector.

1: for element in elements do
2: X ← element.positions � return the current positions of the element
3: Rglobal ← 0 � zero the global residual vector of dimension (DOFs ×3)
4: Rlocal ← 0 � zero the local residual vector of dimension (element

DOFs ×3)
5: for quadrature in quadratures do
6: detJ ← det(quadrature.nodes) � return the Jacobian of the

quadrature nodes
7: dN ← quadrature.nodes.shape functions derivatives �

return the derivatives of the shape functions of the quadrature nodes
8: w ← quadrature.nodes.weights � return the weights of the

quadrature nodes
9: F ← XT · dN

10: J ← det(F )
11: C ← FT · F
12: S ← f(C, MaterialParameters) �

return the second Piola-Kirchhoff depending on the material parameters
and kinematics tensors

13: for i in range(0, NumberOfNodesPerElement) do
14: dx ← dN [i]T

15: Rlocal[i] ← (detJ · w) · F · S · dx � allocate the result in the
local residual vector

16: end for
17: end for
18: for i in range(0, NumberOfNodesPerElement) do
19: Rglobal[global(i)] ← Rglobal[global(i)]−Rlocal[i] � i indicates the

element node index while global(i) denotes the global node index
20: end for
21: end for

Listing 2: Python definition of a hyperealstic forcefield 
in SOFA using a Saint Venant-Kirchhoff material model.

The structure is similar, but we can still observe a few 
differences.

•	 The new implementation of algorithm 2 is more concise 
and involves less visible tensorial operations, because all Fig. 2   Local numbering of element vertices and edges in both FEn-

iCS and SOFA
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those operations are efficiently hard-coded in the C file 
provided by FFCx. For example, in algorithm 1, lines 5 
to 17 were replaced in the new algorithm 2 by solely line 
11.

•	 Algorithm 2 needs to have access to the initial position 
of the object and to the displacement vector. This was 
indeed not needed in the previous implementation, since 
the modular mechanics plugin takes advantage of writing 
the deformation gradient only based on the current nodal 
coordinates x

∇Ω0
 and x

0
 , respectively, denote the gradient and the 

nodal coordinates in the initial configuration, thus sav-
ing one extra vector operation.

Algorithm 2 SOniCS addForce function. The addForce function is in charge
of assembling the global residual vector.

1: for element in elements do
2: X ← element.positions � return the current positions of the element
3: X0 ← element.rest positions � return the initial positions of the

element
4: B ← gravity � return the body forces
5: T ← element.forces � return the traction forces applied on the

element
6: u ← X −X0
7: Rglobal ← 0 � zero the global residual vector of dimension (DOFs ×3)
8: Rlocal ← 0 � zero the local boundary conditions residual vector of

dimension (element DOFs ×3)
9: Rbc

local ← 0 � zero the local residual vector of dimension (element
DOFs ×3)

10: constants ← MaterialParameters � return the material parameters
11: Rlocal ← tabulate tensor(Rlocal, u,B, constants, X0)
12: Rbc

local ← tabulate tensor(Rlocal, u, T, constants, X0)
13: for i in range(0, NumberOfNodesPerElement) do
14: Rglobal[global(i)] ← Rglobal[global(i)]− (Rlocal[i] +Rbc

local[i]) � i
indicates the element node index while global(i) denotes the global node
index

15: end for
16: end for

•	 In the SOFA implementation, the boundary conditions 
and body forces are treated in separate files. In the new 
implementation of the Forcefield 1, the boundary con-
ditions and body forces are now directly carried out 
in the Forcefield on lines 11 and 12. It avoids calling 
another function to loop again through every element of 
the object, thus speeding up the assembly of the residual 
vector.

Based on this new implementation, we created a new 
forcefield HyperelasticForcefield_FEniCS as 
close as possible to the existing syntax of Hyperelas-
ticForcefield. We also needed to tune the existing 
material definition to replace unnecessary calculations and 
allow us to read the corresponding.c file.

(8)F = I + ∇Ω0
u = I + ∇Ω0

(x − x
0
) = ∇Ω0

x.

node.addObject("FEniCS_Material", material="SaintVenantKirchhoff",
young_modulus=E, poisson_ratio=nu)
node.addObject(’HyperelasticForcefield_FEniCS ’

Listing 3: Python definition of a hyperelastic forcefield in SOniCS using a Saint
Venant-Kirchhoff material model.

Listing 3: Python definition of a hyperelastic forcefield 
in SOniCS using a SaintVenant-Kirchhoff material model.

Finally, the last hurdle was the element definitions. 
Indeed, SOFA and FEniCS do not use the same vertices, 
edges, and facets ordering (as shown in Fig. 2). To avoid 
any conflict with the existing users of SOFA and solve 
the ordering issue, we proposed rearranging the topology 
indices, edges, and vertices and creating new elements. It 
ensured an accurate integration over the elements (espe-
cially for quadratic Serendipity integrating over the edges) 
and preserved an appropriate visualization. Those elements 
have been interfaced with the existing topology named 
CaribouTopology.

node.addObject(’CaribouTopology ’, name=’topology ’, template="Hexahedron
", indices=mesh.cells_dict[’hexahedron ’])

node.addObject(’CaribouTopology ’, name=’topology ’, template="
Hexahedron_FEniCS", indices=mesh.cells_dict[’hexahedron ’][:, [4, 5, 0,
1, 7, 6, 3, 2]])

Listing 4: Python definition of hexahedron topology in SOFA and SOniCS.

 Listing 4: Python definition of hexahedron topology in 
SOFA and SOniCS.

3 � Numerical examples

In this section, we describe three numerical examples 
used for the validation of our SOniCS implementation. 
Every simulation described in this section can be repro-
duced and is available on our GitHub page [1] (https://​
github.​com/​Ziemn​ono/​SOniCS_​valid​ation). We use the 
same domain description for each example while varying 
the boundary conditions and material parameters of each 
simulation.

Let Ω be a domain represented by a squared-section beam 
of dimensions 80 × 15 × 15m3 , considered fixed on the right 
side ( u = 0 on ΓD ), while Neumann boundary conditions are 
applied on the left side ( ΓN ), as shown in Fig. 3a and 3b.

Ω was discretized using two different geometrical ele-
ments using linear and quadratic interpolations. P1 and P2 
elements stand for linear or quadratic tetrahedra, while Q1 
and Q2 denote linear and quadratic hexahedra.

To solve each hyperelastic formulation described in Eq. 4, 
we used an identical implementation of the classical Newton 

https://github.com/Ziemnono/SOniCS_validation
https://github.com/Ziemnono/SOniCS_validation
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Raphson (NR) solver for SOniCS, SOFA, and FEBio. The 
solver had the following parameters: a maximum of 25 itera-
tions with a residual and displacement tolerance of 10−10 . 
To compare the running time of the two implementations, 
we, therefore, introduced the mean NR iteration time. We 
defined the NR iteration time as the duration for assembling 
and factorizing the system matrix, solving and propagat-
ing the unknown increment, updating and computing the 
force and displacement residual. After checking that the 
same number of iterations have been achieved, we averaged 
the total time over the number of iterations needed for the 
solver convergence. All calculations were performed using 
an Intel® CoreTM i5-6300HQ CPU @ 2.30GHz × 4 proces-
sor with a 16GiB memory and a NV117 / Mesa Intel® HD 
Graphics 530 (SKL GT2) graphics card.

We evaluated the soundness of the SOniCS solution using 
SOFA, FEBio, or a manufactured solution as the reference 
solution and computed the Euclidean relative L2 error for the 
displacement and strain fields [54]

where u and v are the calculated displacement vectors for 
SOniCS and the reference implementation, respectively, 
|| ∙ || the Euclidean norm, and Eu the Green–Lagrange strain 
tensor of the displacement u.

In this section, we first compare our solution with an ana-
lytical one: the manufactured solution. Then, we consider a 

(9)L2
u
(u, v) =

||u − v||2
||v||2 ,

(10)L2
E
(u, v) =

||Eu − Ev||2
||Ev||2 ,

clamped cantilever beam subject to Neumann boundary con-
ditions and compare its deformation with the SOFA solution. 
Finally, using the same cantilever beam, we implemented a 
Mooney–Rivlin model (uncoded in SOFA) using SOniCS 
and compared the solution with FEBio.

3.1 � Manufactured solution

Aiming at code verification, the method of the manufactured 
solution consists in choosing an exact solution to the prob-
lem as an analytical expression [105]. The chosen analyti-
cal expression is then inserted into the Partial Differential 
Equation (PDE) under consideration to find the conditions 
that lead to this solution. In general, the manufactured cho-
sen solution is expressed in simple primitive functions like 
sin(), exp(), tanh() , etc. In the context of hyperelastic equa-
tions, we considered the following manufactured solution 
for the displacement:

Starting from the above-chosen displacement and using 
continuum mechanics laws, the relative analytical forces 
are applied as Neumann boundary conditions and deduced 
as follows:

(11)u(x, y, z) =

⎡
⎢⎢⎣

10−2 ⋅ z ⋅ ex

10−2 ⋅ z ⋅ ey

10−2 ⋅ z ⋅ ez

⎤
⎥⎥⎦
onΩ.

(12)F = Id + grad(u),

(13)P =
�W

�F
,

Fig. 3   Cantilever beam domain discretization and displacement field. 
Π is a domain represented by a squared-section beam of dimensions 

Π(u) = ∫
Ω

�(u) dx − ∫
Ω

B ⋅ u dx − ∫
�Ω

T ⋅ u ds, , considered 

fixed on the right side ( � on B ), while Neumann boundary condi-
tions are applied on the left side ( T)
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where F is the deformation gradient, Id is the identity matrix 
of dimension d, P is the first Piola–Kirchhoff stress tensor, 
and W is the strain energy density depending on the material 
model constitutive law. We used a Saint Venant–Kirchhoff 
material (2) with a Young’s Modulus of 3 kPa and a Pois-
son’s ratio of 0.3, and the computation of this solution was 
performed using Python Sympy package [106].

In this experiment, we generated 7 and 6 discretiza-
tions of P1 and P2 elements, respectively, with a decreas-
ing element size in both scenarios. For each discretiza-
tion, we applied the relative analytical forces deduced 
from the manufactured solution (11) and used SOniCS 
Saint Venant–Kirchhoff material implementation with 
the same parameters as Sympy’s to fill the domain. The 
displacements obtained were compared to the chosen ana-
lytical solution in Eq. (11) for each discretization. The 
results are presented in Fig. 4, and the error metrics are 
the relative errors presented in Eqs. 9 and  10.

3.2 � Benchmark with SOFA

The cantilever beam deflection is a classical mechanical test 
case, as you can smoothly refine the mesh due to the sim-
plicity of the geometry or modify its boundary conditions to 
fit real-life experiments. In this context, the beam was still 
clamped on the right side (natural Dirichlet condition on 
ΓD ), while Neumann boundary conditions were applied on 
the left side ( ΓN ). To compare our SOniCS implementation, 
we model the deformation of the beam with two hyperelastic 
material models: Saint Venant–Kirchhoff and Neo-Hookean. 
We fixed the mechanical parameters and the Neumann 
boundary conditions equal to −10 Pa in the y-direction until 

(14)f = − � ⋅ P onΓN ,
reaching sufficient large deformations with the same param-
eters as before: E = 3 kPa and � = 0.3.

This study aims at comparing the finite-element solu-
tions provided by SOniCS and SOFA under the same con-
straints in terms of computational and running time per-
formances. To do so, we computed the relative L2 error for 
the displacement and strain fields ( L2

u
(u������, u����) and 

L2
E
(u������, u����))between the SOniCS solution using SOFA 

as the reference solution.
The results obtained are presented in Tables 1 and 2 

for Saint Venant–Kirchhoff and Neo-Hookean materials, 
respectively.

3.3 � Benchmark with FEBio

FEBio is an open-source finite-element package specifically 
designed for biomechanical applications. It offers modeling 
scenarios, a wide range of constitutive material models, and 
boundary conditions relevant to numerous research areas in 
biomechanics. In this section, FEBio was used to compute 
the same scenarios as in Sect.  3.2 to evaluate the trustwor-
thiness of SOniCS. A more advanced constitutive material 
model, Mooney Rivlin, was introduced for this purpose

where C01 , C10 , and K are the material constants in addi-
tion to the modified invariants IC = J

−
2

3 IC , IIC = J
−

4

3 IIC 
defined based on the classic invariants IC = tr(C) , 
IIC =

1

2

(
(tr(C))2 − tr

(
C

2
))

 . To obtain sufficiently large 
deformations, we chose the following material parameters: 
C01 = 2000 Pa , C10 = 100 Pa , and K = 1000 Pa.

(15)� = C01

(
IC − 3

)
+ C10

(
IIC − 3

)
+

K

2
ln(J),

Fig. 4   Plot of the mesh 
convergence analysis of the 
manufactured solution. The �Ω 
errors ( ds for displacement and 
Ω for strain) between the 
analytical and the SOniCS 
simulation are calculated for 
different number of Degrees of 
Freedom (DOFs) with fixed 
parameters ( dx and 

� =
�

2
tr(E)2 + �tr(E2

),

=0.3) for P1 linear tetrahedra 
(blue) and P2 quadratic 
tetrahedra (red) elements
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Tables  3, 4, 5 show the results obtained for Saint 
Venant–Kirchhoff, Neo-Hookean, and Mooney–Rivlin mate-
rial models and considering the four discretizations imple-
mented so far in SOniCS. The error evaluation is still based 
on the mean relative error defined in Eq. 9 using FEBio as 
the reference while using a Newton–Raphson solver with the 
same characteristics in both cases.

4 � Holzapfel and Ogden anisotropic material 
model coupled with haptic simulation

In the context of numerical surgical simulations, robot 
haptic feedback has been shown to be a consistent tool 
for drastically improving user interactions and opening up 
countless applications. Among them, haptic devices have 
mainly been used as training tools for surgeons. Indeed 
prior to surgery, under the assumption of known geometry 
and mechanical properties of the patient’s organ, a surgeon 
would be able to plan and better choose between specific 

Table 1   Relative error for displacement ( L2
u
(u������,u����) ) and strain 

( L2
E
(u������,u����) ) defined in Eqs.  9 and  10 and mean Newton–

Raphson (NR) iteration time between SOniCS and SOFA for different 

element geometries and interpolation schemes using Saint Venant–
Kirchhoff material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra

Saint Venant–Kirchhoff material model

Element Number of DOFs SOniCS mean NR itera-
tion time (s)

SOFA mean NR itera-
tion time (s)

L
2

u
(u������,u����) L

2

E
(u������,u����)

P1 10,935 0.387 0.438 4.10e−14 2.32e−16
P2 12,705 0.810 0.808 3.49e−14 8.18e−15
Q1 10,935 0.449 0.464 6.19e−13 3.76e−16
Q2 11,772 0.839 0.942 3.81e−13 23.68e−14

Table 2   Relative error for displacement ( L2
u
(u������,u����) ) and strain ( L2

E
(u������,u����) ) defined in Eqs. 9 and 10 and mean Newton–Raphson 

(NR) iteration time between SOniCS and SOFA for different element geometries and interpolation schemes using Neo-Hookean material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra

Neo-Hookean material model

Element Number of DOFs SOniCS mean NR itera-
tion time (s)

SOFA mean NR itera-
tion time (s)

L
2

u
(u������,u����) L

2

E
(u������,u����)

P1 10,935 0.391 0.428 2.17e−14 7.78e−14
P2 12,705 0.826 0.852 1.40e−14 2.18e−20
Q1 10,935 0.471 0.478 4.92e−13 5.77e−16
Q2 11,772 0.826 0.864 1.64e−13 2.17e−14

Table 3   Relative 
error for displacement 
( L2

u
(u������,u�����) ) and strain 

( L2
E
(u������,u�����) ) defined 

in Eq. 9 and 10 and mean 
Newton–Raphson (NR) iteration 
time between SOniCS and 
FEBio for different element 
geometries and interpolation 
schemes using Saint Venant–
Kirchhoff material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic 
hexahedra

Saint Venant-Kirchhoff material model

Element Number of DOFs SOniCS mean 
NR iteration time 
(s)

FEBio mean NR 
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.387 0.401 6.01e−10 4.23e−7
P2 12,705 0.810 0.991 0.08 0.117
Q1 10,935 0.449 0.508 4.19e−10 2.96e−6
Q2 11,772 0.839 0.102 0.13 0.189
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surgical paths/approaches. In this paper, we used the 3D 
Systems Touch Haptic Device robot coupled with the 
SOFA plugin Geomagic to allow interactions between the 
instrument and the simulations. For this hypothetical simu-
lation, we virtually simulate the contact between a surgical 
tool and a liver during surgery. The liver was described by 
an anisotropic Holzapfel Ogden model [107, 108], with an 
existing FEniCS implementation [52] validated using the 
manufactured solution. Therefore, to assess the soundness 

of our implementation, we conducted a mesh convergence 
analysis on a beam and liver meshes provided in Fig. 5. We 
prescribed natural Dirichlet boundary conditions on one 
side and Neumann boundary conditions on the other side 
to obtain noticeable deformations. Such material could 
be described using the following strain energy density 
function:

(16)� = � iso (F) + � vol (J).

Table 4   Relative 
error for displacement 
( L2u(u������,u�����) ) and strain 
( L2

E
(u������,u�����) ) defined 

in Eqs. 9 and 10 and mean 
Newton–Raphson (NR) iteration 
time between SOniCS and 
FEBio for different element 
geometries and interpolation 
schemes using Neo-Hookean 
material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic 
hexahedra

Neo-Hookean material model

Element Number of DOFs SOniCS mean 
NR iteration time 
(s)

FEBio mean NR 
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.391 0.458 6.53e−10 7.33e−7
P2 12,705 0.826 0.101 1.5e−2 3.16e−2
Q1 10,935 0.471 0.523 8.08e−10 1.02e−6
Q2 11,772 0.826 0.908 0.09 0.13

Table 5   Relative 
error for displacement 
( L2

u
(u������,u�����) ) and strain 

( L2
E
(u������,u�����) ) defined 

in Eqs. 9 and 10 and mean 
Newton–Raphson (NR) iteration 
time between SOniCS and 
FEBio for different element 
geometries and interpolation 
schemes using Mooney–Rivlin 
material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic 
hexahedra. The large errors obtained for Q1 elements are further discussed in Sect. 5

Mooney Rivlin material model

Element Number of DOFs SOniCS mean 
NR iteration time 
(s)

FEBio mean NR 
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.662 0.804 2.49e−9 6.81-8
P2 12,705 0.102 0.112 9.97e−3 8.28e−2
Q1 10,935 0.818 0.910 10.92 14.71
Q2 11,772 0.101 0.125 4.23e−2 1.229e−1

Fig. 5   Plot of the mesh 
convergence analysis applied 
to a beam and liver using the 
Holzapfel and Ogden aniso-
tropic material models with the 
parameters � Pa. The maximum 
displacement of a beam � and 
liver E meshes are, respectively, 
computed in orange and blue for 
different mesh sizes increas-
ing the number of Degrees of 
Freedom (DOFs)
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� iso and � vol are the isochoric and volumetric part of the 
strain energy density function, respectively. The volumetric 
part can be evaluated as a function of the bulk modulus � of 
the material and J

with

The transversely isotropic behavior can be obtained by 
removing the parameters afs , bfs , as , and bs , while the iso-
tropic behavior is obtained by also suppressing the two 
parameters af  and bf  . This kind of model is frequently 
used to model orthotropic materials (e.g., muscle with 
fibers or tendons). Vectors f

0
 , s

0
 are the unit base vec-

tors normal to the planes of symmetry. For our appli-
cation, we selected the following material properties 
allowing to obtain sufficient deformation of the objects: 
� = 102 MPa, a = 1.102 kPa, b = 5 Pa, a

f
= 16 kPa, b

f
= 12.8 Pa,

a
s
= 18 kPa, b

s
= 10 Pa, a

fs
= 9 kPa, b

fs
= 12 Pa.

The instrument is assumed to be a rigid body kinemati-
cally constrained by the haptic device position at each time 
step. The contact forces generated by the collision between 
the instrument and the liver are calculated using frictional 
contact and an implicit Euler scheme to solve the dynamic 
system [109]. Finally, the contact forces are transmitted back 

(17)� vol (J) =
�

4
(J2 − 1 − 2ln(J)),

(18)

� iso (F) =
a

2b
exp

[
b
(
I1 − 3

)]
+
∑
i=f ,s

ai

2bi
exp

[
bi
(
I4i − 1

)2]

+
afs

2bfs

(
exp

[
bfsI

2
8fs

]
− 1

)
,

(19)I4f = f
0
⋅ C ⋅ f

0
, I4s = s

0
⋅ C ⋅ s

0
, and I8fs = f

0
⋅ C ⋅ s

0
.

to the user’s hand through the haptic device. The result is 
a simulation running at 100 FPS (Frames Per Seconds) on 
average displayed in Fig. 6. A full video of the interaction 
with the haptic device is available in the Supplementary 
Materials. The real-time performance has been obtained 
using a small number of DOFs (543). A higher number 
of DOFs could be used once a GPU implementation is 
available.

5 � Discussion

We show that the SOniCS plugin is an efficient implemen-
tation of material models for hyperelastic simulations and 
enables the user to develop an intuitive understanding of 
the impact of modeling choices on the accuracy and reli-
ability of the predictions. We first demonstrated a conver-
gence study for Saint Venant–Kirchhoff material using P1 
and P2 elements with the manufactured solution in Sect. 3.1. 
Indeed, as expected, by refining the mesh, the L2 relative 
errors for strain and displacement fields almost follow the 
theoretical slopes when increasing the number of DOFs (on 
a log–log plot), showing the stability of our method.

Then, from Sect. 3.2, two main results are noteworthy from 
Tables 1 and 2. First, the relative errors of the displacement 
and strain between SOniCS and SOFA, for both material 
models, are close to machine precision for P1, P2, Q1, and 
Q2 discretizations. Second, the last comment concerns the 
mean NR iteration time. We observe that the SOniCS imple-
mentation is slightly faster than SOFA for any elements using 
Saint Venant–Kirchhoff or Neo-Hookean material model. The 
reason for this difference is the need for SOFA to compute 
the shape functions and derivatives, and then calculate the 
local residual and Jacobian using multiple tensor operations. 
Conversely, SOniCS has all those operations efficiently hard-
coded in C kernels, thus performing faster than SOFA.

Fig. 6   Three different deformation states of a liver in contact with a 
surgical tool connected to a haptic device. The surgical tool (in red) 
is guided by the user through the 3D Systems Touch Haptic Device to 
deform the liver from the initial configuration (green wire-frame) to 
a deformed state (textured). The liver is modeled using the Holzapfel 
Ogden anisotropic material with the following parameters 1

2
(C − I) . 

The maximum displacement of a beam I and liver C . In the case 
of contact detection, the contact forces are transmitted to the user 
through the haptic device. A video of the simulation is available as 
supplementary materials
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We compared the SOniCS and FEBio simulations for 
several material models: Saint Venant–Kirchhoff, Neo-
Hookean, and Mooney–Rivlin in section 3.3. For P1 ele-
ments, the errors are close to machine precision for all three 
models. For P2 and Q2 elements, the three models display 
similar errors that still represent a minor error (less than 
0.08 and 0.1, respectively) which is of same magnitude 
between SOFA and FEBio, as well as FEniCS and FEBio. 
The reasons for those minor errors could be the difference 
in the implementation of the elements or in the choice of 
solver parameters. For Q1 elements, we reached an accu-
racy near machine precision for Saint Venant–Kirchhoff 
and Neo-Hookean. However, the relative error for displace-
ment rose close to 11 for the Mooney–Rivlin model, while 
similar behavior is observed for the relative strain errors. 
To further understand this divergence, we included a third 
open-source software AceGen [110]. AceGen similarly uses 
an automatic code generation package for the symbolic gen-
eration of new finite elements. The cantilever beam scenario 
presented in Sect. 3.3 was reproduced using AceGen under 
the same conditions and with an identical Q1 discretization 
of the domain. Using the same metric as defined in Eq. 9, 
the results are the following: L2

u
(u������, u������) = 3.33 

and L2
u
(u�����, u������) = 14.19 . Even if SOniCS and Ace-

gen showed similar results, a more in-depth study would be 
needed to confirm the soundness of our solution and explain 
the differences between FEBio and SOniCS solutions. 
Despite using a finer mesh, the error was slightly lower but 
still noticeable. Eventually, FEBio has shown difficulty in 
converging with trivial parameter sets or when increasing the 
number of DOFs. Thus, as shown in Tables 3, 4, and 5, on 
average, SOniCS is solving the equation system faster than 
FEBio. Several reasons could explain those differences, such 
as the number of quadrature points used, the implementation 
of the Newton–Raphson scheme, or the solver parameters.

Finally, we showed the capabilities of the SOniCS plugin 
in simulating complex material models, such as the Holzap-
fel Ogden anisotropic model coupled with a haptic device 
in Sect. 4. The material model was effortlessly implemented 
for several elements (P1, P2, Q1, and Q2) without needing 
any manual derivation or coding. A manufactured solution 
was used in [52] to validate the FEniCS implementation, 
while Fig. 5 demonstrates a convergence of the solution for 
a beam and liver shape using the SOniCS implementation. 
Therefore, the absence of analytical solutions or experimen-
tal data only proves the convergence to a numerical solution 
that is not necessarily a ground truth. The final result is a 
real-time simulator functional for surgeons’ training or any 
other biomechanics simulation replicating the behavior of a 
liver in contact with a surgical tool.

6 � Conclusion and outlook

We performed several numerical experiments to develop 
intuitive understanding of new material models in SOFA 
using the SOniCS plugin. First, we validated the most com-
mon hyperelastic material models: Saint Venant–Kirchhoff 
and Neo-Hookean using a manufactured solution. Then, 
utilizing FEBio as a reference, we verified our implemen-
tation of a Mooney–Rivlin material model using P1, P2, 
Q1, and Q2 elements. The final application employed a 
haptic device to interact with an anisotropic Holzapfel 
Ogden liver model in real-time.

The study used our SOniCS plugin to generate opti-
mized C code for complex material models compatible 
with SOFA. On one side, we benefited from FEniCS auto-
matic differentiation and code generation capabilities to 
bypass the difficulties of deriving and implementing the 
consistent Jacobian in SOFA. On the user side, we imple-
mented compatible and user-friendly SOFA Forcefields to 
use the FEniCS C kernels. A SOFA user can now easily 
define a new material model by specifying its strain energy 
function, element geometry or family, and the quadrature 
scheme and degree only in Python. We made the open-
source code and all data and test cases available as sup-
plementary material.

In future work, we intend to apply the SOniCS plugin for 
solving more complex mechanical phenomena. For example, 
mixed formulations for solving incompressible materials, 
viscous or plastic effects, and multi-material systems. In this 
paper, we only utilized the plugin for solving hyperelasticity 
equations, but it would be interesting to tackle multi-physics 
problems, such as thermomechanics or magnetomechanics. 
An interesting future work could be to investigate the effec-
tiveness of the SOniCS plugin for complex material real-
time simulations with surrogate and machine-learning mod-
els in SOFA. Further, the next step would be to quantify the 
uncertainty of biomechanical simulations in SOFA via the 
SOniCS plugin. We only used Lagrangian P1, P2, Q1, and 
Q2 elements, while more geometries such as prisms could 
be relevant for the SOFA and FEniCS community. Finally, 
our validation only focused on the deformation field of the 
structures, while a more in-depth study would also enable 
us to validate an analytical stress field.

Some work remains to improve the user-friendliness of our 
package. Indeed, even if writing the Python file describing the 
material model and generating the associated C file is mostly 
effortless and automated, some steps are still manual. Indeed, 
the FEniCS_Material C++ class must have knowledge 
of every new C file created at compile time. Hence, for the 
moment, the user still has to manually specify two C++ 



	 Engineering with Computers

1 3

functions in the code and recompile the whole plugin. Even 
if this step is manageable, it still requires diving into the C++ 
code, which can discourage a few users. Meanwhile, to miti-
gate this effect, actions have been taken by providing detailed 
documentation and tutorials for this crucial step. In addition, 
future works aim at improving this stage by directly providing 
the path of the C file in the Python code to trigger just-in-time 
compilation for new materials.
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