[en] Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
KISHK, Ali ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
PIRES PACHECO, Maria Irene ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
HEURTAUX, Tony ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
SINKKONEN, Lasse ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
PANG, Jun ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Fritah, Sabrina
NICLOU, Simone ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases.
Date de publication/diffusion :
2022
Titre du périodique :
Cells
eISSN :
2073-4409
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Suisse
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliographie
Institute for Health Metrics and Evaluation (IHME) GBDCompareDataVisualization. Seattle, WA: IHME, University of Washington 2016 Available online: Http://Vizhub.Healthdata.Org/Gbd-Compare (accessed on 28 February 2022)
Feigin V.L. Nichols E. Alam T. Bannick M.S. Beghi E. Blake N. Culpepper W.J. Dorsey E.R. Elbaz A. Ellenbogen R.G. et al. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016 Lancet Neurol. 2019 18 459 480 10.1016/S1474-4422(18)30499-X
Kelley A.S. McGarry K. Gorges R. Skinner J.S. The Burden of Health Care Costs in the Last 5 Years of Life Ann. Intern. Med. 2015 163 729 736 10.7326/M15-0381
Government’s Missed Opportunity on Research Funding Leaves Dementia Community Disappointed Available online: https://www.alzheimersresearchuk.org/blog/governments-missed-opportunity-on-research-funding-leaves-dementia-community-disappointed/ (accessed on 28 February 2022)
World Health Organization Fact Sheet Cancer Available online: Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Cancer (accessed on 1 May 2022)
Ostrom Q.T. Patil N. Cioffi G. Waite K. Kruchko C. Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017 Neuro-Oncol. 2020 22 iv1 iv96 10.1093/neuonc/noaa200
Tamimi A.F. Juweid M. Epidemiology and Outcome of Glioblastoma Glioblastoma De Vleeschouwer S. Codon Publications Brisbane, Australia 2017 978-0-9944381-2-6
Garcia J.H. Jain S. Aghi M.K. Metabolic Drivers of Invasion in Glioblastoma Front. Cell Dev. Biol. 2021 9 683276 10.3389/fcell.2021.683276
Louis D.N. Perry A. Wesseling P. Brat D.J. Cree I.A. Figarella-Branger D. Hawkins C. Ng H.K. Pfister S.M. Reifenberger G. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary Neuro-Oncol. 2021 23 1231 1251 10.1093/neuonc/noab106 34185076
Han S. Liu Y. Cai S.J. Qian M. Ding J. Larion M. Gilbert M.R. Yang C. IDH Mutation in Glioma: Molecular Mechanisms and Potential Therapeutic Targets Br. J. Cancer 2020 122 1580 1589 10.1038/s41416-020-0814-x 32291392
Martin-McGill K.J. Marson A.G. Tudur Smith C. Jenkinson M.D. The Modified Ketogenic Diet in Adults with Glioblastoma: An Evaluation of Feasibility and Deliverability within the National Health Service Nutr. Cancer 2018 70 643 649 10.1080/01635581.2018.1460677 29668317
Natarajan S.K. Venneti S. Glutamine Metabolism in Brain Tumors Cancers 2019 11 1628 10.3390/cancers11111628 31652923
Bao Z. Chen K. Krepel S. Tang P. Gong W. Zhang M. Liang W. Trivett A. Zhou M. Wang J.M. High Glucose Promotes Human Glioblastoma Cell Growth by Increasing the Expression and Function of Chemoattractant and Growth Factor Receptors Transl. Oncol. 2019 12 1155 1163 10.1016/j.tranon.2019.04.016
Yao P.-S. Kang D.-Z. Lin R.-Y. Ye B. Wang W. Ye Z.-C. Glutamate/Glutamine Metabolism Coupling between Astrocytes and Glioma Cells: Neuroprotection and Inhibition of Glioma Growth Biochem. Biophys. Res. Commun. 2014 450 295 299 10.1016/j.bbrc.2014.05.120
Duraj T. García-Romero N. Carrión-Navarro J. Madurga R. Ortiz de Mendivil A. Prat-Acin R. Garcia-Cañamaque L. Ayuso-Sacido A. Beyond the Warburg Effect: Oxidative and Glycolytic Phenotypes Coexist within the Metabolic Heterogeneity of Glioblastoma Cells 2021 10 202 10.3390/cells10020202
Stanke K.M. Wilson C. Kidambi S. High Expression of Glycolytic Genes in Clinical Glioblastoma Patients Correlates With Lower Survival Front. Mol. Biosci. 2021 8 752404 10.3389/fmolb.2021.752404
Qian Y. Ding P. Xu J. Nie X. Lu B. CCL2 Activates AKT Signaling to Promote Glycolysis and Chemoresistance in Glioma Cells Cell Biol. Int. 2022 46 819 828 10.1002/cbin.11778
Jin L. Zhou Y. Crucial Role of the Pentose Phosphate Pathway in Malignant Tumors Oncol. Lett. 2019 17 4213 4221 10.3892/ol.2019.10112
Garofano L. Migliozzi S. Oh Y.T. D’Angelo F. Najac R.D. Ko A. Frangaj B. Caruso F.P. Yu K. Yuan J. et al. Pathway-Based Classification of Glioblastoma Uncovers a Mitochondrial Subtype with Therapeutic Vulnerabilities Nat. Cancer 2021 2 141 156 10.1038/s43018-020-00159-4
Johung T. Monje M. Neuronal Activity in the Glioma Microenvironment Curr. Opin. Neurobiol. 2017 47 156 161 10.1016/j.conb.2017.10.009
Fack F. Tardito S. Hochart G. Oudin A. Zheng L. Fritah S. Golebiewska A. Nazarov P.V. Bernard A. Hau A. et al. Altered Metabolic Landscape in IDH-mutant Gliomas Affects Phospholipid, Energy, and Oxidative Stress Pathways EMBO Mol. Med. 2017 9 1681 1695 10.15252/emmm.201707729
Chiu M. Taurino G. Bianchi M.G. Ottaviani L. Andreoli R. Ciociola T. Lagrasta C.A.M. Tardito S. Bussolati O. Oligodendroglioma Cells Lack Glutamine Synthetase and Are Auxotrophic for Glutamine, but Do Not Depend on Glutamine Anaplerosis for Growth Int. J. Mol. Sci. 2018 19 1099 10.3390/ijms19041099
El-Habr E.A. Dubois L.G. Burel-Vandenbos F. Bogeas A. Lipecka J. Turchi L. Lejeune F.-X. Coehlo P.L.C. Yamaki T. Wittmann B.M. et al. A Driver Role for GABA Metabolism in Controlling Stem and Proliferative Cell State through GHB Production in Glioma Acta Neuropathol. 2017 133 645 660 10.1007/s00401-016-1659-5
Blanchart A. Fernando R. Häring M. Assaife-Lopes N. Romanov R.A. Andäng M. Harkany T. Ernfors P. Endogenous GABAA Receptor Activity Suppresses Glioma Growth Oncogene 2017 36 777 786 10.1038/onc.2016.245
Mulica P. Grünewald A. Pereira S.L. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective Front. Endocrinol. 2021 12 668517 10.3389/fendo.2021.668517 34025580
Taïb B. Aboussalah A.M. Moniruzzaman M. Chen S. Haughey N.J. Kim S.F. Ahima R.S. Lipid Accumulation and Oxidation in Glioblastoma Multiforme Sci. Rep. 2019 9 19593 10.1038/s41598-019-55985-z
Marin-Valencia I. Yang C. Mashimo T. Cho S. Baek H. Yang X.-L. Rajagopalan K.N. Maddie M. Vemireddy V. Zhao Z. et al. Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse, Human Glioblastomas in the Mouse Brain in Vivo Cell Metab. 2012 15 827 837 10.1016/j.cmet.2012.05.001
Peña-Bautista C. Vento M. Baquero M. Cháfer-Pericás C. Lipid Peroxidation in Neurodegeneration Clin. Chim. Acta 2019 497 178 188 10.1016/j.cca.2019.07.037
Virtuoso A. Giovannoni R. De Luca C. Gargano F. Cerasuolo M. Maggio N. Lavitrano M. Papa M. The Glioblastoma Microenvironment: Morphology, Metabolism, and Molecular Signature of Glial Dynamics to Discover Metabolic Rewiring Sequence Int. J. Mol. Sci. 2021 22 3301 10.3390/ijms22073301
Henrik Heiland D. Ravi V.M. Behringer S.P. Frenking J.H. Wurm J. Joseph K. Garrelfs N.W.C. Strähle J. Heynckes S. Grauvogel J. et al. Tumor-Associated Reactive Astrocytes Aid the Evolution of Immunosuppressive Environment in Glioblastoma Nat. Commun. 2019 10 2541 10.1038/s41467-019-10493-6
Ahmad F. Sun Q. Patel D. Stommel J.M. Cholesterol Metabolism: A Potential Therapeutic Target in Glioblastoma Cancers 2019 11 146 10.3390/cancers11020146 30691162
Dietschy J.M. Turley S.D. Thematic Review Series: Brain Lipids. Cholesterol Metabolism in the Central Nervous System during Early Development and in the Mature Animal J. Lipid Res. 2004 45 1375 1397 10.1194/jlr.R400004-JLR200
Qiu Z. Yuan W. Chen T. Zhou C. Liu C. Huang Y. Han D. Huang Q. HMGCR Positively Regulated the Growth and Migration of Glioblastoma Cells Gene 2016 576 22 27 10.1016/j.gene.2015.09.067
Kambach D.M. Halim A.S. Cauer A.G. Sun Q. Tristan C.A. Celiku O. Kesarwala A.H. Shankavaram U. Batchelor E. Stommel J.M. Disabled Cell Density Sensing Leads to Dysregulated Cholesterol Synthesis in Glioblastoma Oncotarget 2017 8 14860 14875 10.18632/oncotarget.14740
Wang X. Huang Z. Wu Q. Prager B.C. Mack S.C. Yang K. Kim L.J.Y. Gimple R.C. Shi Y. Lai S. et al. MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor Initiating Cells Cancer Res. 2017 77 4947 4960 10.1158/0008-5472.CAN-17-0114
Kim H.Y. Kim D.K. Bae S.-H. Gwak H. Jeon J.H. Kim J.K. Lee B.I. You H.J. Shin D.H. Kim Y.-H. et al. Farnesyl Diphosphate Synthase Is Important for the Maintenance of Glioblastoma Stemness Exp. Mol. Med. 2018 50 137 10.1038/s12276-018-0166-2
Pirmoradi L. Seyfizadeh N. Ghavami S. Zeki A.A. Shojaei S. Targeting Cholesterol Metabolism in Glioblastoma: A New Therapeutic Approach in Cancer Therapy J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2019 67 715 719 10.1136/jim-2018-000962 30765502
Villa G.R. Hulce J.J. Zanca C. Bi J. Ikegami S. Cahill G.L. Gu Y. Lum K.M. Masui K. Yang H. et al. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers Cancer Cell 2016 30 683 693 10.1016/j.ccell.2016.09.008 27746144
Yang R. Zhao Y. Gu Y. Yang Y. Gao X. Yuan Y. Xiao L. Zhang J. Sun C. Yang H. et al. Isocitrate Dehydrogenase 1 Mutation Enhances 24(S)-Hydroxycholesterol Production and Alters Cholesterol Homeostasis in Glioma Oncogene 2020 39 6340 6353 10.1038/s41388-020-01439-0
Juraszek B. Czarnecka-Herok J. Nałęcz K.A. Glioma Cells Survival Depends Both on Fatty Acid Oxidation and on Functional Carnitine Transport by SLC22A5 J. Neurochem. 2021 156 642 657 10.1111/jnc.15124
Kolar E.A. Shi X. Clay E.M. Moser A.B. Lal B. Nirujogi R.S. Pandey A. Bandaru V.V.R. Laterra J. Pei Z. et al. Very Long-Chain Acyl-CoA Synthetase 3 Mediates Onco-Sphingolipid Metabolism in Malignant Glioma Med. Res. Arch. 2021 9 2433 10.18103/mra.v9i5.2433
Nguyen T.T.T. Shang E. Shu C. Kim S. Mela A. Humala N. Mahajan A. Yang H.W. Akman H.O. Quinzii C.M. et al. Aurora Kinase A Inhibition Reverses the Warburg Effect and Elicits Unique Metabolic Vulnerabilities in Glioblastoma Nat. Commun. 2021 12 5203 10.1038/s41467-021-25501-x
Menna G. Mattogno P.P. Donzelli C.M. Lisi L. Olivi A. Della Pepa G.M. Glioma-Associated Microglia Characterization in the Glioblastoma Microenvironment through a ‘Seed-and Soil’ Approach: A Systematic Review Brain Sci. 2022 12 718 10.3390/brainsci12060718
Saab A.S. Tzvetanova I.D. Nave K.-A. The Role of Myelin and Oligodendrocytes in Axonal Energy Metabolism Curr. Opin. Neurobiol. 2013 23 1065 1072 10.1016/j.conb.2013.09.008
Kawashima T. Yashiro M. Kasashima H. Terakawa Y. Uda T. Nakajo K. Umaba R. Tanoue Y. Tamrakar S. Ohata K. Oligodendrocytes Up-Regulate the Invasive Activity of Glioblastoma Cells via the Angiopoietin-2 Signaling Pathway Anticancer Res. 2019 39 577 584 10.21873/anticanres.13150
Wolf S.A. Boddeke H.W.G.M. Kettenmann H. Microglia in Physiology and Disease Annu. Rev. Physiol. 2017 79 619 643 10.1146/annurev-physiol-022516-034406 27959620
Menassa D.A. Gomez-Nicola D. Microglial Dynamics During Human Brain Development Front. Immunol. 2018 9 1014 10.3389/fimmu.2018.01014
Lannes N. Eppler E. Etemad S. Yotovski P. Filgueira L. Microglia at Center Stage: A Comprehensive Review about the Versatile and Unique Residential Macrophages of the Central Nervous System Oncotarget 2017 8 114393 114413 10.18632/oncotarget.23106
Yin J. Valin K.L. Dixon M.L. Leavenworth J.W. The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer J. Immunol. Res. 2017 2017 5150678 10.1155/2017/5150678
Walker D.G. Lue L.-F. Immune Phenotypes of Microglia in Human Neurodegenerative Disease: Challenges to Detecting Microglial Polarization in Human Brains Alzheimers Res. Ther. 2015 7 56 10.1186/s13195-015-0139-9
Orihuela R. McPherson C.A. Harry G.J. Microglial M1/M2 Polarization and Metabolic States Br. J. Pharmacol. 2016 173 649 665 10.1111/bph.13139
Prosniak M. Harshyne L.A. Andrews D.W. Kenyon L.C. Bedelbaeva K. Apanasovich T.V. Heber-Katz E. Curtis M.T. Cotzia P. Hooper D.C. Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013 19 3776 3786 10.1158/1078-0432.CCR-12-1940 23741072
Martinez-Lage M. Lynch T.M. Bi Y. Cocito C. Way G.P. Pal S. Haller J. Yan R.E. Ziober A. Nguyen A. et al. Immune Landscapes Associated with Different Glioblastoma Molecular Subtypes Acta Neuropathol. Commun. 2019 7 203 10.1186/s40478-019-0803-6 31815646
Sielska M. Przanowski P. Wylot B. Gabrusiewicz K. Maleszewska M. Kijewska M. Zawadzka M. Kucharska J. Vinnakota K. Kettenmann H. et al. Distinct Roles of CSF Family Cytokines in Macrophage Infiltration and Activation in Glioma Progression and Injury Response J. Pathol. 2013 230 310 321 10.1002/path.4192
Kumar V. Sami N. Kashav T. Islam A. Ahmad F. Hassan M.I. Protein Aggregation and Neurodegenerative Diseases: From Theory to Therapy Eur. J. Med. Chem. 2016 124 1105 1120 10.1016/j.ejmech.2016.07.054
Grimm S. Hoehn A. Davies K.J. Grune T. Protein Oxidative Modifications in the Aging Brain: Consequence for the Onset of Neurodegenerative Disease Free Radic. Res. 2011 45 73 88 10.3109/10715762.2010.512040 20815785
Spires-Jones T.L. Attems J. Thal D.R. Interactions of Pathological Proteins in Neurodegenerative Diseases Acta Neuropathol. 2017 134 187 205 10.1007/s00401-017-1709-7
Cooper M.L. Pasini S. Lambert W.S. D’Alessandro K.B. Yao V. Risner M.L. Calkins D.J. Redistribution of Metabolic Resources through Astrocyte Networks Mitigates Neurodegenerative Stress Proc. Natl. Acad. Sci. USA 2020 117 18810 18821 10.1073/pnas.2009425117 32690710
Phatnani H. Maniatis T. Astrocytes in Neurodegenerative Disease Cold Spring Harb. Perspect. Biol. 2015 7 a020628 10.1101/cshperspect.a020628 25877220
Duncan G.J. Simkins T.J. Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons Front. Cell Dev. Biol. 2021 9 653101 10.3389/fcell.2021.653101
Hickman S. Izzy S. Sen P. Morsett L. Khoury J.E. Microglia in Neurodegeneration Nat. Neurosci. 2018 21 1359 1369 10.1038/s41593-018-0242-x
Janda E. Boi L. Carta A.R. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease? Front. Mol. Neurosci. 2018 11 144 10.3389/fnmol.2018.00144
Song G.J. Suk K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases Front. Aging Neurosci. 2017 9 139 10.3389/fnagi.2017.00139
Zhang B. Wei Y.-Z. Wang G.-Q. Li D.-D. Shi J.-S. Zhang F. Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures Front. Cell. Neurosci. 2019 12 531 10.3389/fncel.2018.00531
Han R. Liang J. Zhou B. Glucose Metabolic Dysfunction in Neurodegenerative Diseases—New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming Int. J. Mol. Sci. 2021 22 5887 10.3390/ijms22115887
de Oliveira L.G. de Angelo Y.S. Iglesias A.H. Peron J.P.S. Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation Front. Immunol. 2021 12 624919 10.3389/fimmu.2021.624919 33796100
Bourgognon J.-M. Steinert J.R. The Metabolome Identity: Basis for Discovery of Biomarkers in Neurodegeneration Neural Regen. Res. 2019 14 387 390 10.4103/1673-5374.245464
Pacheco M.P. Bintener T. Ternes D. Kulms D. Haan S. Letellier E. Sauter T. Identifying and Targeting Cancer-Specific Metabolism with Network-Based Drug Target Prediction EBioMedicine 2019 43 98 106 10.1016/j.ebiom.2019.04.046 31126892
Turanli B. Zhang C. Kim W. Benfeitas R. Uhlen M. Arga K.Y. Mardinoglu A. Discovery of Therapeutic Agents for Prostate Cancer Using Genome-Scale Metabolic Modeling and Drug Repositioning EBioMedicine 2019 42 386 396 10.1016/j.ebiom.2019.03.009 30905848
Hertel J. Harms A.C. Heinken A. Baldini F. Thinnes C.C. Glaab E. Vasco D.A. Pietzner M. Stewart I.D. Wareham N.J. et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease Cell Rep. 2019 29 1767 1777.e8 10.1016/j.celrep.2019.10.035
Baldini F. Hertel J. Sandt E. Thinnes C.C. Neuberger-Castillo L. Pavelka L. Betsou F. Krüger R. Thiele I. Parkinson’s Disease-Associated Alterations of the Gut Microbiome Predict Disease-Relevant Changes in Metabolic Functions BMC Biol. 2020 18 62 10.1186/s12915-020-00775-7 32517799
Bayraktar A. Lam S. Altay O. Li X. Yuan M. Zhang C. Arif M. Turkez H. Uhlén M. Shoaie S. et al. Revealing the Molecular Mechanisms of Alzheimer’s Disease Based on Network Analysis Int. J. Mol. Sci. 2021 22 11556 10.3390/ijms222111556 34768988
Abdik E. Çakır T. Systematic Investigation of Mouse Models of Parkinson’s Disease by Transcriptome Mapping on a Brain-Specific Genome-Scale Metabolic Network Mol. Omics 2021 17 492 502 10.1039/D0MO00135J
Sweeney M.D. Zhao Z. Montagne A. Nelson A.R. Zlokovic B.V. Blood-Brain Barrier: From Physiology to Disease and Back Physiol. Rev. 2019 99 21 78 10.1152/physrev.00050.2017
Pan Y. Nicolazzo J.A. Impact of Aging, Alzheimer’s Disease and Parkinson’s Disease on the Blood-Brain Barrier Transport of Therapeutics Adv. Drug Deliv. Rev. 2018 135 62 74 10.1016/j.addr.2018.04.009 29665383
Rich L.R. Harris W. Brown A.M. The Role of Brain Glycogen in Supporting Physiological Function Front. Neurosci. 2019 13 1176 10.3389/fnins.2019.01176 31749677
Magistretti P.J. Allaman I. Lactate in the Brain: From Metabolic End-Product to Signalling Molecule Nat. Rev. Neurosci. 2018 19 235 249 10.1038/nrn.2018.19
Vlassis N. Pacheco M.P. Sauter T. Fast Reconstruction of Compact Context-Specific Metabolic Network Models PLoS Comput. Biol. 2014 10 e1003424 10.1371/journal.pcbi.1003424 24453953
Pacheco M.P. John E. Kaoma T. Heinäniemi M. Nicot N. Vallar L. Bueb J.-L. Sinkkonen L. Sauter T. Integrated Metabolic Modelling Reveals Cell-Type Specific Epigenetic Control Points of the Macrophage Metabolic Network BMC Genomics 2015 16 809 10.1186/s12864-015-1984-4 26480823
Becker S.A. Palsson B.O. Context-Specific Metabolic Networks Are Consistent with Experiments PLoS Comput. Biol. 2008 4 e1000082 10.1371/journal.pcbi.1000082 18483554
Wang Y. Eddy J.A. Price N.D. Reconstruction of Genome-Scale Metabolic Models for 126 Human Tissues Using MCADRE BMC Syst. Biol. 2012 6 153 10.1186/1752-0509-6-153
Yizhak K. Gaude E. Le Dévédec S. Waldman Y.Y. Stein G.Y. van de Water B. Frezza C. Ruppin E. Phenotype-Based Cell-Specific Metabolic Modeling Reveals Metabolic Liabilities of Cancer eLife 2014 3 e03641 10.7554/eLife.03641
Zur H. Ruppin E. Shlomi T. IMAT: An Integrative Metabolic Analysis Tool Bioinforma. Oxf. Engl. 2010 26 3140 3142 10.1093/bioinformatics/btq602
Robaina Estévez S. Nikoloski Z. Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization PLoS ONE 2015 10 e0131875 10.1371/journal.pone.0131875
Agren R. Mardinoglu A. Asplund A. Kampf C. Uhlen M. Nielsen J. Identification of Anticancer Drugs for Hepatocellular Carcinoma through Personalized Genome-scale Metabolic Modeling Mol. Syst. Biol. 2014 10 721 10.1002/msb.145122
Jolivet R. Allaman I. Pellerin L. Magistretti P.J. Weber B. Comment on Recent Modeling Studies of Astrocyte–Neuron Metabolic Interactions J. Cereb. Blood Flow Metab. 2010 30 1982 1986 10.1038/jcbfm.2010.132
Heirendt L. Arreckx S. Pfau T. Mendoza S.N. Richelle A. Heinken A. Haraldsdóttir H.S. Wachowiak J. Keating S.M. Vlasov V. et al. Creation and Analysis of Biochemical Constraint-Based Models Using the COBRA Toolbox v.3.0 Nat. Protoc. 2019 14 639 702 10.1038/s41596-018-0098-2 30787451
Sjöstedt E. Zhong W. Fagerberg L. Karlsson M. Mitsios N. Adori C. Oksvold P. Edfors F. Limiszewska A. Hikmet F. et al. An Atlas of the Protein-Coding Genes in the Human, Pig, and Mouse Brain Science 2020 367 eaay5947 10.1126/science.aay5947
Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. et al. Proteomics. Tissue-Based Map of the Human Proteome Science 2015 347 1260419 10.1126/science.1260419
Lewis N.E. Schramm G. Bordbar A. Schellenberger J. Andersen M.P. Cheng J.K. Patel N. Yee A. Lewis R.A. Eils R. et al. Formulating Multicellular Models of Metabolism in Tissues: Application to Energy Metabolism in the Human Brain Nat. Biotechnol. 2010 28 1279 1285 10.1038/nbt.1711
Duarte N.C. Becker S.A. Jamshidi N. Thiele I. Mo M.L. Vo T.D. Srivas R. Palsson B.Ø. Global Reconstruction of the Human Metabolic Network Based on Genomic and Bibliomic Data Proc. Natl. Acad. Sci. USA 2007 104 1777 1782 10.1073/pnas.0610772104
Sertbaş M. Ülgen K. Çakır T. Systematic Analysis of Transcription-Level Effects of Neurodegenerative Diseases on Human Brain Metabolism by a Newly Reconstructed Brain-Specific Metabolic Network FEBS Open Bio 2014 4 542 553 10.1016/j.fob.2014.05.006 25061554
Özcan E. Çakır T. Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma Front. Neurosci. 2016 10 156 10.3389/fnins.2016.00156
Martín-Jiménez C.A. Salazar-Barreto D. Barreto G.E. González J. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network Front. Aging Neurosci. 2017 9 23 10.3389/fnagi.2017.00023
Pornputtapong N. Nookaew I. Nielsen J. Human Metabolic Atlas: An Online Resource for Human Metabolism Database 2015 2015 10.1093/database/bav068 26209309
Thiele I. Sahoo S. Heinken A. Hertel J. Heirendt L. Aurich M.K. Fleming R.M. Personalized Whole-body Models Integrate Metabolism, Physiology, and the Gut Microbiome Mol. Syst. Biol. 2020 16 e8982 10.15252/msb.20198982 32463598
Brunk E. Sahoo S. Zielinski D.C. Altunkaya A. Dräger A. Mih N. Gatto F. Nilsson A. Preciat Gonzalez G.A. Aurich M.K. et al. Recon3D Enables a Three-Dimensional View of Gene Variation in Human Metabolism Nat. Biotechnol. 2018 36 272 281 10.1038/nbt.4072 29457794
Wishart D.S. Feunang Y.D. Marcu A. Guo A.C. Liang K. Vázquez-Fresno R. Sajed T. Johnson D. Li C. Karu N. et al. HMDB 4.0: The Human Metabolome Database for 2018 Nucleic Acids Res. 2018 46 D608 D617 10.1093/nar/gkx1089 29140435
Baloni P. Funk C.C. Yan J. Yurkovich J.T. Kueider-Paisley A. Nho K. Heinken A. Jia W. Mahmoudiandehkordi S. Louie G. et al. Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease Cell Rep. Med. 2020 1 100138 10.1016/j.xcrm.2020.100138 33294859
Echeverri-Peña O.Y. Salazar-Barreto D.A. Rodríguez-Lopez A. González J. Alméciga-Díaz C.J. Verano-Guevara C.H. Barrera L.A. Use of a Neuron-Glia Genome-Scale Metabolic Reconstruction to Model the Metabolic Consequences of the Arylsulphatase a Deficiency through a Systems Biology Approach Heliyon 2021 7 e07671 10.1016/j.heliyon.2021.e07671 34381909
Thiele I. Swainston N. Fleming R.M.T. Hoppe A. Sahoo S. Aurich M.K. Haraldsdottir H. Mo M.L. Rolfsson O. Stobbe M.D. et al. A Community-Driven Global Reconstruction of Human Metabolism Nat. Biotechnol. 2013 31 419 425 10.1038/nbt.2488 23455439
Shlomi T. Cabili M.N. Herrgård M.J. Palsson B.Ø. Ruppin E. Network-Based Prediction of Human Tissue-Specific Metabolism Nat. Biotechnol. 2008 26 1003 1010 10.1038/nbt.1487
Lam S. Hartmann N. Benfeitas R. Zhang C. Arif M. Turkez H. Uhlén M. Englert C. Knight R. Mardinoglu A. Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer’s and Parkinson’s Diseases Biomedicines 2021 9 1310 10.3390/biomedicines9101310
Wang H. Marcišauskas S. Sánchez B.J. Domenzain I. Hermansson D. Agren R. Nielsen J. Kerkhoven E.J. RAVEN 2.0: A Versatile Toolbox for Metabolic Network Reconstruction and a Case Study on Streptomyces Coelicolor PLoS Comput. Biol. 2018 14 e1006541 10.1371/journal.pcbi.1006541 30335785
Mardinoglu A. Agren R. Kampf C. Asplund A. Nookaew I. Jacobson P. Walley A.J. Froguel P. Carlsson L.M. Uhlen M. et al. Integration of Clinical Data with a Genome-Scale Metabolic Model of the Human Adipocyte Mol. Syst. Biol. 2013 9 649 10.1038/msb.2013.5 23511207
Mardinoglu A. Agren R. Kampf C. Asplund A. Uhlen M. Nielsen J. Genome-Scale Metabolic Modelling of Hepatocytes Reveals Serine Deficiency in Patients with Non-Alcoholic Fatty Liver Disease Nat. Commun. 2014 5 3083 10.1038/ncomms4083 24419221
Larsson I. Uhlén M. Zhang C. Mardinoglu A. Genome-Scale Metabolic Modeling of Glioblastoma Reveals Promising Targets for Drug Development Front. Genet. 2020 11 381 10.3389/fgene.2020.00381 32362913
Uhlen M. Zhang C. Lee S. Sjöstedt E. Fagerberg L. Bidkhori G. Benfeitas R. Arif M. Liu Z. Edfors F. et al. A Pathology Atlas of the Human Cancer Transcriptome Science 2017 357 eaan2507 10.1126/science.aan2507
Brennan C.W. Verhaak R.G.W. McKenna A. Campos B. Noushmehr H. Salama S.R. Zheng S. Chakravarty D. Sanborn J.Z. Berman S.H. et al. The Somatic Genomic Landscape of Glioblastoma Cell 2013 155 462 477 10.1016/j.cell.2013.09.034
Zhang C. Ji B. Mardinoglu A. Nielsen J. Hua Q. Logical Transformation of Genome-Scale Metabolic Models for Gene Level Applications and Analysis Bioinform. Oxf. Engl. 2015 31 2324 2331 10.1093/bioinformatics/btv134
Keshava Prasad T.S. Goel R. Kandasamy K. Keerthikumar S. Kumar S. Mathivanan S. Telikicherla D. Raju R. Shafreen B. Venugopal A. et al. Human Protein Reference Database—2009 Update Nucleic Acids Res. 2009 37 D767 D772 10.1093/nar/gkn892
Fujii Y. Imanishi T. Gojobori T. H-Invitational Database: Integrated database of human genes Tanpakushitsu Kakusan Koso 2004 49 1937 1943
Reidegeld K.A. Müller M. Stephan C. Blüggel M. Hamacher M. Martens L. Körting G. Chamrad D.C. Parkinson D. Apweiler R. et al. The Power of Cooperative Investigation: Summary and Comparison of the HUPO Brain Proteome Project Pilot Study Results Proteomics 2006 6 4997 5014 10.1002/pmic.200600305
Çakιr T. Alsan S. Saybaşιlι H. Akιn A. Ülgen K.Ö. Reconstruction and Flux Analysis of Coupling between Metabolic Pathways of Astrocytes and Neurons: Application to Cerebral Hypoxia Theor. Biol. Med. Model. 2007 4 48 10.1186/1742-4682-4-48 18070347
Kim M.-S. Pinto S.M. Getnet D. Nirujogi R.S. Manda S.S. Chaerkady R. Madugundu A.K. Kelkar D.S. Isserlin R. Jain S. et al. A Draft Map of the Human Proteome Nature 2014 509 575 581 10.1038/nature13302 24870542
Ardlie K.G. DeLuca D.S. Segrè A.V. Sullivan T.J. Young T.R. Gelfand E.T. Trowbridge C.A. Maller J.B. Tukiainen T. Lek M. et al. The Genotype-Tissue Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Humans Science 2015 348 648 660 10.1126/science.1262110
Lizio M. Abugessaisa I. Noguchi S. Kondo A. Hasegawa A. Hon C.C. de Hoon M. Severin J. Oki S. Hayashizaki Y. et al. Update of the FANTOM Web Resource: Expansion to Provide Additional Transcriptome Atlases Nucleic Acids Res. 2019 47 D752 D758 10.1093/nar/gky1099
Rajkumar A.P. Bidkhori G. Shoaie S. Clarke E. Morrin H. Hye A. Williams G. Ballard C. Francis P. Aarsland D. Postmortem Cortical Transcriptomics of Lewy Body Dementia Reveal Mitochondrial Dysfunction and Lack of Neuroinflammation Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2020 28 75 86 10.1016/j.jagp.2019.06.007
Zhang Y. James M. Middleton F.A. Davis R.L. Transcriptional Analysis of Multiple Brain Regions in Parkinson’s Disease Supports the Involvement of Specific Protein Processing, Energy Metabolism, and Signaling Pathways, and Suggests Novel Disease Mechanisms Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2005 137B 5 16 10.1002/ajmg.b.30195
Zheng B. Liao Z. Locascio J.J. Lesniak K.A. Roderick S.S. Watt M.L. Eklund A.C. Zhang-James Y. Kim P.D. Hauser M.A. et al. PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease Sci. Transl. Med. 2010 2 52ra73 10.1126/scitranslmed.3001059
Mostafavi S. Gaiteri C. Sullivan S.E. White C.C. Tasaki S. Xu J. Taga M. Klein H.-U. Patrick E. Komashko V. et al. A Molecular Network of the Aging Human Brain Provides Insights into the Pathology and Cognitive Decline of Alzheimer’s Disease Nat. Neurosci. 2018 21 811 819 10.1038/s41593-018-0154-9
Meyers R.M. Bryan J.G. McFarland J.M. Weir B.A. Sizemore A.E. Xu H. Dharia N.V. Montgomery P.G. Cowley G.S. Pantel S. et al. Computational Correction of Copy-Number Effect Improves Specificity of CRISPR-Cas9 Essentiality Screens in Cancer Cells Nat. Genet. 2017 49 1779 1784 10.1038/ng.3984
Pirahanchi Y. Jessu R. Aeddula N.R. Physiology, Sodium Potassium Pump StatPearls StatPearls Publishing Tampa, FL, USA 2022
Baumeister R. Murphy C.T. Heimbucher T. Metabolic Adaptation to Hypoxia: Do Worms and Cancer Cells Share Common Metabolic Responses to Hypoxic Stress? Cell Death Differ. 2021 28 1434 1436 10.1038/s41418-021-00741-y
Favaro E. Bensaad K. Chong M.G. Tennant D.A. Ferguson D.J.P. Snell C. Steers G. Turley H. Li J.-L. Günther U.L. et al. Glucose Utilization via Glycogen Phosphorylase Sustains Proliferation and Prevents Premature Senescence in Cancer Cells Cell Metab. 2012 16 751 764 10.1016/j.cmet.2012.10.017 23177934
Fu Y. Bu G. Kanekiyo T. Zhao J. Counteracting Alzheimer’s Disease via Somatic TERT Activation Nat. Aging 2021 1 1081 1082 10.1038/s43587-021-00145-0
Pfau T. Pacheco M.P. Sauter T. Towards Improved Genome-Scale Metabolic Network Reconstructions: Unification, Transcript Specificity and Beyond Brief. Bioinform. 2016 17 1060 1069 10.1093/bib/bbv100 26615025
Pham N. van Heck R.G.A. van Dam J.C.J. Schaap P.J. Saccenti E. Suarez-Diez M. Consistency, Inconsistency, and Ambiguity of Metabolite Names in Biochemical Databases Used for Genome-Scale Metabolic Modelling Metabolites 2019 9 28 10.3390/metabo9020028 30736318
Opdam S. Richelle A. Kellman B. Li S. Zielinski D.C. Lewis N.E. A Systematic Evaluation of Methods for Tailoring Genome-Scale Metabolic Models Cell Syst. 2017 4 318 329.e6 10.1016/j.cels.2017.01.010 28215528
Lieven C. Beber M.E. Olivier B.G. Bergmann F.T. Ataman M. Babaei P. Bartell J.A. Blank L.M. Chauhan S. Correia K. et al. MEMOTE for Standardized Genome-Scale Metabolic Model Testing Nat. Biotechnol. 2020 38 272 276 10.1038/s41587-020-0446-y 32123384
Robinson J.L. Kocabaş P. Wang H. Cholley P.-E. Cook D. Nilsson A. Anton M. Ferreira R. Domenzain I. Billa V. et al. An Atlas of Human Metabolism Sci. Signal. 2020 13 eaaz1482 10.1126/scisignal.aaz1482
Pacheco M.P. Pfau T. Sauter T. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms Front. Physiol. 2016 6 410 10.3389/fphys.2015.00410
Ryu J.Y. Kim H.U. Lee S.Y. Framework and Resource for More than 11,000 Gene-Transcript-Protein-Reaction Associations in Human Metabolism Proc. Natl. Acad. Sci. USA 2017 114 E9740 E9749 10.1073/pnas.1713050114
Feng S. Liu Y. Metabolomics of Glioma Cancer Metabolomics: Methods and Applications Hu S. Advances in Experimental Medicine and Biology Springer Berlin/Heidelberg, Germany Cham, Switzerland 2021 261 276 978-3-030-51652-9
Belykh E. Shaffer K.V. Lin C. Byvaltsev V.A. Preul M.C. Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors Front. Oncol. 2020 10 739 10.3389/fonc.2020.00739
Yan J. Kuzhiumparambil U. Bandodkar S. Dale R.C. Fu S. Cerebrospinal Fluid Metabolomics: Detection of Neuroinflammation in Human Central Nervous System Disease Clin. Transl. Immunol. 2021 10 e1318 10.1002/cti2.1318 34386234
Jain M. Nilsson R. Sharma S. Madhusudhan N. Kitami T. Souza A.L. Kafri R. Kirschner M.W. Clish C.B. Mootha V.K. Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation Science 2012 336 1040 1044 10.1126/science.1218595 22628656
Zielinski D.C. Jamshidi N. Corbett A.J. Bordbar A. Thomas A. Palsson B.O. Systems Biology Analysis of Drivers Underlying Hallmarks of Cancer Cell Metabolism Sci. Rep. 2017 7 41241 10.1038/srep41241 28120890
Turner D.A. Adamson D.C. Neuronal-Astrocyte Metabolic Interactions: Understanding the Transition into Abnormal Astrocytoma Metabolism J. Neuropathol. Exp. Neurol. 2011 70 167 176 10.1097/NEN.0b013e31820e1152 21293295
Bordbar A. Mo M.L. Nakayasu E.S. Schrimpe-Rutledge A.C. Kim Y.M. Metz T.O. Jones M.B. Frank B.C. Smith R.D. Peterson S.N. et al. Model-Driven Multi-Omic Data Analysis Elucidates Metabolic Immunomodulators of Macrophage Activation Mol. Syst. Biol. 2012 8 558 10.1038/msb.2012.21
Qiu R. Zhong Y. Li Q. Li Y. Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors Front. Cell Dev. Biol. 2021 9 693215 10.3389/fcell.2021.693215
Leone R.D. Powell J.D. Metabolism of Immune Cells in Cancer Nat. Rev. Cancer 2020 20 516 531 10.1038/s41568-020-0273-y
Moustafa A.A. Phillips J. Kéri S. Misiak B. Frydecka D. On the Complexity of Brain Disorders: A Symptom-Based Approach Front. Comput. Neurosci. 2016 10 16 10.3389/fncom.2016.00016
Seidlitz J. Nadig A. Liu S. Bethlehem R.A.I. Vértes P.E. Morgan S.E. Váša F. Romero-Garcia R. Lalonde F.M. Clasen L.S. et al. Transcriptomic and Cellular Decoding of Regional Brain Vulnerability to Neurogenetic Disorders Nat. Commun. 2020 11 3358 10.1038/s41467-020-17051-5
Bordbar A. Feist A.M. Usaite-Black R. Woodcock J. Palsson B.O. Famili I. A Multi-Tissue Type Genome-Scale Metabolic Network for Analysis of Whole-Body Systems Physiology BMC Syst. Biol. 2011 5 180 10.1186/1752-0509-5-180
Puchalski R.B. Shah N. Miller J. Dalley R. Nomura S.R. Yoon J.-G. Smith K.A. Lankerovich M. Bertagnolli D. Bickley K. et al. An Anatomic Transcriptional Atlas of Human Glioblastoma Science 2018 360 660 663 10.1126/science.aaf2666 29748285
Lam K.H.B. Leon A.J. Hui W. Lee S.C.-E. Batruch I. Faust K. Klekner A. Hutóczki G. Koritzinsky M. Richer M. et al. Topographic Mapping of the Glioblastoma Proteome Reveals a Triple-Axis Model of Intra-Tumoral Heterogeneity Nat. Commun. 2022 13 116 10.1038/s41467-021-27667-w 35013227