
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-023-01877-w

ORIGINAL ARTICLE

Sonics: develop intuition on biomechanical systems
through interactive error controlled simulations

Arnaud Mazier1 · Sidaty El Hadramy2 · Jean‑Nicolas Brunet2 · Jack S. Hale1 · Stéphane Cotin2 ·
Stéphane P. A. Bordas1 

Received: 15 September 2022 / Accepted: 12 July 2023
© The Author(s) 2023

Abstract
We describe the SOniCS (SOFA + FEniCS) plugin to help develop an intuitive understanding of complex biomechanics
systems. This new approach allows the user to experiment with model choices easily and quickly without requiring in-depth
expertise. Constitutive models can be modified by one line of code only. This ease in building new models makes SOniCS
ideal to develop surrogate, reduced order models and to train machine-learning algorithms for enabling real-time patient-
specific simulations. SOniCS is thus not only a tool that facilitates the development of surgical training simulations but
also, and perhaps more importantly, paves the way to increase the intuition of users or otherwise non-intuitive behaviors
of (bio)mechanical systems. The plugin uses new developments of the FEniCSx project enabling automatic generation
with FFCx of finite-element tensors, such as the local residual vector and Jacobian matrix. We verify our approach with
numerical simulations, such as manufactured solutions, cantilever beams, and benchmarks provided by FEBio. We reach
machine precision accuracy and demonstrate the use of the plugin for a real-time haptic simulation involving a surgical tool
controlled by the user in contact with a hyperelastic liver. We include complete examples showing the use of our plugin for
simulations involving Saint Venant–Kirchhoff, Neo-Hookean, Mooney–Rivlin, and Holzapfel Ogden anisotropic models as
supplementary material.

Keywords  SOFA · FEniCS · Automatic differentiation · Biomechanics · Hyperelasticity · Benchmark

1  Introduction

Designing efficient finite-element (FE) simulation soft-
ware is a challenging task. Indeed, as FEM is a vast field,
numerous pieces of software emerged to fill different
gaps. For instance, commercial software, such as Abaqus
[2] or Ansys [3], focuses on user-friendly Graphical User
Interfaces (GUIs) guiding the user from pre-processing to
post-processing. This has the advantage of allowing users
to perform complex simulations with a relatively basic
theoretical knowledge of FE. Meanwhile, other pieces of
software focused on specific domains, such as Gmsh [4] for
FE meshing, Paraview [5] for FE visualization, OpenFoam
[6] for CFD (Computational Fluid Dynamic) simulations,
OpenXFEM [7] for extended finite elements [8], colloca-
tion methods [9], meshfree methods [10], multi-scale prob-
lems [11], or material point methods (MPM) [12]. This
historical perspective explains the countless FE solvers
which makes an exhaustive state-of-the-art review quasi-
impossible. Before selecting one piece of FE software, user

Arnaud Mazier and Sidaty El Hadramy have contributed equally to
this work.

 *	 Stéphane P. A. Bordas
	 stephane.bordas@alum.northwestern.edu

	 Arnaud Mazier
	 mazier.arnaud@gmail.com

	 Sidaty El Hadramy
	 sidaty.el-hadramy@inria.fr

	 Jean‑Nicolas Brunet
	 jnbrunet2000@gmail.com

	 Jack S. Hale
	 jack.hale@uni.lu

	 Stéphane Cotin
	 stephane.cotin@inria.fr

1	 Institute of Computational Engineering, Department
of Engineering, Université du Luxembourg, 2 Avenue de
l’Universite, Esch‑sur‑Alzette 4365, Luxembourg

2	 MIMESIS team, Inria, 1 Place de l’Hôpital,
Strasbourg 67000, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01877-w&domain=pdf
http://orcid.org/0000-0001-8634-7002

	 Engineering with Computers

1 3

should consider the benefits and disadvantages associated
with each (i.e., meshing, parallel support, solvers, coding
language, and visualization). However, generally, simplic-
ity of use and the ability to easily test modeling hypotheses
appear like the most important considerations in selecting
such a computational tool.

In the medical simulation context, several specific aspects
have to be considered.

•	 The material model complexity: Contrary to engineer-
ing materials, such as steel or copper, the mechanical
properties of living organs were only recently quanti-
fied [13, 14] (early 90s against 1700 for copper) and
show immense variability [15]. Various models have
been proposed, e.g., anisotropic [16–20], hyperelastic
[21–25], viscoelastic [26–29], or poroelastic [30–36] to
accurately depict their complex mechanical behaviors.
Indeed, predicting the deformations of bio-materials
can only be achieved through complex material models
(sometimes even multi-scale), which are rarely imple-
mented in commercial software. One major difficulty of
this implementation remains the differentiation of highly
non-linear equations. Indeed, predicting the deformations
of such materials can only be achieved through complex
material models, rarely implemented in commercial
software. One major difficulty of this implementation
remains the linearization of highly non-linear equations.
For instance, hyperelasticity equations can be written as
a minimization of a tensorial function. In most cases, this
minimization is solved using gradient-descent algorithms
requiring the first and second derivatives of the func-
tional. Therefore, obtaining such high-order non-linear
derivatives is not straightforward and can be prone to
manual errors.

•	 The complexity of the simulation: In addition to the com-
plexity of the material model, the simulation setup itself
can be problematic. For instance, the material parameters
are patient-specific and require data-driven or inference
methods [37, 38]. The simulations can also (partially)
involve unknown boundary conditions [39], contact
with other organs [40, 41], or surgical tools [42, 43].
The problem can also require multi-physics models [such
as Fluid–Structure Interactions (FSI) [44, 45]] or incom-
pressibility [46, 47], where classical displacement-based
finite elements are prone to locking.

•	 The error control and uncertainty of the solution: When
dealing with biomechanical simulations, several uncer-
tainties always arise from the material parameters, loads,
geometry, or boundary conditions. This is mainly due
to the difficulty in estimating the mechanical properties

through ex vivo methods or the topology of biological
tissues using medical imaging. Similarly, error control
and mesh adaptivity are necessary to ensure homoge-
neous convergence of the solution over the domain and
that the mesh is optimal given a quantity of interest [48].
Therefore, quantifying the uncertainty or controlling
the error on quantities of interests often requires mak-
ing a very large number of simulations [49, 50] which is
incompatible with surgical timing [51, 52]. Meanwhile,
those approaches could be functional in clinical settings
using accelerated simulations [53] to build surrogate
models or/and machine learning models for faster solu-
tions of those highly non-linear parametric problems.

•	 The real-time aspect: In addition to the previous point,
for clinical environments, the run time of the numerical
simulation is crucial. When performing an operation,
the surgeon cannot, in general, spend minutes waiting
for the model predictions. Eventually, this aspect is also
applicable to artificial intelligence. Indeed, to build an
efficient machine-learning model, a significant amount
of data is necessary. Using numerical simulations to cre-
ate synthetic data is now standard and directly depend-
ent on the simulation time [54, 55]. Consequently, the
run time of the simulation can be considered a principal
feature of biomechanics simulations, and indeed, of any
non-intuitive non-linear problems subject to significant
uncertainties in loading, boundary and initial conditions,
and parameters. Nowadays, gaming engines, such as Uni-
ty3D [56] or Unreal Engine [57], offer real-time anima-
tion where physics-based algorithms can be included
[58–60].

•	 The interaction with the user: In a surgical simulation
setting, external variables can impact the simulation dur-
ing the execution. For example, the exact movement of
the surgeon’s tool influences the simulation at run time.
Thus, the parameters of the simulation must be tuned,
“live”, to integrate interactions between the user and the
simulation [61, 62].

•	 The visual rendering: Depending on the research field,
visualization can play a critical role in understanding
the results. For instance, in the computer graphics com-
munity, photo-realistic visualization is one of the main
objectives [63, 64]. Contrastingly, in the mechanical
engineering culture, visualization is a manner of extract-
ing and understanding quantitatively a solution or data
set (i.e., stress or displacement fields). For medical simu-
lations, an optimal solution must combine both the accu-
racy of the results and photo-realistic rendering reflecting
the clinical ground truth all within clinical time frames
[65].

Engineering with Computers	

1 3

According to the state-of-the-art, Simulation Open Frame-
work Architecture (SOFA) [66] appears to be a suitable
compromise. Indeed, SOFA employs efficient rendering
while providing the possibility to interact in real time with
the running simulation. One can note that real-time com-
puting is only possible depending on the complexity of
the problem. Indeed, using excessive numbers of degrees
of freedom (DOFs) or solving a highly non-linear problem
cannot result in a real-time simulation (without using model
order reduction [67–69] or machine learning [55]). SOFA
can also manage complex simulations through an efficient
implementation of contact [70–72], for example, or ena-
bling multi-physics coupling. At the time of writing, only
a few finite elements are available in SOFA. We remark
that in this the manuscript, the finite element refers to the
choice of basis functions via the Ciarlet triple (cell topology,
polynomial space, and dual basis) plus a specific choice of
weak form. A similar issue is observed for material models
where numerous implementations only focused on a three-
dimensional isotropic behavior. Therefore, coding a new
finite element (Ciarler triple + weak form) in SOFA requires
advanced C++ skills that may discourage individuals from
using the software.

To alleviate the problem of complex material models,
FEniCS [73] seems like an appropriate solution. Indeed,
FEniCS may not possess all of SOFA’s features, but defi-
nitely overcomes SOFA’s capabilities for material model
complexity. With FEniCS, the user can generate any material
model, regardless of the element’s geometry or interpolation.
Plus, it authorizes an export of the pertinent finite-element
tensors in C code to be efficiently plugged into SOFA. The
benefits of the synergy are considerable. Using SOFA’s
interactivity and real-time features, the user can easily pro-
totype a real-time simulation. Indeed, by modifying "live"
various boundary conditions, geometries, or topologies, the
user can effortlessly and rapidly verify modeling hypotheses
for a specific problem. Combined with the specificities of
FEniCS, the user can additionally smoothly prototype com-
plex material models for modeling elaborate scenarios. Such
feature has already been used by coupling FEniCS and Ace-
gen but with different objectives [74]. To the authors’ knowl-
edge, this paper is the first to use FEniCS code generation
capabilities for such an endeavor and is the first coupling
between FEniCS and SOFA.

This paper has the following outline. We will first briefly
introduce SOFA and FEniCS, highlighting the relative
advantages and design choices in each. Section 2 will detail
the plugin functionalities and a short tutorial for importing
a Saint Venant–Kirchhoff model from FEniCS in SOFA.

Then, Sect. 3 will focus on confirming our implementation
for various numerical tests. We will use a manufactured
solution in Sect. 3.1 as validation and compare our solu-
tions for a cantilever beam problem with SOFA in Sect. 3.2.
The last test consists in implementing a new material model
(Mooney–Rivlin) in SOFA and benchmarking it with FEBio
[75] in Sect. 3.3. Finally, in Sect. 4, we will use our plugin
in a complex haptic simulation that cannot be implemented
in FEniCS, using a custom material model inexistent in
SOFA.

1.1 � SOFA

SOFA was created in 2007 by a joint effort from Inria,
CNRS, USTL, UJF, and MGH. This piece of software aims
to provide an efficient framework dedicated to research, pro-
totyping, and the development of physics-based simulations.
It is an open-source library distributed under the LGPL
license, hosted on GitHub at https://​github.​com/​sofa-​frame​
work/​sofa, and developed by an international community.
SOFA is modular. Users can create public or private plugins
to include additional features.

SOFA is a C++ library, including Python wrappers
for a user-friendly prototyping interface. It was originally
designed for deformable solid mechanics but has been
extended to various domains, such as robotics, registration,
fluid simulations, model-order reduction, and haptic simula-
tions [76–78]. SOFA exhibits many attractive features, but
among them, the combination of multi-model representa-
tions and mappings differentiates it from other software.

Multi-model representation: Most classical FE soft-
ware uses an identical discretization for the whole model.
Consequently, if one user wants to refine the mesh along a
contact surface, the FE mesh will undergo the same refine-
ment in the contact region. It can induce slow simulations
for solving the FE system, while the user was initially only
interested in the contact part. Conversely, utilizing a multi-
model representation approach, users can split the principal
model into three distinct sub-models: deformation, collision,
and visual. Thus, the user can decide to have high-fidelity
deformations with flawed contact detection while maintain-
ing a fine rendering, or vice versa. Similarly, an object can
be made of several deformation models. For example, one
can model a muscle by the interaction of FE 3D tetrahedra
for the volume and 1D beams for modeling ligaments, using
two different solvers.

Mappings: In SOFA, the “mappings” are responsible for
the communication between the different models. The mod-
els have parent–child relationships constructing a hierarchy

https://github.com/sofa-framework/sofa
https://github.com/sofa-framework/sofa

	 Engineering with Computers

1 3

(and a DOF hierarchy by extension). It enables propagating
the positions, velocities, accelerations, and forces across the
different models. For example, if the contact model calcu-
lates a force, it is mapped on the deformation model that will
communicate back the computed displacement.

Finally, by combining the multi-model representation
with the mappings, SOFA can build complex real-time sim-
ulations with high-fidelity rendering. In addition to a scen-
egraph structure and visitors (responsible for going through
the model hierarchy) implementation, it can account for
interactivity with the users.

Despite the advantages provided by SOFA, some draw-
backs have to be acknowledged. First, in terms of solid
mechanics simulations, only a few elements and material
models are available. Indeed, SOFA only proposes Lagrange
linear elements, and the cell topologies are limited to seg-
ments, triangles, quadrangles, tetrahedra, and hexahe-
dra. The following material models are coded: Boyce and
Aruda [79], Costa [80], isotropic and anisotropic Hookean,
Mooney–Rivlin (two invariants) [81], classical and stabi-
lized Neo-Hookean, Ogden [82], Saint Venant–Kirchhoff,
and Veronda Westman [83]. Despite a reasonable number of
mechanical models, a few of them are actually implemented
for each cell topology. Second, the benefits provided by the
mappings can also turn out to be a disadvantage when it
comes to implementation. Indeed, the structure of the map-
pings is usually complex for unexperimented C++ users,
and the mechanical tensors such as the Cauchy–Green or
Piola–Kirchhoff are rarely computed. The two previous
drawbacks are associated with the same flaw: the strong cou-
pling between the material models and the topology of the
element assumed within SOFA’s architecture. This coupling
implies that changing an element’s topology or interpolation
will involve a new mapping or the rewriting of the material
model, even in the case of a similar material model.

1.2 � The modular mechanics plugin (Caribou)

The initial goal of the plugin (called Caribou at the time of
writing, https://​github.​com/​mimes​is-​inria/​carib​ou) was to
quickly implement new shape functions and their derivatives
for different Immersed-Boundary and meshless domain dis-
cretization while keeping the compatibility with the existing
SOFA surgical simulations [84]. Besides, the plugin enabled
to effortlessly implement different volumetric quadrature
schemes and several hyperelastic material models. Hence,
the software design had to be generic enough to combine all
the previous requirements. It also had to be efficient enough
to avoid the creation of a bottleneck that would prevent the

biomechanical model from meeting its computational speed
requirement. Hence, the plugin was made as an extension to
SOFA, bringing a redesigned software architecture.

In the plugin, the authors implemented a compile-time
polymorphism design using generic C++ template program-
ming. The idea is to write the code as close as possible to
equations found in the traditional FE books. Then, the C++
compiler optimizes the set of operations executed during
the simulation while keeping an object-oriented code. In
this design, the “Element” concept was created as a generic
computational class that would be inherited by all element
types. Similarly to OpenXFEM++ [7], it provides a flex-
ible implementation to add interpolation and quadrature
numerical procedures quickly. Since standard isoparametric
elements have a number of nodes, quadrature points, and
shape functions already known at compile-time, most mod-
ern compilers will be able to aggressively inline the code to
optimize the computation.

Finally, the plugin allows the creation of additional mate-
rial models by simply defining three methods per material:
the strain energy density function, the second Piola–Kirch-
hoff stress tensor function, and its derivative functions.
These three functions are evaluated at a given integration
point automatically provided by the plugin. This design
delivers an undeniable advantage: writing a new material
model is now independent of the topology and integration
scheme. However, it comes with a non-negligible cost. The
author of the new material model has to manually differ-
entiate the strain energy twice and write it in C++. This
manual intervention is error-prone and can quickly become
a substantial drawback for complex materials.

1.3 � FEniCS

The FEniCS Project (FEniCS) [73] is a collection of tools
for the automated solution of partial differential equations
using the finite-element method. Like SOFA, the FEniCS
components are distributed under open-source licenses
(LGPL v3 or later, and MIT) and development is hosted on
GitHub at https://​github.​com/​fenics.

A distinguishing feature of FEniCS is the ability to allow
the user to write variational of weak formulations of finite-
element methods in a high-level Python-based domain-spe-
cific language (DSL), the Unified Form Language (UFL)
[85]. Subsequently, that high-level description can be com-
piled/transformed using the FEniCS Form Compiler (FFC)
[86] into low-level and high-performance kernels. These
kernels can calculate the corresponding local finite-element

https://github.com/mimesis-inria/caribou
https://github.com/fenics

Engineering with Computers	

1 3

tensor for a given cell in the mesh. UFL is also used by other
finite-element solvers with independently developed auto-
matic code generation capabilities, notably Firedrake [87],
Dune [88]. The AceGen software also supports automatic
differentiation and support for automaticaly generating low-
level code [89]. Compared with SOFA, FEniCS is limited in
scope; its primary focus is the specification and solution of
partial differential equations via the finite-element method,
leaving difficult problems like mesh generation, post-pro-
cessing, and visualization to leading third-party packages,
such as Gmsh [4] and Paraview [5].

In the context of implementing finite-element models of
hyperelastic materials, this automatic approach has a number
of advantages over the traditional route used by most finite-
element codes (including, to some extent, SOFA); differenti-
ating analytical expressions for the residual (first derivative)
and Jacobian (second derivative) of the energy functional
for the hyperelastic model, picking a suitable finite-element
basis, and then hand-coding the corresponding finite-ele-
ment kernels in a low-level language (C, Fortran, and C++)
for performance. Specifically:

1.	 The symbolic residual and Jacobian can be derived auto-
matically using the symbolic differentiation capabilities
of UFL. By contrast, taking these derivatives by hand
can be tedious and error-prone.

2.	 The compilation of the UFL description of the problem
by FFC into the associated low-level kernels is entirely
automated. Again, this step is often time-consuming and
difficult to perform manually.

3.	 Because of the high-level description of the problem,
it is possible to experiment quickly with different con-
crete finite-element formulations (material models, basis
functions, element topology, etc.) without manually
modifying low-level kernel code.

The potential of this high-level approach for solid mechan-
ics was recognized early on in the development of FEniCS,
with two chapters in the FEniCS Book [90, 91] promoting
this direction. Since then, FEniCS has been used in a large
number of publications on the topic of hyperelastic large-
deformation elasticity, e.g., [92–96].

Recently, the FEniCS Project has undergone a major
redevelopment, resulting in the new FEniCSx components;
DOLFINx (the finite-element problem solving environment,
replacing DOLFIN), FFCx (the FEniCSx Form Compiler,
replacing FFC), and Basix [97] (a finite element basis
function tabulator, replacing FIAT [98]). UFL is largely
unchanged from the version used in the old FEniCS compo-
nents and Firedrake.

In this work, we do not use DOLFINx. DOLFINx con-
tains the basic finite-element data structures and algorithms
(e.g., meshes, function spaces, assembly, interfacing with
linear algebra data structures in, e.g., PETSc [99]), and
therefore, there is a significant overlap with the functionality
already available in SOFA. Directly interfacing DOLFINx
and SOFA at the Application Programming Interface (API)
level would be a significant technical challenge due to the
substantial differences in their internal data structures. Dedi-
cated weak coupling libraries such as PreCICE [100] could
be an interesting alternative to API coupling, but it is not a
path that we explore in this work.

Instead, the approach taken by SOniCS is to only use
UFL and FFCx (which in turn depends on Basix) to con-
vert the high-level description of the finite-element problem
into low-level C code, which are then called using SOFA’s
existing C++ finite-element data structures and algorithms.
Compared with coupling DOLFINx and SOFA directly, our
approach creates a relatively light compile–time coupling
between FEniCS (specifically, the generated C code) and
SOFA (a large complex C++ code with many dependen-
cies). Consequently, no additional runtime dependencies
required for SOFA. This methodology will be familiar to
users of the DOLFINx C++ interface where C finite-ele-
ment kernels are generated in a first step using UFL and
FFCx and are then integrated into the DOLFINx solver
in a second step through a standard compile/include/link
approach. Without going into excessive detail, three changes
in the redeveloped FEniCSx components have made SOniCS
significantly easier to realize:

1.	 FFCx (and also DOLFINx) now support code genera-
tions using finite elements defined on quadrilateral and
hexahedral cells, the default in SOFA.

2.	 Basix and FFCx have full support for Serendipity finite
elements of arbitrary polynomial order following the
construction of Arnold and Awanou [101]. Serendipity
elements are used in SOFA and there was a desire to
continue supporting Serendipity basis function due to
their lower number of degrees of freedom per cell and
generally lower number of local computations compared
with standard tensor-product Lagrange elements. We
remark that despite the widespread use of Serendipity
elements in many solvers, they can only obtain optimal
order convergence on affinely mapped meshes; see, e.g.,
[102] for more details.

3.	 FFCx outputs C99 compliant code according to the
UFCx interface, which is specified as a C header file
included with FFCx. This is in contrast with FFC,
which outputs C++03 compliant code conforming to an

	 Engineering with Computers

1 3

interface specified with a C++ header file. This switch
makes it significantly easier to call FFCx generated ker-
nels from libraries with a C Foreign Function Interface
(FFI) such as Python and Julia, or any language which
can easily call functions with a C ABI (e.g., Fortran).
Although SOFA is a C++ libraries and could certainly
call C++ generated kernels, the C interface is simpler
to use, consisting only of structs containing basic native
data types and functions.

2 � SOniCS

In this section, we present more in-depth the SOniCS
(SOFA + FEniCS). The plugin is available on a develop-
ment branch in GitHub https://​github.​com/​mimes​is-​inria/​
carib​ou/​tree/​FeniCS-​featu​res and will soon be merged into
the main branch. We first introduce the procedure for defin-
ing the material model, the element, and the quadrature rule
or degree using the UFL (Python) syntax. For simplicity, we
only focused on a Saint Venant–Kirchhoff model. However,

the method can be generalized to all element types follow-
ing the pipeline shown in Fig. 1. Second, we explain the
methodology for converting the UFL script into efficient C
kernels. Finally, we show the interface between the SOn-
iCS plugin and SOFA, stating the conceptual and coding
differences. For simplicity and as the modular mechanics
plugin’s name (Caribou) might change, we use the name
SOFA to denote the combination of SOFA and the modular
mechanics plugin.

2.1 � UFL: from FE model to Python code

The first step is to define the FE model using the UFL syntax
in a Python script. As an example, in listing 1, we describe
the 3D simplest hyperelastic model and element: Saint
Venant–Kirchhoff with linear Lagrange finite elements on
tetrahedra. In the context of hyperelastic simulations, we will
exclusively describe features that users could be interested
in customizing.

Fig. 1   Description of the SOn-
iCS pipeline (on the right) and
differences with SOFA (on the
left). In SOFA, each element
has to be defined, embedding
cell geometry, shape functions
(including derivatives), and the
quadrature scheme and degree.
In SOniCS, it has been replaced
by two Python lines of code for
describing the element and its
quadrature. The same benefit
goes for the material model
description. In SOFA, each
material has to be created in a
separate file stating its strain
energy, derivating by hand the
second Piola–Kirchhoff tensor
(S) and its Jacobian. It was
replaced in SOniCS by only
defining the strain energy of the
desired material model in UFL.
The derivative of the strain
energy will then be automati-
cally calculated using the FFCX
module. Finally, both plugins
share the same Forcefield meth-
ods for assembling the global
residual vector ( Ω ⊂ R3 ) and
stiffness matrix ( u ∶ Ω → R3)

https://github.com/mimesis-inria/caribou/tree/FeniCS-features
https://github.com/mimesis-inria/caribou/tree/FeniCS-features

Engineering with Computers	

1 3

2 from ufl import (Coefficient , Constant , Identity ,
3 TestFunction , TrialFunction , inner , ds,
4 VectorElement , derivative , dx, grad ,
5 tetrahedron , tr, variable)
6

7 # Function spaces
8 cell = tetrahedron
9 d = cell.geometric_dimension ()

10 element = VectorElement("Lagrange", cell , 1)
11

12 # Trial and test functions
13 du = TrialFunction(element) # Incremental displacement
14 v = TestFunction(element) # Test function
15

16 # Functions
17 u = Coefficient(element) # Displacement from previous iteration
18 B = Coefficient(element) # Body forces
19 B = Coefficient(element) # Traction forces
20

21 # Kinematics
22 I = Identity(d) # Identity tensor
23 F = variable(I + grad(u)) # Deformation gradient
24 C = variable(F.T * F) # Right Cauchy -Green tensor
25 E = variable (0.5 * (C - I)) # Green -Lagrange tensor
26

27 # Elasticity parameters
28 young = Constant(cell)
29 poisson = Constant(cell)
30 mu = young / (2 * (1 + poisson))
31 lmbda = young * poisson / ((1 + poisson) * (1 - 2 * poisson))
32

33 # Stored strain energy density (compressible Neo -Hookean model)
34 psi = (lmbda / 2) * tr(E) ** 2 + mu * tr(E * E)
35

36 # Total potential energy
37 Pi = psi * dx(degree =1) - inner(B, u) * dx(degree =1) - inner(T, u) * ds(

degree =1)
38

39 # First variation of Pi (directional derivative about u in the direction of
v)

40 F = derivative(Pi, u, v)
41

42 # Compute Jacobian of F
43 J = derivative(F, u, du)
44

45 # Export forms
46 forms = [F, J, Pi]

1 # material.py

Listing 1: Python code example (material.py) of a Saint Venant-Kirchhoff
material model using Lagrange linear tetrahedron.

Listing 1: Python code example (material.py) of a Saint Venant-Kirchhoffmaterial model using Lagrange linear tetrahedron.

Element: After importing the necessary packages,
we can define the element geometry. In listing 1, on line
10, we used a linear Lagrange tetrahedron. The user
can easily modify different parameters of the element,
such as the geometry, the family type, or the interpola-
tion degree. For example, by only changing line 10 to
element = VectorElement (" Serendipity", hexahedron , 2)
the element is now a quadratic Serendipity hexahedron.
Note that VectorElement creates by default a function space of
vector field equal to the spatial dimension. A complete list
of the element available in the Basix documentation [97].

Material model: By definition, boundary value prob-
lems for hyperelastic media can be expressed as minimi-
zation problems. For a domain Ω ⊂ R3 , the goal is to find
the displacement field u ∶ Ω → R3 that minimizes the total
potential energy Π . The potential energy is given by

where � is the elastic stored energy density, B is a body
force (per unit reference volume), and T is a traction force
(per unit reference area) prescribed on a boundary �Ω (of
measure ds ) of the domain Ω (of measure dx).

In listing 1, at line 37, we define the strain energy of a
Saint Venant–Kirchhoff material model as

(1)Π(u) = ∫
Ω

�(u) dx − ∫
Ω

B ⋅ u dx − ∫
�Ω

T ⋅ u ds,

where � and � are Lamé material constants, while E is the
Green Lagrange strain tensor defined as 1

2
(C − I) , where I

is the identity matrix and C the right Cauchy–Green tensor
C = FTF = (∇u + I)T (∇u + I) . Therefore, we observe that
tensor E is expressed with respect to the displacement u ,
which is the unknown displacement field. Moreover, � and
� are a function of the Young’s modulus and of Poisson’s
ratio that are assumed to be known constants.

If the user would like to change the material model for
Neo-Hookean with the strain energy density

It would only require in replacing line 31 with:
psi = (mu / 2) * (Ic - 3) - mu * ln(J) + (lmbda / 2) * (ln(J)) ** 2 in
addition to previously defining the corresponding kinematics
variables J = det(F) and IC = tr(C).

J = det(F)
I_C = tr(C)

Quadrature rule: In listing 1, at line 37, when calculat-
ing the total potential energy, it is also possible to choose the

(2)� =
�

2
tr(E)2 + �tr(E2

),

(3)� =
�

2
(IC − 3) − �ln(J) +

�

2
ln(J)2.

	 Engineering with Computers

1 3

quadrature rule and the degree. In our example, we selected
a quadrature degree of 1, triggering by default the Zienk-
iewicz and Taylor scheme [103] for tetrahedra. Hence, the
user could also choose to use a Gauss–Jacobi quadrature of
degree 2 [104] by replacing line 37 with:

Pi = psi * dx(degree=2, scheme ="Gauss -Jacobi ") - inner(B, u) * dx(degree
=2, scheme ="Gauss -Jacobi ") - inner(T, u) * ds(degree=2, scheme ="Gauss -
Jacobi ")

.

2.2 � FFCx: from Python code to efficient C kernels

In the particular case of static hyperelastic simulations, we
solve the following non-linear system of equation:

The R tensor is called the residual vector and is defined as
the Gâteaux derivative of the total potential energy Π with
respect to change in the displacement u in direction v

The tensor K is the Jacobian (also called stiffness in the
context of mechanics) matrix and corresponds to the deriva-
tive of R

Solving the non-linear system in Eq. 4 can be achieved using
the Newton–Raphson algorithm that will iteratively solve a
set of linear systems, assuming an initial guess un

The two tensors can be derived symbolically and exported
using the UFL syntax with the function derivative, as
shown at lines 40 and 43 in listing 1. A simple call to ffcx
will create a.c and.h files containing the code for generating
the local R and K tensors.

(4)K(u) ⋅ du = R(u) − f (u).

(5)R =
dΠ(u + �v)

d�
|�=0.

(6)K =
dR(u + �du)

d�
|�=0.

(7)un+1 = un − du.

$ ffcx material.py

2.3 � Integration in SOniCS

In SOFA, the definitions of the residual and stiffness ten-
sors are carried out within a C++ file, Hyperelastic-
Forcefield.cpp. Each material model is in a separate
file. So far, only Saint Venant–Kirchhoff and Neo-Hookean
models have been implemented. The users can easily access
those functionalities through Python wrappers:

node.addObject("SaintVenantKirchhoffMaterial", young_modulus=E,
poisson_ratio=nu)
node.addObject(’HyperelasticForcefield ’)

The HyperelasticForcefield.cpp contains several
functions, but we are particularly focusing on two of them.
The addForce and assemble_stiffness functions are
assembling the global residual and stiffness tensors, respec-
tively. Algorithm 1 details the addForce function, while
algorithm 2 presents our reimplementation of the procedure.
We did not detail the assemble_stiffness as it involves
the exact same differences between the two implementations.
Algorithm 1 SOFA addForce function. The addForce function is in charge
of assembling the global residual vector.

1: for element in elements do
2: X ← element.positions � return the current positions of the element
3: Rglobal ← 0 � zero the global residual vector of dimension (DOFs ×3)
4: Rlocal ← 0 � zero the local residual vector of dimension (element

DOFs ×3)
5: for quadrature in quadratures do
6: detJ ← det(quadrature.nodes) � return the Jacobian of the

quadrature nodes
7: dN ← quadrature.nodes.shape functions derivatives �

return the derivatives of the shape functions of the quadrature nodes
8: w ← quadrature.nodes.weights � return the weights of the

quadrature nodes
9: F ← XT · dN

10: J ← det(F)
11: C ← FT · F
12: S ← f(C, MaterialParameters) �

return the second Piola-Kirchhoff depending on the material parameters
and kinematics tensors

13: for i in range(0, NumberOfNodesPerElement) do
14: dx ← dN [i]T

15: Rlocal[i] ← (detJ · w) · F · S · dx � allocate the result in the
local residual vector

16: end for
17: end for
18: for i in range(0, NumberOfNodesPerElement) do
19: Rglobal[global(i)] ← Rglobal[global(i)]−Rlocal[i] � i indicates the

element node index while global(i) denotes the global node index
20: end for
21: end for

Listing 2: Python definition of a hyperealstic forcefield
in SOFA using a Saint Venant-Kirchhoff material model.

The structure is similar, but we can still observe a few
differences.

•	 The new implementation of algorithm 2 is more concise
and involves less visible tensorial operations, because all Fig. 2   Local numbering of element vertices and edges in both FEn-

iCS and SOFA

Engineering with Computers	

1 3

those operations are efficiently hard-coded in the C file
provided by FFCx. For example, in algorithm 1, lines 5
to 17 were replaced in the new algorithm 2 by solely line
11.

•	 Algorithm 2 needs to have access to the initial position
of the object and to the displacement vector. This was
indeed not needed in the previous implementation, since
the modular mechanics plugin takes advantage of writing
the deformation gradient only based on the current nodal
coordinates x

∇Ω0
 and x

0
 , respectively, denote the gradient and the

nodal coordinates in the initial configuration, thus sav-
ing one extra vector operation.

Algorithm 2 SOniCS addForce function. The addForce function is in charge
of assembling the global residual vector.

1: for element in elements do
2: X ← element.positions � return the current positions of the element
3: X0 ← element.rest positions � return the initial positions of the

element
4: B ← gravity � return the body forces
5: T ← element.forces � return the traction forces applied on the

element
6: u ← X −X0
7: Rglobal ← 0 � zero the global residual vector of dimension (DOFs ×3)
8: Rlocal ← 0 � zero the local boundary conditions residual vector of

dimension (element DOFs ×3)
9: Rbc

local ← 0 � zero the local residual vector of dimension (element
DOFs ×3)

10: constants ← MaterialParameters � return the material parameters
11: Rlocal ← tabulate tensor(Rlocal, u,B, constants, X0)
12: Rbc

local ← tabulate tensor(Rlocal, u, T, constants, X0)
13: for i in range(0, NumberOfNodesPerElement) do
14: Rglobal[global(i)] ← Rglobal[global(i)]− (Rlocal[i] +Rbc

local[i]) � i
indicates the element node index while global(i) denotes the global node
index

15: end for
16: end for

•	 In the SOFA implementation, the boundary conditions
and body forces are treated in separate files. In the new
implementation of the Forcefield 1, the boundary con-
ditions and body forces are now directly carried out
in the Forcefield on lines 11 and 12. It avoids calling
another function to loop again through every element of
the object, thus speeding up the assembly of the residual
vector.

Based on this new implementation, we created a new
forcefield HyperelasticForcefield_FEniCS as
close as possible to the existing syntax of Hyperelas-
ticForcefield. We also needed to tune the existing
material definition to replace unnecessary calculations and
allow us to read the corresponding.c file.

(8)F = I + ∇Ω0
u = I + ∇Ω0

(x − x
0
) = ∇Ω0

x.

node.addObject("FEniCS_Material", material="SaintVenantKirchhoff",
young_modulus=E, poisson_ratio=nu)
node.addObject(’HyperelasticForcefield_FEniCS ’

Listing 3: Python definition of a hyperelastic forcefield in SOniCS using a Saint
Venant-Kirchhoff material model.

Listing 3: Python definition of a hyperelastic forcefield
in SOniCS using a SaintVenant-Kirchhoff material model.

Finally, the last hurdle was the element definitions.
Indeed, SOFA and FEniCS do not use the same vertices,
edges, and facets ordering (as shown in Fig. 2). To avoid
any conflict with the existing users of SOFA and solve
the ordering issue, we proposed rearranging the topology
indices, edges, and vertices and creating new elements. It
ensured an accurate integration over the elements (espe-
cially for quadratic Serendipity integrating over the edges)
and preserved an appropriate visualization. Those elements
have been interfaced with the existing topology named
CaribouTopology.

node.addObject(’CaribouTopology ’, name=’topology ’, template="Hexahedron
", indices=mesh.cells_dict[’hexahedron ’])

node.addObject(’CaribouTopology ’, name=’topology ’, template="
Hexahedron_FEniCS", indices=mesh.cells_dict[’hexahedron ’][:, [4, 5, 0,
1, 7, 6, 3, 2]])

Listing 4: Python definition of hexahedron topology in SOFA and SOniCS.

 Listing 4: Python definition of hexahedron topology in
SOFA and SOniCS.

3 � Numerical examples

In this section, we describe three numerical examples
used for the validation of our SOniCS implementation.
Every simulation described in this section can be repro-
duced and is available on our GitHub page [1] (https://​
github.​com/​Ziemn​ono/​SOniCS_​valid​ation). We use the
same domain description for each example while varying
the boundary conditions and material parameters of each
simulation.

Let Ω be a domain represented by a squared-section beam
of dimensions 80 × 15 × 15m3 , considered fixed on the right
side ( u = 0 on ΓD ), while Neumann boundary conditions are
applied on the left side ( ΓN ), as shown in Fig. 3a and 3b.

Ω was discretized using two different geometrical ele-
ments using linear and quadratic interpolations. P1 and P2
elements stand for linear or quadratic tetrahedra, while Q1
and Q2 denote linear and quadratic hexahedra.

To solve each hyperelastic formulation described in Eq. 4,
we used an identical implementation of the classical Newton

https://github.com/Ziemnono/SOniCS_validation
https://github.com/Ziemnono/SOniCS_validation

	 Engineering with Computers

1 3

Raphson (NR) solver for SOniCS, SOFA, and FEBio. The
solver had the following parameters: a maximum of 25 itera-
tions with a residual and displacement tolerance of 10−10 .
To compare the running time of the two implementations,
we, therefore, introduced the mean NR iteration time. We
defined the NR iteration time as the duration for assembling
and factorizing the system matrix, solving and propagat-
ing the unknown increment, updating and computing the
force and displacement residual. After checking that the
same number of iterations have been achieved, we averaged
the total time over the number of iterations needed for the
solver convergence. All calculations were performed using
an Intel® CoreTM i5-6300HQ CPU @ 2.30GHz × 4 proces-
sor with a 16GiB memory and a NV117 / Mesa Intel® HD
Graphics 530 (SKL GT2) graphics card.

We evaluated the soundness of the SOniCS solution using
SOFA, FEBio, or a manufactured solution as the reference
solution and computed the Euclidean relative L2 error for the
displacement and strain fields [54]

where u and v are the calculated displacement vectors for
SOniCS and the reference implementation, respectively,
|| ∙ || the Euclidean norm, and Eu the Green–Lagrange strain
tensor of the displacement u.

In this section, we first compare our solution with an ana-
lytical one: the manufactured solution. Then, we consider a

(9)L2
u
(u, v) =

||u − v||2
||v||2 ,

(10)L2
E
(u, v) =

||Eu − Ev||2
||Ev||2 ,

clamped cantilever beam subject to Neumann boundary con-
ditions and compare its deformation with the SOFA solution.
Finally, using the same cantilever beam, we implemented a
Mooney–Rivlin model (uncoded in SOFA) using SOniCS
and compared the solution with FEBio.

3.1 � Manufactured solution

Aiming at code verification, the method of the manufactured
solution consists in choosing an exact solution to the prob-
lem as an analytical expression [105]. The chosen analyti-
cal expression is then inserted into the Partial Differential
Equation (PDE) under consideration to find the conditions
that lead to this solution. In general, the manufactured cho-
sen solution is expressed in simple primitive functions like
sin(), exp(), tanh() , etc. In the context of hyperelastic equa-
tions, we considered the following manufactured solution
for the displacement:

Starting from the above-chosen displacement and using
continuum mechanics laws, the relative analytical forces
are applied as Neumann boundary conditions and deduced
as follows:

(11)u(x, y, z) =

⎡
⎢⎢⎣

10−2 ⋅ z ⋅ ex

10−2 ⋅ z ⋅ ey

10−2 ⋅ z ⋅ ez

⎤
⎥⎥⎦
onΩ.

(12)F = Id + grad(u),

(13)P =
�W

�F
,

Fig. 3   Cantilever beam domain discretization and displacement field.
Π is a domain represented by a squared-section beam of dimensions

Π(u) = ∫
Ω

�(u) dx − ∫
Ω

B ⋅ u dx − ∫
�Ω

T ⋅ u ds, , considered

fixed on the right side ( � on B ), while Neumann boundary condi-
tions are applied on the left side ( T)

Engineering with Computers	

1 3

where F is the deformation gradient, Id is the identity matrix
of dimension d, P is the first Piola–Kirchhoff stress tensor,
and W is the strain energy density depending on the material
model constitutive law. We used a Saint Venant–Kirchhoff
material (2) with a Young’s Modulus of 3 kPa and a Pois-
son’s ratio of 0.3, and the computation of this solution was
performed using Python Sympy package [106].

In this experiment, we generated 7 and 6 discretiza-
tions of P1 and P2 elements, respectively, with a decreas-
ing element size in both scenarios. For each discretiza-
tion, we applied the relative analytical forces deduced
from the manufactured solution (11) and used SOniCS
Saint Venant–Kirchhoff material implementation with
the same parameters as Sympy’s to fill the domain. The
displacements obtained were compared to the chosen ana-
lytical solution in Eq. (11) for each discretization. The
results are presented in Fig. 4, and the error metrics are
the relative errors presented in Eqs. 9 and 10.

3.2 � Benchmark with SOFA

The cantilever beam deflection is a classical mechanical test
case, as you can smoothly refine the mesh due to the sim-
plicity of the geometry or modify its boundary conditions to
fit real-life experiments. In this context, the beam was still
clamped on the right side (natural Dirichlet condition on
ΓD ), while Neumann boundary conditions were applied on
the left side ( ΓN ). To compare our SOniCS implementation,
we model the deformation of the beam with two hyperelastic
material models: Saint Venant–Kirchhoff and Neo-Hookean.
We fixed the mechanical parameters and the Neumann
boundary conditions equal to −10 Pa in the y-direction until

(14)f = − � ⋅ P onΓN ,
reaching sufficient large deformations with the same param-
eters as before: E = 3 kPa and � = 0.3.

This study aims at comparing the finite-element solu-
tions provided by SOniCS and SOFA under the same con-
straints in terms of computational and running time per-
formances. To do so, we computed the relative L2 error for
the displacement and strain fields ( L2

u
(u������, u����) and

L2
E
(u������, u����))between the SOniCS solution using SOFA

as the reference solution.
The results obtained are presented in Tables 1 and 2

for Saint Venant–Kirchhoff and Neo-Hookean materials,
respectively.

3.3 � Benchmark with FEBio

FEBio is an open-source finite-element package specifically
designed for biomechanical applications. It offers modeling
scenarios, a wide range of constitutive material models, and
boundary conditions relevant to numerous research areas in
biomechanics. In this section, FEBio was used to compute
the same scenarios as in Sect. 3.2 to evaluate the trustwor-
thiness of SOniCS. A more advanced constitutive material
model, Mooney Rivlin, was introduced for this purpose

where C01 , C10 , and K are the material constants in addi-
tion to the modified invariants IC = J

−
2

3 IC , IIC = J
−

4

3 IIC
defined based on the classic invariants IC = tr(C) ,
IIC =

1

2

(
(tr(C))2 − tr

(
C

2
))

 . To obtain sufficiently large
deformations, we chose the following material parameters:
C01 = 2000 Pa , C10 = 100 Pa , and K = 1000 Pa.

(15)� = C01

(
IC − 3

)
+ C10

(
IIC − 3

)
+

K

2
ln(J),

Fig. 4   Plot of the mesh
convergence analysis of the
manufactured solution. The �Ω
errors ( ds for displacement and
Ω for strain) between the
analytical and the SOniCS
simulation are calculated for
different number of Degrees of
Freedom (DOFs) with fixed
parameters ( dx and

� =
�

2
tr(E)2 + �tr(E2

),

=0.3) for P1 linear tetrahedra
(blue) and P2 quadratic
tetrahedra (red) elements

	 Engineering with Computers

1 3

Tables 3, 4, 5 show the results obtained for Saint
Venant–Kirchhoff, Neo-Hookean, and Mooney–Rivlin mate-
rial models and considering the four discretizations imple-
mented so far in SOniCS. The error evaluation is still based
on the mean relative error defined in Eq. 9 using FEBio as
the reference while using a Newton–Raphson solver with the
same characteristics in both cases.

4 � Holzapfel and Ogden anisotropic material
model coupled with haptic simulation

In the context of numerical surgical simulations, robot
haptic feedback has been shown to be a consistent tool
for drastically improving user interactions and opening up
countless applications. Among them, haptic devices have
mainly been used as training tools for surgeons. Indeed
prior to surgery, under the assumption of known geometry
and mechanical properties of the patient’s organ, a surgeon
would be able to plan and better choose between specific

Table 1   Relative error for displacement ( L2
u
(u������,u����) ) and strain

( L2
E
(u������,u����) ) defined in Eqs. 9 and 10 and mean Newton–

Raphson (NR) iteration time between SOniCS and SOFA for different

element geometries and interpolation schemes using Saint Venant–
Kirchhoff material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra

Saint Venant–Kirchhoff material model

Element Number of DOFs SOniCS mean NR itera-
tion time (s)

SOFA mean NR itera-
tion time (s)

L
2

u
(u������,u����) L

2

E
(u������,u����)

P1 10,935 0.387 0.438 4.10e−14 2.32e−16
P2 12,705 0.810 0.808 3.49e−14 8.18e−15
Q1 10,935 0.449 0.464 6.19e−13 3.76e−16
Q2 11,772 0.839 0.942 3.81e−13 23.68e−14

Table 2   Relative error for displacement ( L2
u
(u������,u����) ) and strain ( L2

E
(u������,u����) ) defined in Eqs. 9 and 10 and mean Newton–Raphson

(NR) iteration time between SOniCS and SOFA for different element geometries and interpolation schemes using Neo-Hookean material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic hexahedra

Neo-Hookean material model

Element Number of DOFs SOniCS mean NR itera-
tion time (s)

SOFA mean NR itera-
tion time (s)

L
2

u
(u������,u����) L

2

E
(u������,u����)

P1 10,935 0.391 0.428 2.17e−14 7.78e−14
P2 12,705 0.826 0.852 1.40e−14 2.18e−20
Q1 10,935 0.471 0.478 4.92e−13 5.77e−16
Q2 11,772 0.826 0.864 1.64e−13 2.17e−14

Table 3   Relative
error for displacement
( L2

u
(u������,u�����) ) and strain

( L2
E
(u������,u�����) ) defined

in Eq. 9 and 10 and mean
Newton–Raphson (NR) iteration
time between SOniCS and
FEBio for different element
geometries and interpolation
schemes using Saint Venant–
Kirchhoff material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic
hexahedra

Saint Venant-Kirchhoff material model

Element Number of DOFs SOniCS mean
NR iteration time
(s)

FEBio mean NR
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.387 0.401 6.01e−10 4.23e−7
P2 12,705 0.810 0.991 0.08 0.117
Q1 10,935 0.449 0.508 4.19e−10 2.96e−6
Q2 11,772 0.839 0.102 0.13 0.189

Engineering with Computers	

1 3

surgical paths/approaches. In this paper, we used the 3D
Systems Touch Haptic Device robot coupled with the
SOFA plugin Geomagic to allow interactions between the
instrument and the simulations. For this hypothetical simu-
lation, we virtually simulate the contact between a surgical
tool and a liver during surgery. The liver was described by
an anisotropic Holzapfel Ogden model [107, 108], with an
existing FEniCS implementation [52] validated using the
manufactured solution. Therefore, to assess the soundness

of our implementation, we conducted a mesh convergence
analysis on a beam and liver meshes provided in Fig. 5. We
prescribed natural Dirichlet boundary conditions on one
side and Neumann boundary conditions on the other side
to obtain noticeable deformations. Such material could
be described using the following strain energy density
function:

(16)� = � iso (F) + � vol (J).

Table 4   Relative
error for displacement
( L2u(u������,u�����) ) and strain
( L2

E
(u������,u�����) ) defined

in Eqs. 9 and 10 and mean
Newton–Raphson (NR) iteration
time between SOniCS and
FEBio for different element
geometries and interpolation
schemes using Neo-Hookean
material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic
hexahedra

Neo-Hookean material model

Element Number of DOFs SOniCS mean
NR iteration time
(s)

FEBio mean NR
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.391 0.458 6.53e−10 7.33e−7
P2 12,705 0.826 0.101 1.5e−2 3.16e−2
Q1 10,935 0.471 0.523 8.08e−10 1.02e−6
Q2 11,772 0.826 0.908 0.09 0.13

Table 5   Relative
error for displacement
( L2

u
(u������,u�����) ) and strain

( L2
E
(u������,u�����) ) defined

in Eqs. 9 and 10 and mean
Newton–Raphson (NR) iteration
time between SOniCS and
FEBio for different element
geometries and interpolation
schemes using Mooney–Rivlin
material model

P1 and P2 elements stand for linear or quadratic tetrahedra, while Q1 and Q2 denote linear and quadratic
hexahedra. The large errors obtained for Q1 elements are further discussed in Sect. 5

Mooney Rivlin material model

Element Number of DOFs SOniCS mean
NR iteration time
(s)

FEBio mean NR
iteration time (s)

L
2

u
(u������,u�����) L

2

E
(u������,u�����)

P1 10,935 0.662 0.804 2.49e−9 6.81-8
P2 12,705 0.102 0.112 9.97e−3 8.28e−2
Q1 10,935 0.818 0.910 10.92 14.71
Q2 11,772 0.101 0.125 4.23e−2 1.229e−1

Fig. 5   Plot of the mesh
convergence analysis applied
to a beam and liver using the
Holzapfel and Ogden aniso-
tropic material models with the
parameters � Pa. The maximum
displacement of a beam � and
liver E meshes are, respectively,
computed in orange and blue for
different mesh sizes increas-
ing the number of Degrees of
Freedom (DOFs)

	 Engineering with Computers

1 3

� iso and � vol are the isochoric and volumetric part of the
strain energy density function, respectively. The volumetric
part can be evaluated as a function of the bulk modulus � of
the material and J

with

The transversely isotropic behavior can be obtained by
removing the parameters afs , bfs , as , and bs , while the iso-
tropic behavior is obtained by also suppressing the two
parameters af and bf  . This kind of model is frequently
used to model orthotropic materials (e.g., muscle with
fibers or tendons). Vectors f

0
 , s

0
 are the unit base vec-

tors normal to the planes of symmetry. For our appli-
cation, we selected the following material properties
allowing to obtain sufficient deformation of the objects:
� = 102 MPa, a = 1.102 kPa, b = 5 Pa, a

f
= 16 kPa, b

f
= 12.8 Pa,

a
s
= 18 kPa, b

s
= 10 Pa, a

fs
= 9 kPa, b

fs
= 12 Pa.

The instrument is assumed to be a rigid body kinemati-
cally constrained by the haptic device position at each time
step. The contact forces generated by the collision between
the instrument and the liver are calculated using frictional
contact and an implicit Euler scheme to solve the dynamic
system [109]. Finally, the contact forces are transmitted back

(17)� vol (J) =
�

4
(J2 − 1 − 2ln(J)),

(18)

� iso (F) =
a

2b
exp

[
b
(
I1 − 3

)]
+
∑
i=f ,s

ai

2bi
exp

[
bi
(
I4i − 1

)2]

+
afs

2bfs

(
exp

[
bfsI

2
8fs

]
− 1

)
,

(19)I4f = f
0
⋅ C ⋅ f

0
, I4s = s

0
⋅ C ⋅ s

0
, and I8fs = f

0
⋅ C ⋅ s

0
.

to the user’s hand through the haptic device. The result is
a simulation running at 100 FPS (Frames Per Seconds) on
average displayed in Fig. 6. A full video of the interaction
with the haptic device is available in the Supplementary
Materials. The real-time performance has been obtained
using a small number of DOFs (543). A higher number
of DOFs could be used once a GPU implementation is
available.

5 � Discussion

We show that the SOniCS plugin is an efficient implemen-
tation of material models for hyperelastic simulations and
enables the user to develop an intuitive understanding of
the impact of modeling choices on the accuracy and reli-
ability of the predictions. We first demonstrated a conver-
gence study for Saint Venant–Kirchhoff material using P1
and P2 elements with the manufactured solution in Sect. 3.1.
Indeed, as expected, by refining the mesh, the L2 relative
errors for strain and displacement fields almost follow the
theoretical slopes when increasing the number of DOFs (on
a log–log plot), showing the stability of our method.

Then, from Sect. 3.2, two main results are noteworthy from
Tables 1 and 2. First, the relative errors of the displacement
and strain between SOniCS and SOFA, for both material
models, are close to machine precision for P1, P2, Q1, and
Q2 discretizations. Second, the last comment concerns the
mean NR iteration time. We observe that the SOniCS imple-
mentation is slightly faster than SOFA for any elements using
Saint Venant–Kirchhoff or Neo-Hookean material model. The
reason for this difference is the need for SOFA to compute
the shape functions and derivatives, and then calculate the
local residual and Jacobian using multiple tensor operations.
Conversely, SOniCS has all those operations efficiently hard-
coded in C kernels, thus performing faster than SOFA.

Fig. 6   Three different deformation states of a liver in contact with a
surgical tool connected to a haptic device. The surgical tool (in red)
is guided by the user through the 3D Systems Touch Haptic Device to
deform the liver from the initial configuration (green wire-frame) to
a deformed state (textured). The liver is modeled using the Holzapfel
Ogden anisotropic material with the following parameters 1

2
(C − I) .

The maximum displacement of a beam I and liver C . In the case
of contact detection, the contact forces are transmitted to the user
through the haptic device. A video of the simulation is available as
supplementary materials

Engineering with Computers	

1 3

We compared the SOniCS and FEBio simulations for
several material models: Saint Venant–Kirchhoff, Neo-
Hookean, and Mooney–Rivlin in section 3.3. For P1 ele-
ments, the errors are close to machine precision for all three
models. For P2 and Q2 elements, the three models display
similar errors that still represent a minor error (less than
0.08 and 0.1, respectively) which is of same magnitude
between SOFA and FEBio, as well as FEniCS and FEBio.
The reasons for those minor errors could be the difference
in the implementation of the elements or in the choice of
solver parameters. For Q1 elements, we reached an accu-
racy near machine precision for Saint Venant–Kirchhoff
and Neo-Hookean. However, the relative error for displace-
ment rose close to 11 for the Mooney–Rivlin model, while
similar behavior is observed for the relative strain errors.
To further understand this divergence, we included a third
open-source software AceGen [110]. AceGen similarly uses
an automatic code generation package for the symbolic gen-
eration of new finite elements. The cantilever beam scenario
presented in Sect. 3.3 was reproduced using AceGen under
the same conditions and with an identical Q1 discretization
of the domain. Using the same metric as defined in Eq. 9,
the results are the following: L2

u
(u������, u������) = 3.33

and L2
u
(u�����, u������) = 14.19 . Even if SOniCS and Ace-

gen showed similar results, a more in-depth study would be
needed to confirm the soundness of our solution and explain
the differences between FEBio and SOniCS solutions.
Despite using a finer mesh, the error was slightly lower but
still noticeable. Eventually, FEBio has shown difficulty in
converging with trivial parameter sets or when increasing the
number of DOFs. Thus, as shown in Tables 3, 4, and 5, on
average, SOniCS is solving the equation system faster than
FEBio. Several reasons could explain those differences, such
as the number of quadrature points used, the implementation
of the Newton–Raphson scheme, or the solver parameters.

Finally, we showed the capabilities of the SOniCS plugin
in simulating complex material models, such as the Holzap-
fel Ogden anisotropic model coupled with a haptic device
in Sect. 4. The material model was effortlessly implemented
for several elements (P1, P2, Q1, and Q2) without needing
any manual derivation or coding. A manufactured solution
was used in [52] to validate the FEniCS implementation,
while Fig. 5 demonstrates a convergence of the solution for
a beam and liver shape using the SOniCS implementation.
Therefore, the absence of analytical solutions or experimen-
tal data only proves the convergence to a numerical solution
that is not necessarily a ground truth. The final result is a
real-time simulator functional for surgeons’ training or any
other biomechanics simulation replicating the behavior of a
liver in contact with a surgical tool.

6 � Conclusion and outlook

We performed several numerical experiments to develop
intuitive understanding of new material models in SOFA
using the SOniCS plugin. First, we validated the most com-
mon hyperelastic material models: Saint Venant–Kirchhoff
and Neo-Hookean using a manufactured solution. Then,
utilizing FEBio as a reference, we verified our implemen-
tation of a Mooney–Rivlin material model using P1, P2,
Q1, and Q2 elements. The final application employed a
haptic device to interact with an anisotropic Holzapfel
Ogden liver model in real-time.

The study used our SOniCS plugin to generate opti-
mized C code for complex material models compatible
with SOFA. On one side, we benefited from FEniCS auto-
matic differentiation and code generation capabilities to
bypass the difficulties of deriving and implementing the
consistent Jacobian in SOFA. On the user side, we imple-
mented compatible and user-friendly SOFA Forcefields to
use the FEniCS C kernels. A SOFA user can now easily
define a new material model by specifying its strain energy
function, element geometry or family, and the quadrature
scheme and degree only in Python. We made the open-
source code and all data and test cases available as sup-
plementary material.

In future work, we intend to apply the SOniCS plugin for
solving more complex mechanical phenomena. For example,
mixed formulations for solving incompressible materials,
viscous or plastic effects, and multi-material systems. In this
paper, we only utilized the plugin for solving hyperelasticity
equations, but it would be interesting to tackle multi-physics
problems, such as thermomechanics or magnetomechanics.
An interesting future work could be to investigate the effec-
tiveness of the SOniCS plugin for complex material real-
time simulations with surrogate and machine-learning mod-
els in SOFA. Further, the next step would be to quantify the
uncertainty of biomechanical simulations in SOFA via the
SOniCS plugin. We only used Lagrangian P1, P2, Q1, and
Q2 elements, while more geometries such as prisms could
be relevant for the SOFA and FEniCS community. Finally,
our validation only focused on the deformation field of the
structures, while a more in-depth study would also enable
us to validate an analytical stress field.

Some work remains to improve the user-friendliness of our
package. Indeed, even if writing the Python file describing the
material model and generating the associated C file is mostly
effortless and automated, some steps are still manual. Indeed,
the FEniCS_Material C++ class must have knowledge
of every new C file created at compile time. Hence, for the
moment, the user still has to manually specify two C++

	 Engineering with Computers

1 3

functions in the code and recompile the whole plugin. Even
if this step is manageable, it still requires diving into the C++
code, which can discourage a few users. Meanwhile, to miti-
gate this effect, actions have been taken by providing detailed
documentation and tutorials for this crucial step. In addition,
future works aim at improving this stage by directly providing
the path of the C file in the Python code to trigger just-in-time
compilation for new materials.

Supplementary Information  The online version of this article (https://​
doi.​org/​10.​1007/​s00366-​023-​01877-w) contains supplementary mate-
rial, which is available to authorized users.

Acknowledgements  The authors would like to thank Dr. Michal
Habera and Dr. Matthew Scroggs for their help with the quadratic hexa-
hedron Serendipity elements. The authors would also like to acknowl-
edge Marie Amigo for helping with Fig. 1 and Thomas Lavigne for
providing the Acegen simulation and reviewing the manuscript.

Funding  This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie under Grant Agreement No. 764644. This publica-
tion only contains the RAINBOW consortium’s views and the Research
Executive Agency and the Commission are not responsible for any use
that may be made of the information it contains. This publication has
been prepared in the framework of the DRIVEN project funded by the
European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 811099. This project is supported by the
“IHU Strasbourg—Institut de chirurgie guidée par l’image” Strasbourg,
France. The authors would like to thank the support of the FNR and
ANR Grant S-Keloid no. 16399490.

Data Availability  The SOniCS plugin source code is available on
GitHub as a branch of the Caribou project https://​github.​com/​mimes​
is-​inria/​carib​ou/​tree/​FeniCS-​featu​res and will soon be merged into the
main branch https://​github.​com/​mimes​is-​inria/​carib​ou/​tree/​master. The
reference [1] (https://doi.org/10.6084/m9.figshare.21120118) contains
the files used to generate the manufactured solutions, benchmarks with
SOFA and FEBio, and the haptic simulation. The latest version is also
available on GitHub at https://​github.​com/​Ziemn​ono/​SOniCS_​valid​
ation.

Declarations 

Conflict of interest  The authors of this work have no conflicts of inter-
est to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Mazier A, El Hadramy S, Brunet J-N, Hale JS, Cotin S, Bor-
das SPA (2022) Supplementary material for SOniCS: develop
intuition on biomechanical systems through interactive error con-
trolled simulations. https://​doi.​org/​10.​6084/​m9.​figsh​are.​21120​
118

	 2.	 Smith M (2009) ABAQUS/Standard User’s Manual, Version 6.9.
Dassault Systèmes Simulia Corp, United States

	 3.	 DeSalvo GJ, Swanson JA (1985) ANSYS engineering analysis
system users manual. Swanson analysis systems. Houston, PA

	 4.	 Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and post-pro-
cessing facilities. Int J Numer Meth Eng 79:1309–1331. https://​
doi.​org/​10.​1002/​nme.​2579

	 5.	 Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for
large data visualization. Visualization Handbook

	 6.	 Jasak H, Jemcov A, Kingdom U (2007) Openfoam: a c++ library
for complex physics simulations. International workshop on cou-
pled methods in numerical dynamics, IUC, pp 1–20

	 7.	 Bordas S, Nguyen VP, Dunant C, Nguyen Dang H, Guidoum A
(2006) An extended finite element library. Int J Numer Meth Eng
2:1–33

	 8.	 Jansari C, Natarajan S, Beex L, Kannan K (2019) Adaptive
smoothed stable extended finite element method for weak dis-
continuities for finite elasticity. Eur J Mech A Solids 78:103824.
https://​doi.​org/​10.​1016/j.​eurom​echsol.​2019.​103824

	 9.	 Jacquemin T, Bordas SPA (2021) A unified algorithm for the
selection of collocation stencils for convex, concave, and sin-
gular problems. Int J Numer Meth Eng 122(16):4292–4312.
https://​doi.​org/​10.​1002/​nme.​6703

	 10.	 Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Mesh-
less methods: a review and computer implementation aspects.
Math Comput Simul 79(3):763–813. https://​doi.​org/​10.​1016/j.​
matcom.​2008.​01.​003

	 11.	 Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T
(2013) A computational library for multiscale modeling of
material failure. Comput Mech 53(5):1047–1071. https://​doi.​
org/​10.​1007/​s00466-​013-​0948-2

	 12.	 Sinaie S, Nguyen VP, Thanh Nguyen C, Bordas S (2017) Pro-
gramming the material point method in Julia. Adv Eng Softw.
https://​doi.​org/​10.​1016/j.​adven​gsoft.​2017.​01.​008

	 13.	 Gibbons CH (1934) History of testing machines for materials.
Trans Newcomen Soc 15(1):169–184. https://​doi.​org/​10.​1179/​
tns.​1934.​011

	 14.	 Payan Y, Ohayon J (2017) Preface. In: Payan Y, Ohayon J (eds)
Biomechanics of living organs. Translational epigenetics, vol
1. Academic Press, Oxford. https://​doi.​org/​10.​1016/​B978-0-​
12-​804009-​6.​10000-8

	 15.	 Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A (2017)
A family of hyperelastic models for human brain tissue. J Mech
Phys Solids 106:60–79. https://​doi.​org/​10.​1016/j.​jmps.​2017.​
05.​015

	 16.	 Zhou J, Fung YC (1997) The degree of nonlinearity and
anisotropy of blood vessel elasticity. Proc Natl Acad Sci
94(26):14255–14260. https://​doi.​org/​10.​1073/​pnas.​94.​26.​
14255

	 17.	 Picinbono G, Delingette H, Ayache N (2003) Non-linear aniso-
tropic elasticity for real-time surgery simulation. Graph Mod-
els 65(5):305–321. https://​doi.​org/​10.​1016/​S1524-​0703(03)​
00045-6. (Special Issue on SMI 2002)

	 18.	 Flynn C, Taberner A, Nielsen P (2011) Mechanical characteri-
sation of in vivo human skin using a 3d force-sensitive micro-
robot and finite element analysis. Biomech Model Mechanobiol
10:27–38. https://​doi.​org/​10.​1007/​s10237-​010-​0216-8

https://doi.org/10.1007/s00366-023-01877-w
https://doi.org/10.1007/s00366-023-01877-w
https://github.com/mimesis-inria/caribou/tree/FeniCS-features
https://github.com/mimesis-inria/caribou/tree/FeniCS-features
https://github.com/mimesis-inria/caribou/tree/master
https://github.com/Ziemnono/SOniCS_validation
https://github.com/Ziemnono/SOniCS_validation
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.21120118
https://doi.org/10.6084/m9.figshare.21120118
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/j.euromechsol.2019.103824
https://doi.org/10.1002/nme.6703
https://doi.org/10.1016/j.matcom.2008.01.003
https://doi.org/10.1016/j.matcom.2008.01.003
https://doi.org/10.1007/s00466-013-0948-2
https://doi.org/10.1007/s00466-013-0948-2
https://doi.org/10.1016/j.advengsoft.2017.01.008
https://doi.org/10.1179/tns.1934.011
https://doi.org/10.1179/tns.1934.011
https://doi.org/10.1016/B978-0-12-804009-6.10000-8
https://doi.org/10.1016/B978-0-12-804009-6.10000-8
https://doi.org/10.1016/j.jmps.2017.05.015
https://doi.org/10.1016/j.jmps.2017.05.015
https://doi.org/10.1073/pnas.94.26.14255
https://doi.org/10.1073/pnas.94.26.14255
https://doi.org/10.1016/S1524-0703(03)00045-6
https://doi.org/10.1016/S1524-0703(03)00045-6
https://doi.org/10.1007/s10237-010-0216-8

Engineering with Computers	

1 3

	 19.	 Boyer G, Molimard J, Ben Tkaya M, Zahouani H, Pericoi M,
Avril S (2013) Assessment of the in-plane biomechanical prop-
erties of human skin using a finite element model updating
approach combined with an optical full-field measurement on a
new tensile device. J Mech Behav Biomed Mater 27:273–282.
https://​doi.​org/​10.​1016/j.​jmbbm.​2013.​05.​024

	 20.	 Elouneg A, Sutula D, Chambert J, Lejeune A, Bordas SPA,
Jacquet E (2021) An open-source fenics-based framework for
hyperelastic parameter estimation from noisy full-field data:
application to heterogeneous soft tissues. Comput. Struct.
255:106620. https://​doi.​org/​10.​1016/j.​comps​truc.​2021.​106620

	 21.	 Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A com-
parative study of several material models for prediction of
hyperelastic properties: application to silicone-rubber and soft
tissues. Strain 42(3):135–147. https://​doi.​org/​10.​1111/j.​1475-​
1305.​2006.​00257.x

	 22.	 Itskov M (2001) A generalized orthotropic hyperelastic mate-
rial model with application to incompressible shells. Int J
Numer Meth Eng 50(8):1777–1799. https://​doi.​org/​10.​1002/​
nme.​86

	 23.	 Mihai LA, Chin L, Janmey P, Goriely A (2015) A comparison
of hyperelastic constitutive models applicable to brain and fat
tissues. J R Soc Interface 12:1–12. https://​doi.​org/​10.​1098/​rsif.​
2015.​0486

	 24.	 Chagnon G, Rebouah M, Favier D (2014) Hyperelastic energy
densities for soft biological tissues: a review. J Elast. https://​doi.​
org/​10.​1007/​s10659-​014-​9508-z

	 25.	 Zeraatpisheh M, Bordas SPA, Beex LAA (2021) Bayesian model
uncertainty quantification for hyperelastic soft tissue models.
Data-Centric Eng 2:9. https://​doi.​org/​10.​1017/​dce.​2021.9

	 26.	 Ehlers W, Markert B (2001) A linear viscoelastic biphasic model
for soft tissues based on the theory of porous media. J Biomech
Eng 123:418–24. https://​doi.​org/​10.​1115/1.​13882​92

	 27.	 Haj-Ali RM, Muliana AH (2004) Numerical finite element for-
mulation of the schapery non-linear viscoelastic material model.
Int J Numer Meth Eng 59(1):25–45. https://​doi.​org/​10.​1002/​nme.​
861

	 28.	 Marchesseau S, Heimann T, Chatelin S, Willinger R, Delingette
H (2010) Fast porous visco-hyperelastic soft tissue model for
surgery simulation: application to liver surgery. Prog Biophys
Mol Biol 103(2):185–196. https://​doi.​org/​10.​1016/j.​pbiom​olbio.​
2010.​09.​005. (Special Issue on Biomechanical Modelling of
Soft Tissue Motion)

	 29.	 Urcun S, Rohan P-Y, Skalli W, Nassoy P, Bordas SPA, Sciumè G
(2021) Digital twinning of cellular capsule technology: emerging
outcomes from the perspective of porous media mechanics. PLoS
One 16(7):1–30. https://​doi.​org/​10.​1371/​journ​al.​pone.​02545​12

	 30.	 Simon BR (1992) Multiphase poroelastic finite element models
for soft tissue structures. Appl Mech Rev 45(6):191–218. https://​
doi.​org/​10.​1115/1.​31213​97

	 31.	 Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238.
https://​doi.​org/​10.​1016/​S0021-​9290(98)​00161-4

	 32.	 Stokes I, Chegini S, Ferguson S, Gardner-Morse M, Iatridis J,
Laible J (2010) Limitation of finite element analysis of poroe-
lastic behavior of biological tissues undergoing rapid load-
ing. Ann Biomed Eng 38:1780–1788. https://​doi.​org/​10.​1007/​
s10439-​010-​9938-0

	 33.	 Richardson SIH, Gao H, Cox J, Janiczek R, Griffith BE, Berry C,
Luo X (2021) A poroelastic immersed finite element framework
for modelling cardiac perfusion and fluid-structure interaction.
Int J Numer Meth Biomed Eng 37(5):3446. https://​doi.​org/​10.​
1002/​cnm.​3446

	 34.	 Barrera O (2021) A unified modelling and simulation for
coupled anomalous transport in porous media and its finite

element implementation. Comput Mech. https://​doi.​org/​10.​1007/​
s00466-​021-​02067-5

	 35.	 Bulle R, Alotta G, Marchiori G, Berni M, Lopomo NF, Zaffag-
nini S, Bordas S, Barrera O (2021) The human meniscus behaves
as a functionally graded fractional porous medium under con-
fined compression conditions. Appl Sci 11:9405. https://​doi.​org/​
10.​3390/​app11​209405

	 36.	 Lavigne T, Sciumè G, Laporte S, Pillet H, Urcun S, Wheatley
B, Rohan P-Y (2022) Société de biomécanique young investiga-
tor award 2021: numerical investigation of the time-dependent
stress-strain mechanical behaviour of skeletal muscle tissue in the
context of pressure ulcer prevention. Clin Biomech 93:105592.
https://​doi.​org/​10.​1016/j.​clinb​iomech.​2022.​105592

	 37.	 Han L, Hipwell J, Tanner C, Taylor Z, Mertzanidou T, Cardoso
MJ, Ourselin S, Hawkes D (2011) Development of patient-spe-
cific biomechanical models for predicting large breast deforma-
tion. Phys Med Biol 57:455–472. https://​doi.​org/​10.​1088/​0031-​
9155/​57/2/​455

	 38.	 Urcun S, Rohan P-Y, Sciumè G, Bordas S (2021) Cortex tissue
relaxation and slow to medium load rates dependency can be
captured by a two-phase flow poroelastic model. J Mech Behav
Biomed Mater 126:104952. https://​doi.​org/​10.​1016/j.​jmbbm.​
2021.​104952

	 39.	 Tagliabue E, Piccinelli M, Dall’Alba D, Verde J, Pfeiffer M,
Marin R, Speidel S, Fiorini P, Cotin S (2021) Intra-operative
update of boundary conditions for patient-specific surgical
simulation. Med Image Comput Comput Ass Interv MICCAI
2021:373–382

	 40.	 Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S,
Duriez C (2014) Real-time simulation of contact and cutting of
heterogeneous soft-tissues. Med Image Anal 18(2):394–410.
https://​doi.​org/​10.​1016/j.​media.​2013.​11.​001

	 41.	 MiguezPacheco V, Hench L, Boccaccini A (2014) Bioactive
glasses beyond bone and teeth: emerging applications in contact
with soft tissues. Acta Biomaterialia. https://​doi.​org/​10.​1016/j.​
actbio.​2014.​11.​004

	 42.	 Cotin S, Delingette H, Ayache N (1999) Real-time elastic defor-
mations of soft tissues for surgery simulation. IEEE Trans Visual
Comput Graphics 5(1):62–73. https://​doi.​org/​10.​1109/​2945.​
764872

	 43.	 Lim Y-J, Hu J, Chang C-Y, Tardella N (2006) Soft tissue defor-
mation and cutting simulation for the multimodal surgery train-
ing. In: 19th IEEE symposium on computer-based medical
systems (CBMS’06), pp 635–640. 19th IEEE symposium on
computer-based medical systems

	 44.	 Borazjani I (2013) Fluid-structure interaction, immersed bound-
ary-finite element method simulations of bio-prosthetic heart
valves. Comput Methods Appl Mech Eng 257:103–116. https://​
doi.​org/​10.​1016/j.​cma.​2013.​01.​010

	 45.	 Bianchi D, Monaldo E, Gizzi A, Marino M, Filippi S, Vairo G
(2017) A fsi computational framework for vascular physiopa-
thology: a novel flow-tissue multiscale strategy. Med Eng Phys
47:25–37. https://​doi.​org/​10.​1016/j.​meden​gphy.​2017.​06.​028

	 46.	 Weiss JA, Maker BN, Govindjee S (1996) Finite element imple-
mentation of incompressible, transversely isotropic hyperelastic-
ity. Comput Methods Appl Mech Eng 135(1):107–128. https://​
doi.​org/​10.​1016/​0045-​7825(96)​01035-3

	 47.	 Mazier A, Bilger A, Forte A, Peterlik I, Hale J, Bordas S (2022)
Inverse deformation analysis: an experimental and numerical
assessment using the fenics project. Eng Comput. https://​doi.​
org/​10.​1007/​s00366-​021-​01597-z

	 48.	 Allard J, Courtecuisse H, Faure F (2012) Chapter 21—implicit
fem solver on gpu for interactive deformation simulation. In:
Hwu WMW (ed) GPU computing gems, Jade. Applications of

https://doi.org/10.1016/j.jmbbm.2013.05.024
https://doi.org/10.1016/j.compstruc.2021.106620
https://doi.org/10.1111/j.1475-1305.2006.00257.x
https://doi.org/10.1111/j.1475-1305.2006.00257.x
https://doi.org/10.1002/nme.86
https://doi.org/10.1002/nme.86
https://doi.org/10.1098/rsif.2015.0486
https://doi.org/10.1098/rsif.2015.0486
https://doi.org/10.1007/s10659-014-9508-z
https://doi.org/10.1007/s10659-014-9508-z
https://doi.org/10.1017/dce.2021.9
https://doi.org/10.1115/1.1388292
https://doi.org/10.1002/nme.861
https://doi.org/10.1002/nme.861
https://doi.org/10.1016/j.pbiomolbio.2010.09.005
https://doi.org/10.1016/j.pbiomolbio.2010.09.005
https://doi.org/10.1371/journal.pone.0254512
https://doi.org/10.1115/1.3121397
https://doi.org/10.1115/1.3121397
https://doi.org/10.1016/S0021-9290(98)00161-4
https://doi.org/10.1007/s10439-010-9938-0
https://doi.org/10.1007/s10439-010-9938-0
https://doi.org/10.1002/cnm.3446
https://doi.org/10.1002/cnm.3446
https://doi.org/10.1007/s00466-021-02067-5
https://doi.org/10.1007/s00466-021-02067-5
https://doi.org/10.3390/app11209405
https://doi.org/10.3390/app11209405
https://doi.org/10.1016/j.clinbiomech.2022.105592
https://doi.org/10.1088/0031-9155/57/2/455
https://doi.org/10.1088/0031-9155/57/2/455
https://doi.org/10.1016/j.jmbbm.2021.104952
https://doi.org/10.1016/j.jmbbm.2021.104952
https://doi.org/10.1016/j.media.2013.11.001
https://doi.org/10.1016/j.actbio.2014.11.004
https://doi.org/10.1016/j.actbio.2014.11.004
https://doi.org/10.1109/2945.764872
https://doi.org/10.1109/2945.764872
https://doi.org/10.1016/j.cma.2013.01.010
https://doi.org/10.1016/j.cma.2013.01.010
https://doi.org/10.1016/j.medengphy.2017.06.028
https://doi.org/10.1016/0045-7825(96)01035-3
https://doi.org/10.1016/0045-7825(96)01035-3
https://doi.org/10.1007/s00366-021-01597-z
https://doi.org/10.1007/s00366-021-01597-z

	 Engineering with Computers

1 3

GPU computing series. Morgan Kaufmann, Boston, pp 281–294.
https://​doi.​org/​10.​1016/​B978-0-​12-​385963-​1.​00021-6

	 49.	 Rappel H, Beex L, Hale J, Noels L, Bordas S (2019) A tutorial
on Bayesian inference to identify material parameters in solid
mechanics. Arch Comput Methods Eng. https://​doi.​org/​10.​1007/​
s11831-​018-​09311-x

	 50.	 Rappel H, Beex LAA, Noels L, Bordas SPA (2019) Identifying
elastoplastic parameters with Bayes’ theorem considering out-
put error, input error and model uncertainty. Probab Eng Mech
55:28–41. https://​doi.​org/​10.​1016/j.​probe​ngmech.​2018.​08.​004

	 51.	 Hauseux P, Hale JS, Bordas SPA (2017) Accelerating Monte
Carlo estimation with derivatives of high-level finite element
models. Comput Methods Appl Mech Eng 318:917–936. https://​
doi.​org/​10.​1016/j.​cma.​2017.​01.​041

	 52.	 Hauseux P, Hale JS, Cotin S, Bordas SPA (2018) Quantifying
the uncertainty in a hyperelastic soft tissue model with stochas-
tic parameters. Appl Math Model 62:86–102. https://​doi.​org/​10.​
1016/j.​apm.​2018.​04.​021

	 53.	 Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas SPA (2018)
Real-time error control for surgical simulation. IEEE Trans
Biomed Eng 65(3):596–607. https://​doi.​org/​10.​1109/​TBME.​
2017.​26955​87

	 54.	 Odot A, Haferssas R, Cotin S (2022) Deepphysics: a physics
aware deep learning framework for real-time simulation. Int J
Numer Meth Eng 123(10):2381–2398. https://​doi.​org/​10.​1002/​
nme.​6943

	 55.	 Deshpande S, Lengiewicz J, Bordas SPA (2022) Probabilis-
tic deep learning for real-time large deformation simulations.
Comput Methods Appl Mech Eng 398:115307. https://​doi.​org/​
10.​1016/j.​cma.​2022.​115307

	 56.	 Menard M (2011) Game development with unity, 1st edn. Course
Technology Press, Boston

	 57.	 Sanders A (2016) An introduction to unreal engine 4. A. K.
Peters Ltd, Natick

	 58.	 Comas O, Taylor Z, Allard J, Ourselin S, Cotin S, Passenger
J (2008) Efficient nonlinear fem for soft tissue modelling and
its gpu implementation within the open source framework
sofa. Springer, New York, pp 28–39. https://​doi.​org/​10.​1007/​
978-3-​540-​70521-5_4

	 59.	 Verschoor M, Lobo D, Otaduy MA (2018) Soft hand simula-
tion for smooth and robust natural interaction. In: 2018 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp
183–190. https://​doi.​org/​10.​1109/​VR.​2018.​84475​55. IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR)

	 60.	 Turini G, Condino S, Fontana U, Piazza R, Howard J, Celi S,
Positano V, Ferrari M, Ferrari V (2019) Software framework for
vr-enabled transcatheter valve implantation in unity, pp 376–384.
https://​doi.​org/​10.​1007/​978-3-​030-​25965-5_​28. International
conference on augmented reality, virtual reality and computer
graphics

	 61.	 Niroomandi S, González D, Alfaro I, Bordeu F, Leygue A, Cueto
E, Chinesta F (2013) Real time simulation of biological soft tis-
sues: a pgd approach. Int J Numer Meth Biomed Eng. https://​doi.​
org/​10.​1002/​cnm.​2544

	 62.	 Wu J, Westermann R, Dick C (2014) Real-time haptic cutting
of high-resolution soft tissues. Stud Health Technol Inform
196:469–75. https://​doi.​org/​10.​3233/​978-1-​61499-​375-9-​469

	 63.	 Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elas-
tic models. ACM Trans Graph. https://​doi.​org/​10.​1145/​19448​46.​
19448​55

	 64.	 Malgat R, Gilles B, Levin DIW, Nesme M, Faure F (2015) Mul-
tifarious hierarchies of mechanical models for artist assigned
levels-of-detail. In: Proceedings of the 14th ACM SIGGRAPH/
Eurographics symposium on computer animation. SCA ’15, New

York, NY, USA, pp 27–36. Association for computing machin-
ery. https://​doi.​org/​10.​1145/​27867​84.​27868​00

	 65.	 Guo G, Zou Y, Liu PX (2021) A new rendering algorithm based
on multi-space for living soft tissue. Comput Graph 98:242–254.
https://​doi.​org/​10.​1016/j.​cag.​2021.​06.​003

	 66.	 Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau
S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S
(2012) SOFA: a multi-model framework for interactive physical
simulation. In: Payan Y (ed) Soft tissue biomechanical modeling
for computer assisted surgery. Studies in mechanobiology, tis-
sue engineering and biomaterials, vol 11. Springer, Berlin, pp
283–321. https://​doi.​org/​10.​1007/​8415_​2012_​125

	 67.	 Chinesta F, Keunings R, Leygue A (2014) The proper general-
ized decomposition for advanced numerical simulations. Primer.
https://​doi.​org/​10.​1007/​978-3-​319-​02865-1

	 68.	 Goury O, Amsallem D, Bordas S, Liu W, Kerfriden P (2016)
Automatised selection of load paths to construct reduced-order
models in computational damage micromechanics: from dissipa-
tion-driven random selection to bayesian optimization. Comput
Mech. https://​doi.​org/​10.​1007/​s00466-​016-​1290-2

	 69.	 Goury O, Duriez C (2018) Fast, generic, and reliable control
and simulation of soft robots using model order reduction. IEEE
Trans Rob 34(6):1565–1576. https://​doi.​org/​10.​1109/​TRO.​2018.​
28619​00

	 70.	 Duriez C, Andriot C, Kheddar A (2004) A multi-threaded
approach for deformable/rigid contacts with haptic feedback.
In: 12th international symposium on haptic interfaces for virtual
environment and teleoperator systems, 2004. HAPTICS ’04. Pro-
ceedings, pp 272–279. https://​doi.​org/​10.​1109/​HAPTIC.​2004.​
12872​06

	 71.	 Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S
(2010) Gpu-based real-time soft tissue deformation with cutting
and haptic feedback. Prog Biophys Mol Biol 103(2):159–168.
https://​doi.​org/​10.​1016/j.​pbiom​olbio.​2010.​09.​016. (Special
Issue on Biomechanical Modelling of Soft Tissue Motion)

	 72.	 Courtecuisse H, Allard J, Duriez C, Cotin S (2011) Precondi-
tioner-based contact response and application to cataract surgery.
In: Fichtinger G, Martel A, Peters T (eds) Med Image Comput
Comput Assisted Interv MICCAI 2011. Springer, Berlin, pp
315–322

	 73.	 Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, A Logg
CR, Ring J, Rognes ME, Wells GN (2015) The FEniCS project
version 1.5. Arch Numer Softw. https://​doi.​org/​10.​11588/​ans.​
2015.​100.​20553

	 74.	 Lengiewicz J, Habera M, Zilian A, Bordas S (2021) Interfacing
acegen and fenics for advanced constitutive models. In: Baratta
I, Dokken JS, Richarson C, Scroggs MW (eds) Proceedings of
FEniCS 2021, Online, 22–26 March, p 474. https://​doi.​org/​10.​
6084/​m9.​figsh​are.​14495​463. http://​mscro​ggs.​github.​io/​fenic​
s2021/​talks/​lengi​ewicz.​html

	 75.	 Maas S, Ellis B, Ateshian G, Weiss J (2012) Febio: finite ele-
ments for biomechanics. J Biomech Eng 134:011005. https://​doi.​
org/​10.​1115/1.​40056​94

	 76.	 Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic hap-
tic rendering of interacting deformable objects in virtual environ-
ments. IEEE Trans Visual Comput Graphics 12(1):36–47. https://​
doi.​org/​10.​1109/​TVCG.​2006.​13

	 77.	 Duriez C (2013) Control of elastic soft robots based on real-time
finite element method. In: 2013 IEEE international conference
on robotics and automation, pp 3982–3987. https://​doi.​org/​10.​
1109/​ICRA.​2013.​66311​38. 2013 IEEE international conference
on robotics and automation

https://doi.org/10.1016/B978-0-12-385963-1.00021-6
https://doi.org/10.1007/s11831-018-09311-x
https://doi.org/10.1007/s11831-018-09311-x
https://doi.org/10.1016/j.probengmech.2018.08.004
https://doi.org/10.1016/j.cma.2017.01.041
https://doi.org/10.1016/j.cma.2017.01.041
https://doi.org/10.1016/j.apm.2018.04.021
https://doi.org/10.1016/j.apm.2018.04.021
https://doi.org/10.1109/TBME.2017.2695587
https://doi.org/10.1109/TBME.2017.2695587
https://doi.org/10.1002/nme.6943
https://doi.org/10.1002/nme.6943
https://doi.org/10.1016/j.cma.2022.115307
https://doi.org/10.1016/j.cma.2022.115307
https://doi.org/10.1007/978-3-540-70521-5_4
https://doi.org/10.1007/978-3-540-70521-5_4
https://doi.org/10.1109/VR.2018.8447555
https://doi.org/10.1007/978-3-030-25965-5_28
https://doi.org/10.1002/cnm.2544
https://doi.org/10.1002/cnm.2544
https://doi.org/10.3233/978-1-61499-375-9-469
https://doi.org/10.1145/1944846.1944855
https://doi.org/10.1145/1944846.1944855
https://doi.org/10.1145/2786784.2786800
https://doi.org/10.1016/j.cag.2021.06.003
https://doi.org/10.1007/8415_2012_125
https://doi.org/10.1007/978-3-319-02865-1
https://doi.org/10.1007/s00466-016-1290-2
https://doi.org/10.1109/TRO.2018.2861900
https://doi.org/10.1109/TRO.2018.2861900
https://doi.org/10.1109/HAPTIC.2004.1287206
https://doi.org/10.1109/HAPTIC.2004.1287206
https://doi.org/10.1016/j.pbiomolbio.2010.09.016
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.6084/m9.figshare.14495463
https://doi.org/10.6084/m9.figshare.14495463
http://mscroggs.github.io/fenics2021/talks/lengiewicz.html
http://mscroggs.github.io/fenics2021/talks/lengiewicz.html
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.1109/TVCG.2006.13
https://doi.org/10.1109/TVCG.2006.13
https://doi.org/10.1109/ICRA.2013.6631138
https://doi.org/10.1109/ICRA.2013.6631138

Engineering with Computers	

1 3

	 78.	 Courtecuisse H, Allard J, Duriez C, Cotin S (2010) Asynchro-
nous Preconditioners for Efficient Solving of Non-linear Defor-
mations. In: VRIPHYS—virtual reality interaction and physical
simulation. Eurographics Association, Copenhagen, Denmark,
pp 59–68. https://​doi.​org/​10.​2312/​PE/​vriph​ys/​vriph​ys10/​059-​
068. https://​hal.​inria.​fr/​hal-​00688​865

	 79.	 Arruda EM, Boyce MC (1993) A three-dimensional constitutive
model for the large stretch behavior of rubber elastic materials. J
Mech Phys Solids 41(2):389–412. https://​doi.​org/​10.​1016/​0022-​
5096(93)​90013-6

	 80.	 Costa KD, Holmes JW, Mcculloch AD (2001) Modelling cardiac
mechanical properties in three dimensions. Philos Trans R Soc
Lond Ser A 359(1783):1233–1250. https://​doi.​org/​10.​1098/​rsta.​
2001.​0828

	 81.	 Mooney M (1940) A theory of large elastic deformation. J Appl
Phys 11(9):582–592. https://​doi.​org/​10.​1063/1.​17128​36

	 82.	 Ogden RW (1972) Large deformation isotropic elasticity—on the
correlation of theory and experiment for incompressible rubber-
like solids. Proc R Soc Lond A Math Phys Sci 326(1567):565–
584. https://​doi.​org/​10.​1098/​rspa.​1972.​0026

	 83.	 Veronda DR, Westmann RA (1970) Mechanical characterization
of skin-finite deformations. J Biomech 3(1):111–124. https://​doi.​
org/​10.​1016/​0021-​9290(70)​90055-2

	 84.	 Brunet J-N (2020) Exploring new numerical methods for the
simulation of soft tissue deformations in surgery assistance. The-
ses, Université de Strasbourg, 4 Rue Blaise Pascal. https://​hal.​
inria.​fr/​tel-​03130​643

	 85.	 Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN
(2014) Unified form language: a domain-specific language for
weak formulations of partial differential equations. ACM Trans
Math Softw 40(2):9–1937. https://​doi.​org/​10.​1145/​25666​30.
(Accessed 2015-03-10)

	 86.	 Kirby RC, Logg A (2006) A compiler for variational forms. ACM
Trans Math Softw 32(3):417–444. https://​doi.​org/​10.​1145/​11636​
41.​11636​44. (Accessed 2018-01-31)

	 87.	 Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, Mcrae
ATT, Bercea G-T, Markall GR, Kelly PHJ (2016) Firedrake:
automating the finite element method by composing abstractions.
ACM Trans Math Softw (TOMS) 43(3):24–12427. https://​doi.​
org/​10.​1145/​29984​41. (Accessed 2020-01-20)

	 88.	 Bastian P, Blatt M, Dedner A, Dreier N-A, Engwer C, Fritze R,
Gräser C, Grüninger C, Kempf D, Klöfkorn R, Ohlberger M,
Sander O (2021) The Dune framework: basic concepts and recent
developments. Comput Math Appl 81:75–112. https://​doi.​org/​10.​
1016/j.​camwa.​2020.​06.​007. (Accessed 2022-06-01)

	 89.	 Korelc J (2002) Multi-language and multi-environment genera-
tion of nonlinear finite element codes. Eng Comput 18:312–327.
https://​doi.​org/​10.​1007/​s0036​60200​028

	 90.	 Ølgaard KB, Wells GN (2020) Applications in solid mechanics.
In: Logg A, Mardal K-A, Wells G (eds) Automated solution of
differential equations by the finite element method: the FEniCS
Book. Lecture notes in computational science and engineering.
Springer, Berlin, Heidelberg, pp 505–524. https://​doi.​org/​10.​
1007/​978-3-​642-​23099-8_​26. Accessed 2022-07-04

	 91.	 Narayanan H (2012) A computational framework for nonlinear
elasticity. In: Logg A, Mardal K-A, Wells G (eds) Automated
solution of differential equations by the finite element method.
Lecture notes in computational science and engineering.
Springer, pp 525–541. https://​doi.​org/​10.​1007/​978-3-​642-​23099-
8_​27 Accessed 2015-03-10

	 92.	 Baroli D, Quarteroni A, Ruiz-Baier R (2012) Convergence of
a stabilized discontinuous galerkin method for incompressible
nonlinear elasticity. Adv Comput Math 39(2):425–443. https://​
doi.​org/​10.​1007/​s10444-​012-​9286-8

	 93.	 Phunpeng V, Baiz PM (2015) Mixed finite element formula-
tions for strain-gradient elasticity problems using the fenics

environment. Finite Elem Anal Des 96:23–40. https://​doi.​org/​
10.​1016/j.​finel.​2014.​11.​002

	 94.	 Weis JA, Miga MI, Yankeelov TE (2017) Three-dimensional
image-based mechanical modeling for predicting the response
of breast cancer to neoadjuvant therapy. Comput Methods Appl
Mech Eng 314:494–512. https://​doi.​org/​10.​1016/j.​cma.​2016.​08.​
024. (Special Issue on Biological Systems Dedicated to Wil-
liam S. Klug)

	 95.	 Nguyen-Thanh VM, Zhuang X, Rabczuk T (2019) A deep energy
method for finite deformation hyperelasticity. Eur J Mech A/Sol-
ids. https://​doi.​org/​10.​1016/j.​eurom​echsol.​2019.​103874

	 96.	 Patte C, Genet M, Chapelle D (2022) A quasi-static porome-
chanical model of the lungs. Biomech Model Mechanobiol
21(2):527–551. https://​doi.​org/​10.​1007/​s10237-​021-​01547-0

	 97.	 Scroggs MW, Baratta IA, Richardson CN, Wells GN (2022)
Basix: a runtime finite element basis evaluation library. submit-
ted to Journal of Open Source Software

	 98.	 Kirby RC (2004) Algorithm 839: FIAT, a new paradigm for
computing finite element basis functions. ACM Trans Math
Softw 30(4):502–516. https://​doi.​org/​10.​1145/​10398​13.​10398​
20. (Accessed 2018-01-31)

	 99.	 ...Balay S, Abhyankar S, Adams MF, Benson S, Brown J, Brune
P, Buschelman K, Constantinescu E, Dalcin L, Dener A, Eijk-
hout V, Faibussowitsch J, Gropp WD, Hapla V, Isaac T, Jol-
ivet P, Karpeev D, Kaushik D, Knepley MG, Kong F, Kruger
S, May DA, McInnes LC, Mills RT, Mitchell L, Munson T,
Roman JE, Rupp K, Sanan P, Sarich J, Smith BF, Zampini S,
Zhang H, Zhang H, Zhang J (2022) PETSc/TAO users manual.
Technical Report ANL-21/39—Revision 3.18, Argonne National
Laboratory

	100.	 Rodenberg B, Desai I, Hertrich R, Jaust A, Uekermann B (2021)
FEniCS-preCICE: coupling FEniCS to other simulation software.
SoftwareX 16:100807. https://​doi.​org/​10.​1016/j.​softx.​2021.​
100807. (Accessed 2022-07-05)

	101.	 Arnold DN, Awanou G (2011) The serendipity family of finite
elements. Found Comput Math 11(3):337–344. https://​doi.​org/​
10.​1007/​s10208-​011-​9087-3. (Accessed 2022-07-05)

	102.	 Arbogast T, Tao Z, Wang C (2022) Direct serendipity and
mixed finite elements on convex quadrilaterals. Numer Math
150(4):929–974. https://​doi.​org/​10.​1007/​s00211-​022-​01274-3.
(Accessed 2022-07-05)

	103.	 Zienkiewicz OC, Taylor RL, Fox D (2014) The finite element
method for solid and structural mechanics, 7th edn. Butterworth-
Heinemann, Oxford. https://​doi.​org/​10.​1016/​B978-1-​85617-​634-
7.​00016-8

	104.	 Ralston A, Rabinowitz P (2001) A first course in numerical
analysis, 2nd edn. Dover Publications, New York

	105.	 Chamberland É, Fortin A, Fortin M (2010) Comparison of the
performance of some finite element discretizations for large
deformation elasticity problems. Comput Struct 88(11–12):664–
673. https://​doi.​org/​10.​1016/j.​comps​truc.​2010.​02.​007

	106.	 ...Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB,
Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake
T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats
S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka V,
Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017)
Sympy: symbolic computing in python. PeerJ Comput Sci 3:103.
https://​doi.​org/​10.​7717/​peerj-​cs.​103

	107.	 Holzapfel GA, Ogden RW (2009) Constitutive modelling of
passive myocardium: a structurally based framework for mate-
rial characterization. Philos Trans R Soc A Math Phys Eng Sci
367(1902):3445–3475. https://​doi.​org/​10.​1098/​rsta.​2009.​0091

	108.	 Pezzuto S, Ambrosi D, Quarteroni A (2014) An orthotropic
active–strain model for the myocardium mechanics and its
numerical approximation. Eur J Mech A Solids 48:83–96. https://​
doi.​org/​10.​1016/j.​eurom​echsol.​2014.​03.​006

https://doi.org/10.2312/PE/vriphys/vriphys10/059-068
https://doi.org/10.2312/PE/vriphys/vriphys10/059-068
https://hal.inria.fr/hal-00688865
https://doi.org/10.1016/0022-5096(93)90013-6
https://doi.org/10.1016/0022-5096(93)90013-6
https://doi.org/10.1098/rsta.2001.0828
https://doi.org/10.1098/rsta.2001.0828
https://doi.org/10.1063/1.1712836
https://doi.org/10.1098/rspa.1972.0026
https://doi.org/10.1016/0021-9290(70)90055-2
https://doi.org/10.1016/0021-9290(70)90055-2
https://hal.inria.fr/tel-03130643
https://hal.inria.fr/tel-03130643
https://doi.org/10.1145/2566630
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2998441
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1007/s003660200028
https://doi.org/10.1007/978-3-642-23099-8_26
https://doi.org/10.1007/978-3-642-23099-8_26
https://doi.org/10.1007/978-3-642-23099-8_27
https://doi.org/10.1007/978-3-642-23099-8_27
https://doi.org/10.1007/s10444-012-9286-8
https://doi.org/10.1007/s10444-012-9286-8
https://doi.org/10.1016/j.finel.2014.11.002
https://doi.org/10.1016/j.finel.2014.11.002
https://doi.org/10.1016/j.cma.2016.08.024
https://doi.org/10.1016/j.cma.2016.08.024
https://doi.org/10.1016/j.euromechsol.2019.103874
https://doi.org/10.1007/s10237-021-01547-0
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1016/j.softx.2021.100807
https://doi.org/10.1016/j.softx.2021.100807
https://doi.org/10.1007/s10208-011-9087-3
https://doi.org/10.1007/s10208-011-9087-3
https://doi.org/10.1007/s00211-022-01274-3
https://doi.org/10.1016/B978-1-85617-634-7.00016-8
https://doi.org/10.1016/B978-1-85617-634-7.00016-8
https://doi.org/10.1016/j.compstruc.2010.02.007
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1098/rsta.2009.0091
https://doi.org/10.1016/j.euromechsol.2014.03.006
https://doi.org/10.1016/j.euromechsol.2014.03.006

	 Engineering with Computers

1 3

	109.	 Courtecuisse H, Allard J, Kerfriden P, Bordas S, Cotin S, Duriez
C (2013) Real-time simulation of contact and cutting of hetero-
geneous soft-tissues. Med Image Anal 18:394–410. https://​doi.​
org/​10.​1016/j.​media.​2013.​11.​001

	110.	 Korelc J (2022) AceGen/AceFEM website and user manuals.
http://​symech.​fgg.​uni-​lj.​si/ Accessed 20 Jun 2022

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.media.2013.11.001
https://doi.org/10.1016/j.media.2013.11.001
http://symech.fgg.uni-lj.si/

	Sonics: develop intuition on biomechanical systems through interactive error controlled simulations
	Abstract
	1 Introduction
	1.1 SOFA
	1.2 The modular mechanics plugin (Caribou)
	1.3 FEniCS

	2 SOniCS
	2.1 UFL: from FE model to Python code
	2.2 FFCx: from Python code to efficient C kernels
	2.3 Integration in SOniCS

	3 Numerical examples
	3.1 Manufactured solution
	3.2 Benchmark with SOFA
	3.3 Benchmark with FEBio

	4 Holzapfel and Ogden anisotropic material model coupled with haptic simulation
	5 Discussion
	6 Conclusion and outlook
	Anchor 18
	Acknowledgements
	References

