AURICH, D.* , SCHYMANSKI, E.* , de Jesus Matias, F., Thiessen, P. A., & PANG, J. (2024). Revealing Chemical Trends: Insights from Data-Driven Visualization and Patent Analysis in Exposomics Research. Environmental Science and Technology Letters. doi:10.1021/acs.estlett.4c00560 Peer reviewed * These authors have contributed equally to this work. |
AURICH, D., SCHYMANSKI, E., DE JESUS MATIAS, F., Thiessen, P., & PANG, J. (2024). Revealing Chemical Trends: Insights from Data-Driven Visualisation and Patent Analysis in Exposomics Research. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/61595. doi:10.26434/chemrxiv-2024-6jkxv |
Wang, K., Cheng, Y., Tong, M. W., Niu, Z., PANG, J., & Han, W. (2024). Exploring Unconfirmed Transactions for Effective Bitcoin Address Clustering. In Proceedings of the ACM Web Conference 2024 (pp. 1880-1891). ACM. doi:10.1145/3589334.3645684 Peer reviewed |
Cheng, Y.-W., Zhong, Z., PANG, J., & Li, C.-T. (May 2024). Hierarchical Bipartite Graph Convolutional Network for Recommendation. IEEE Computational Intelligence Magazine, 19 (2), 49-60. doi:10.1109/mci.2024.3363973 Peer reviewed |
Mo, X., PANG, J., & Liu, Z. (15 April 2024). Deep autoencoder architecture with outliers for temporal attributed network embedding. Expert Systems with Applications, 240, 122596. doi:10.1016/j.eswa.2023.122596 Peer Reviewed verified by ORBi |
WANG, A., & PANG, J. (2024). Structural Inference with Dynamics Encoding and Partial Correlation Coefficients. In Proceedings of the 12th International Conference on Learning Representations (ICLR'24). OpenReview.net. Peer reviewed |
Li, Y., Zhan, B., & PANG, J. (April 2024). Mechanizing the CMP Abstraction for Parameterized Verification. Proceedings of the ACM on Programming Languages, 8 (OOPSLA), 141:1-141:27. doi:10.1145/3649858 Peer Reviewed verified by ORBi |
CHEN, N., CHEN, X., ZHONG, Z., & PANG, J. (05 January 2024). Bridging Performance of X (formerly known as Twitter) Users: A Predictor of Subjective Well-Being During the Pandemic. ACM Transactions on the Web, 18 (1), 1-23. doi:10.1145/3635033 Peer Reviewed verified by ORBi |
CHEN, N., CHEN, X., ZHONG, Z., & PANG, J. (2024). A tale of two roles: exploring topic-specific susceptibility and influence in cascade prediction. Data Mining and Knowledge Discovery, 38 (1), 79 - 109. doi:10.1007/s10618-023-00953-5 Peer Reviewed verified by ORBi |
Wu, G., & PANG, J. (2023). Single-experiment reconstructibility of Boolean control networks revisited. In Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics (Volume 2) (pp. 85-93). SCITEPRESS. doi:10.5220/0012161100003543 Peer reviewed |
PANG, J., & Niehren, J. (Eds.). (2023). Proceedings of 21st International Conference on Computational Methods in Systems Biology. Springer-Verlag. doi:10.1007/978-3-031-42697-1 Peer reviewed |
Mu, C., & PANG, J. (2023). On Observability Analysis in Multiagent Systems. In Proceedings of the 26th European Conference on Artificial Intelligence (ECAI'23). IOS Press. doi:10.3233/faia230461 Peer reviewed |
Shi, C., Zhu, T., Zhang, T., PANG, J., & Pan, M. (2023). Structural-semantics Guided Program Simplification for Understanding Neural Code Intelligence Models. In Proceedings of the 14th Asia-Pacific Symposium on Internetware. ACM. doi:10.1145/3609437.3609438 Peer reviewed |
Waghorne, J., Howard, C., HU, H., PANG, J., Peveler, W., Harris, L., & Barrera, O. (May 2023). The applicability of transperceptual and deep learning approaches to the study and mimicry of complex cartilaginous tissues. Frontiers in Materials, 10. doi:10.3389/fmats.2023.1092647 Peer Reviewed verified by ORBi |
CHEN, N., CHEN, X., ZHONG, Z., & PANG, J. (2023). The Burden of Being a Bridge: Analysing Subjective Well-Being of Twitter Users During the COVID-19 Pandemic [Paper presentation]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, France. doi:10.1007/978-3-031-26390-3_15 Peer reviewed |
Su, C., & PANG, J. (January 2023). Target Control of Asynchronous Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20 (1), 707-719. doi:10.1109/TCBB.2021.3133608 Peer Reviewed verified by ORBi |
Zhong, Z., Li, C.-T., & PANG, J. (2023). Hierarchical message-passing graph neural networks. Data Mining and Knowledge Discovery, 37, 381-408. doi:10.1007/s10618-022-00890-9 Peer Reviewed verified by ORBi |
Zhong, Z., Li, C.-T., & PANG, J. (2023). Multi-grained semantics-aware graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 35 (7), 7251-7262. doi:10.1109/TKDE.2022.3195004 Peer Reviewed verified by ORBi |
Hu, G., & PANG, J. (2023). Relation-aware weighted embedding for heterogeneous graphs. Information Technology and Control, 52 (1), 199-214. doi:10.5755/j01.itc.52.1.32390 Peer reviewed |
HU, H., & PANG, J. (2023). Loss and Likelihood Based Membership Inference of Diffusion Models. In Proceedings of the 26th Information Security Conference (ISC'23) (pp. 121-141). Springer Nature Switzerland. doi:10.1007/978-3-031-49187-0_7 Peer reviewed |
WANG, A., TONG, T. P., & PANG, J. (2023). Effective and Efficient Structural Inference with Reservoir Computing. In Proceedings of the 40th International Conference on Machine Learning (ICML'23) (pp. 36391-36410). PMLR. Peer reviewed |
BALOGLU, S., BURSUC, S., MAUW, S., & PANG, J. (2023). Election Verifiability in Receipt-Free Voting Protocols. In Proceedings of the 36th Computer Security Foundations Symposium (CSF 2023) (pp. 59-74). IEEE Computer Society. doi:10.1109/CSF57540.2023.00005 Peer reviewed |
WANG, A., & PANG, J. (2023). Active Learning based Structural Inference. In Proceedings of the 40th International Conference on Machine Learning (ICML'23) (pp. 36224-36245). PMLR. Peer reviewed |
Zhong, Z., Gonzalez, G., Grattarola, D., & PANG, J. (2022). Unsupervised network embedding beyond homophily. Transactions on Machine Learning Research. Peer reviewed |
CHEN, N., CHEN, X., PANG, J., BORGA, L., d'Ambrosio, C., & Vögele, C. (2022). Measuring COVID-19 Vaccine Hesitancy: Consistency of Social Media with Surveys. Proceedings of the 2022 International Conference on Social Informatics, 196–210. doi:10.1007/978-3-031-19097-1_12 Peer reviewed |
Zhong, Z., Ivanov, S., & PANG, J. (2022). Simplifying Node Classification on Heterophilous Graphs with Compatible Label Propagation. Transactions on Machine Learning Research. Peer reviewed |
CHEN, N., CHEN, X., & PANG, J. (October 2022). A multilingual dataset of COVID-19 vaccination attitudes on Twitter. Data in Brief, 44, 108503. doi:10.1016/j.dib.2022.108503 Peer Reviewed verified by ORBi |
Wang, K., PANG, J., Chen, D., Zhao, Y., Huang, D., Chen, C., & Han, W. (May 2022). A Large-scale Empirical Analysis of Ransomware Activities in Bitcoin. ACM Transactions on the Web, 16 (2), 1-29. doi:10.1145/3494557 Peer reviewed |
Zhang, C., & PANG, J. (March 2022). Modal characterisation of simulation relations in probabilistic concurrent games. Science of Computer Programming, 215, 102762. doi:10.1016/j.scico.2021.102762 Peer reviewed |
Mo, X., PANG, J., & Liu, Z. (February 2022). THS-GWNN: a deep learning framework for temporal network link prediction. Frontiers of Computer Science, 16 (2), 162304. doi:10.1007/s11704-020-0092-z Peer reviewed |
Li, G., Zhu, F., PANG, J., Zhang, T., Pan, M., & Li, X. (2022). Functional scenario classification for Android applications using GNNs. In Proceedings of the 13th Asia-Pacific Symposium on Internetware (pp. 1-9). ACM. doi:10.1145/3545258.3545270 Peer reviewed |
Hu, G., PANG, J., & Mo, X. (2022). Effective attributed network embedding with information behavior extraction. PeerJ Computer Science, 8, 1030. doi:10.7717/peerj-cs.1030 Peer Reviewed verified by ORBi |
Mei, H., Lv, J., Jin, Z., Li, X., Gao, G., PANG, J., Bu, L., & Li, G. (Eds.). (2022). Proceedings of the 13th Asia-Pacific Symposium on Internetware. ACM. |
Zhong, Z., Li, C.-T., & PANG, J. (2022). Personalised meta-path generation for heterogeneous graph neural networks. Data Mining and Knowledge Discovery, 36 (6), 2299-2333. doi:10.1007/s10618-022-00862-z Peer Reviewed verified by ORBi |
WANG, A., & PANG, J. (2022). Iterative structural inference of directed graphs. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS'22). Peer reviewed |
ZEYEN, O. G. R., & PANG, J. (2022). Target Control of Boolean Networks with Permanent Edgetic Perturbations. In Proceedings of the 61st International Conference on Decision and Control (CDC 2022) (pp. 4236-4243). IEEE. doi:10.1109/CDC51059.2022.9992790 Peer reviewed |
CHEN, N., CHEN, X., ZHONG, Z., & PANG, J. (2022). Exploring Spillover Effects for COVID-19 Cascade Prediction. Entropy, 24 (2). doi:10.3390/e24020222 Peer Reviewed verified by ORBi |
KISHK, A., PIRES PACHECO, M. I., HEURTAUX, T., SINKKONEN, L., PANG, J., Fritah, S., NICLOU, S., & SAUTER, T. (2022). Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells, 11 (16). doi:10.3390/cells11162486 Peer Reviewed verified by ORBi |
CCHEN, N., CHEN, X., Zhong, Z., & PANG, J. (2021). From #jobsearch to #mask: improving COVID-19 cascade prediction with spillover effects. Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 455–462. doi:10.1145/3487351.3488555 Peer reviewed |
BALOGLU, S., BURSUC, S., MAUW, S., & PANG, J. (2021). Provably Improving Election Verifiability in Belenios. In Electronic Voting 6th International Joint Conference, E-Vote-ID 2021 Virtual Event, October 5–8, 2021, Proceedings (pp. 1-16). Switzerland: Springer. Peer reviewed |
BALOGLU, S., BURSUC, S., MAUW, S., & PANG, J. (2021). Election Verifiability Revisited: Automated Security Proofs and Attacks on Helios and Belenios. In IEEE 34th Computer Security Foundations Symposium, Dubrovnik 21-25 June 2021. Los Alamitos, CA, United States: IEEE Computer Society. doi:10.1109/CSF51468.2021.00019 Peer reviewed |
KOZLOWSKI, D., DUSDAL, J., PANG, J., & ZILIAN, A. (2021). Semantic and Relational Spaces in Science of Science: Deep Learning Models for Article Vectorisation. Scientometrics. doi:10.1007/s11192-021-03984-1 Peer Reviewed verified by ORBi |
CHEN, N., ZHONG, Z., & PANG, J. (2021). An Exploratory Study of COVID-19 Information on Twitter in the Greater Region. Big Data and Cognitive Computing, 5 (1), 5. doi:10.3390/bdcc5010005 Peer reviewed |
Mo, X., PANG, J., & Liu, Z. (2021). Effective Link Prediction with Topological and Temporal Information using Wavelet Neural Network Embedding. Computer Journal, 64 (3), 325-336. doi:10.1093/comjnl/bxaa085 Peer Reviewed verified by ORBi |
Su, C., & PANG, J. (2021). CABEAN: a software for the control of asynchronous Boolean networks. Bioinformatics, 36 (6), 879-881. doi:10.1093/bioinformatics/btaa752 Peer reviewed |
Li, Q., Wang, Z., Li, G., PANG, J., & Xu, G. (2021). Hilbert Sinkhorn Divergence for Optimal Transport. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition - CVPR'21 (pp. 3835-3844). IEEE. Peer reviewed |
HU, H., & PANG, J. (2021). Membership Inference Attacks against GANs by Leveraging Over-representation Regions. In Proceedings of the 27th ACM SIGSAC Conference on Computer and Communications Security (CCS'21) (pp. 2387-2389). ACM. doi:10.1145/3460120.3485338 Peer reviewed |
Dong, H., PANG, J., & Wang, Y. (2021). Preface of the special issue ‘Logic, argumentation and AI’ in JLC. Journal of Logic and Computation, 31 (8), 1901-1902. doi:10.1093/logcom/exab047 Peer reviewed |
Han, W., Chen, D., PANG, J., Wang, K., Chen, C., Huang, D., & Fan, Z. (2021). Temporal Networks Based Industry Identification for Bitcoin Users. In Proceedings of 16th International Conference on Wireless Algorithms, Systems, and Applications (WASA'21) (pp. 108-120). Springer. doi:10.1007/978-3-030-85928-2_9 Peer reviewed |
Su, C., PANG, J., & Paul, S. (2021). Towards optimal decomposition of Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 (6), 2167-2176. doi:10.1109/TCBB.2019.2914051 Peer reviewed |
SCHOMMER, C., SAUTER, T., PANG, J., SATAGOPAM, V., DESPOTOVIC, V., & GONCALVES, J. (2021). Proceedings of the AI4Health Lecture Series (2021) [Paper presentation]. AI4Health Lectures Series (2021), Campus Belval, University of Luxembourg, Luxembourg. |
HU, H., & PANG, J. (2021). Stealing Machine Learning Models: Attacks and Countermeasures for Generative Adversarial Networks. In Proceedings of the 37th Annual Computer Security Applications Conference (ACSAC'21) (pp. 1-16). ACM. doi:10.1145/3485832.3485838 Peer reviewed |
Su, C., & PANG, J. (2021). CABEAN 2.0: Efficient and Efficacious Control of Asynchronous Boolean Networks. In Proceedings of the 24th International Symposium on Formal Methods (FM 2021) (pp. 581-598). Springer. doi:10.1007/978-3-030-90870-6_31 Peer reviewed |
DANOY, G., PANG, J., & Sutcliffe. (2020). Proceedings of the 6th Global Conference on Artificial Intelligence (GCAI 2020). In 6th Global Conference on Artificial Intelligence. Easychair. Peer reviewed |
ZHONG, Z., Zhang, Y., & PANG, J. (2020). NeuLP: An End-to-End Deep-Learning Model for Link Prediction. In Proceedings of the 21st International Conference on Web Information System Engineering (WISE'20) (pp. 96-108). Springer. Peer reviewed |
Su, C., & PANG, J. (2020). Sequential Temporary and Permanent Control of Boolean Networks. In Proceedings of the 18th International Conference on Computational Methods in Systems Biology (CMSB) (pp. 234-251). Springer. Peer reviewed |
Mo, X., PANG, J., & Liu, Z. (2020). Higher-order graph convolutional embedding for temporal networks. In Proceedings of the 21st International Conference on Web Information System Engineering (WISE'20) (pp. 3-15). Springer. Peer reviewed |
Biane, C., Deritei, D., Rozum, J., Su, C., PANG, J., Zañudo, J., & Paulevé, L. (2020). Flavors of Boolean network reprogramming in the CoLoMoTo notebook environment [Poster presentation]. 18th International Conference on Computational Methods in Systems Biology. |
Su, C., & PANG, J. (2020). A Dynamics-based Approach for the Target Control of Boolean Networks. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (pp. 50:1-50:8). ACM Press. doi:10.1145/3388440.3412464 Peer reviewed |
PANG, J., & Zhang, L. (Eds.). (2020). Proceedings of the 6th International Symposium on Dependable Software Engineering. Theories, Tools, and Applications. Springer. |
Xie, T., Jin, Z., Li, X., Huang, G., Muller, H., PANG, J., & Zhang, L. (2020). Preface (Special section on software systems 2020). Journal of Computer Science and Technology, 35 (6), 1231-1233. doi:10.1007/s11390-020-0006-4 |
Li, Y., Cao, T., Jansen, D., PANG, J., & Wei, X. (2020). Accelerated verification of parametric protocols with decision trees. In Proceedings of the 38th International Conference on Computer Design (ICCD) (pp. 397-404). IEEE. doi:10.1109/ICCD50377.2020.00073 Peer reviewed |
PAUL, S., SU, C., PANG, J., & MIZERA, A. (2020). An efficient approach towards the source-target control of Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17 (6), 1932-1945. doi:10.1109/TCBB.2019.2915081 Peer Reviewed verified by ORBi |
Zhang, C., & PANG, J. (2020). Characterising probabilistic alternating simulation for concurrent games. In Proceedings of the 14th IEEE Symposium on Theoretical Aspects of Software Engineering (TASE) (pp. 121-128). IEEE. doi:10.1109/TASE.2020.00025 Peer reviewed |
PANG, J., & Zhang, C. (2020). Preface for the special issue of the 12th International Symposium on Theoretical Aspects of Software Engineering (TASE 2018). Science of Computer Programming, 187, 102375. doi:10.1016/j.scico.2019.102375 |
SCHOMMER, C., SAUTER, T., PANG, J., & ABANKWA, D. (2020). Proceedings of the AI4Health Lecture Series (2020) [Paper presentation]. AI4Health Lectures Series (2020), Campus Belval, University of Luxembourg, Luxembourg. |
Yuan, Q., MIZERA, A., PANG, J., & Qu, H. (2019). A new decomposition-based method for detecting attractors in synchronous Boolean networks. Science of Computer Programming, 180, 18-35. doi:10.1016/j.scico.2019.05.001 Peer Reviewed verified by ORBi |
Baudin, A., PAUL, S., Su, C., & PANG, J. (2019). Controlling large Boolean networks with single-step perturbations. Bioinformatics, 35 (14), 558-i567. doi:10.1093/bioinformatics/btz371 Peer reviewed |
Chen, B.-H., Li, C.-T., Chuang, K.-T., PANG, J., & Zhang, Y. (2019). An active learning-based approach for location-aware acquaintance inference. Knowledge and Information Systems, 59 (3), 539-569. doi:10.1007/s10115-018-1196-8 Peer reviewed |
Li, Y., Cao, J., & PANG, J. (2019). A learning-based framework for automatic parameterized verification. In Proceedings of the 37th International Conference on Computer Design (ICCD) (pp. 450-459). IEEE. doi:10.1109/ICCD46524.2019.00070 Peer reviewed |
PANG, J., & Sun, J. (Eds.). (2019). Proceedings of the 24th International Conference on Engineering of Complex Computer Systems. IEEE. |
Mandon, H., Su, C., PANG, J., PAUL, S., Haar, S., & Pauleve, L. (2019). Algorithms for the Sequential Reprogramming of Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16 (5), 1610-1619. doi:10.1109/TCBB.2019.2914383 Peer reviewed |
Su, C., PAUL, S., & PANG, J. (2019). Controlling large Boolean networks with temporary and permanent perturbations. In Proceedings of the 23rd International Symposium on Formal Methods (FM'19) (pp. 707-724). Springer. Peer reviewed |
Mandon, H., Su, C., Haar, S., PANG, J., & Paulevé, L. (2019). Sequential reprogramming of Boolean networks made practical. In Proceedings of 17th International Conference on Computational Methods in Systems Biology (CMSB'19) (pp. 3-19). Springer. Peer reviewed |
Su, C., PAUL, S., & PANG, J. (2019). Scalable control of asynchronous Boolean networks. In Proceedings of 17th International Conference on Computational Methods in Systems Biology (CMSB'19) (pp. 362-367). Springer. Peer reviewed |
MIZERA, A., PANG, J., & Yuan, Q. (2019). GPU-accelerated steady-state computation of large probabilistic Boolean networks. Formal Aspects of Computing, 31 (1), 27-46. doi:10.1007/s00165-018-0470-6 Peer Reviewed verified by ORBi |
MIZERA, A., PANG, J., Qu, H., & Yuan, Q. (2019). Taming asynchrony for attractor detection in large Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16 (1), 31-42. doi:10.1109/TCBB.2018.2850901 Peer reviewed |
ZHONG, Z., Zhang, Y., & PANG, J. (2019). A graph-based approach to explore relationship between hashtags and images. In Proceedings of the 20th International Conference on Web Information System Engineering (pp. 473-488). springer. doi:10.1007/978-3-030-34223-4_30 Peer reviewed |
Li, Y., Duan, K., Jansen, D., PANG, J., Zhang, L., Lv, Y., & Cai, S. (2018). An Automatic Proving Approach to Parameterized Verification. ACM Transactions on Computational Logic, 19 (4), 1-27. doi:10.1145/3232164 Peer reviewed |
Wang, J., Sun, J., Yuan, Q., & PANG, J. (2018). Learning probabilistic models for model checking: an evolutionary approach and an empirical study. International Journal on Software Tools for Technology Transfer, 20 (6), 689-704. doi:10.1007/s10009-018-0492-7 Peer reviewed |
Zhang, Y., Humbert, M., Rahman, T., Li, C.-T., PANG, J., & Backes, M. (2018). Tagvisor: A privacy advisor for sharing hashtags. In Proceedings of The Web Conference 2018 (WWW'18) (pp. 287-296). ACM Press. Peer reviewed |
Cao, J., Li, Y., & PANG, J. (2018). L-CMP: an automatic learning-based parameterized verification tool. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (pp. 892-895). ACM. doi:10.1145/3238147.3240487 Peer reviewed |
PAUL, S., PANG, J., & Su, C. (2018). On the Full Control of Boolean Networks. In Proceedings of the 16th International Conference on Computational Methods in Systems Biology (pp. 313-317). Springer Science & Business Media B.V. Peer reviewed |
PAUL, S., PANG, J., & Su, C. (2018). Towards the Existential Control of Boolean Networks: A Preliminary Report. In Proceedings of the 4th International Symposium on Dependable Software Engineering. Theories, Tools, and Applications (pp. 142-149). Springer Science & Business Media B.V. Peer reviewed |
MIZERA, A., PANG, J., Su, C., & Yuan, Q. (2018). ASSA-PBN: A Toolbox for Probabilistic Boolean Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15 (4), 1203-1216. doi:10.1109/TCBB.2017.2773477 Peer reviewed |
PAUL, S., Su, C., PANG, J., & MIZERA, A. (2018). A Decomposition-based Approach towards the Control of Boolean Networks. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. ACM. doi:10.1145/3233547.3233550 Peer reviewed |
MIZERA, A., PANG, J., Qu, H., & Yuan, Q. (2018). ASSA-PBN 3.0: Analysing Context-Sensitive Probabilistic Boolean Networks. In Proceedings of the 16th International Conference on Computational Methods in Systems Biology (pp. 277-284). Springer Science & Business Media B.V. doi:10.1007/978-3-319-99429-1_16 Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2018). Reviving the two-state Markov chain approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15 (5), 1525-1537. doi:10.1109/TCBB.2017.2704592 Peer Reviewed verified by ORBi |
PANG, J., Zhang, C., He, J., & Weng, J. (Eds.). (2018). Proceedings of the 12th International Symposium on Theoretical Aspects of Software Engineering. IEEE Computer Society. |
PANG, J., & Zhang, Y. (2017). DeepCity: A Feature Learning Framework for Mining Location Check-Ins. In Proceedings of the 11th International Conference on Web and Social Media (ICWSM'17) (pp. 652-655). AAAI. Peer reviewed |
Backes, M., Humbert, M., PANG, J., & Zhang, Y. (2017). walk2friends: Inferring Social Links from Mobility Profiles. In Proceedings of the 24th ACM International Conference on Computer and Communications Security (pp. 1943-1957). ACM Press. Peer reviewed |
Wang, J., Sun, J., YUAN, Q., & PANG, J. (2017). Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study. In Proceedings of 20th International Conference on Fundamental Approaches to Software Engineering (pp. 3-21). Springer. Peer reviewed |
PANG, J., & Zhang, Y. (2017). Quantifying location sociality. In Proc. 28th ACM Conference on Hypertext and Social Media - HT'17 (pp. 145-154). ACM Press. doi:10.1145/3078714.3078729 Peer reviewed |
Li, L., Dong, N., PANG, J., Sun, J., Bai, G., Liu, Y., & Dong, J. S. (2017). A verification framework for stateful security protocols. In Proceedings of the 19th International Conference on Formal Engineering Methods (pp. 262-280). Springer Science & Business Media B.V. Peer reviewed |
zhang, Y., Ni, M., Han, W., & PANG, J. (2017). Does #like4like indeed provoke more likes? In Proceedings of the 16th IEEE/WIC/ACM International Conference on Web Intelligence (WI'17) (pp. 179-186). ACM. Peer reviewed |
Wang, Y., Qin, Z., PANG, J., Zhang, Y., & Jin, X. (2017). Semantic annotation for places in LBSN through graph embedding. In Proceedings of the 26th ACM International Conference on Information and Knowledge Management - CIKM'17 (pp. 2343-2346). ACM Press. Peer reviewed |
Dong, N., Jonker, H., & PANG, J. (2017). Formal modelling and analysis of receipt-free auction protocols in applied pi. Computers and Security, 65, 405-432. doi:10.1016/j.cose.2016.09.002 Peer reviewed |
MIZERA, A., PANG, J., Qu, H., & YUAN, Q. (2017). A new decomposition method for attractor detection in large synchronous Boolean networks. In Proceedings of the 3rd International Symposium on Dependable Software Engineering: Theories, Tools, and Applications (pp. 232-249). Springer Science & Business Media B.V. Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2016). Parallel Approximate Steady-state Analysis of Large Probabilistic Boolean Networks. In Proceedings of the 31st ACM Symposium on Applied Computing. ACM. Peer reviewed |
PANG, J., & Stoelinga, M. (2016). Selected and extended papers from ACM SVT 2014. Science of Computer Programming. doi:10.1016/j.scico.2016.03.002 |
Merz, S., PANG, J., & Dong, J. S. (2016). Editorial (ICFEM 14 special issue, part I). Formal Aspects of Computing, 28 (3), 343-344. |
Merz, S., PANG, J., & Dong, J. S. (2016). Editorial (ICFEM 14 special issue, part II). Formal Aspects of Computing, 28 (5), 723-724. |
MIZERA, A., PANG, J., & YUAN, Q. (2016). Fast simulation of probabilistic Boolean networks. In Proceedings of 14th International Conference on Computational Methods in Systems Biology (pp. 216-231). Berlin, Germany: Springer. Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2016). ASSA-PBN 2.0: A software tool for probabilistic Boolean networks. In Proceedings of 14th International Conference on Computational Methods in Systems Biology (pp. 309-315). Berlin, Germany: Springer. Peer reviewed |
Ni, M., ZHANG, Y., Han, W., & PANG, J. (2016). An Empirical Study on User Access Control in Online Social Networks. In Proceedings of the 21st ACM Symposium on Access Control Models and Technologies (SACMAT'16) (pp. 13-23). ACM. doi:10.1145/2914642.2914644 Peer reviewed |
Li, Y., Duan, K., Lv, L., PANG, J., & Cai, S. (2016). A novel approach to parameterized verification of cache coherence protocols. In Proceedings of the 34th IEEE International Conference on Computer Design (pp. 560-567). IEEE Computer Society. doi:10.1109/ICCD.2016.7753341 Peer reviewed |
ZHOU, L., Zhang, Y., PANG, J., & Li, C.-T. (2016). Modeling city locations as complex networks: An initial study. In Proceedings of the 5th International Workshop on Complex Networks and their Applications (pp. 735-747). Springer Science & Business Media B.V. Peer reviewed |
PANG, J., Zablotskaia, P., & Zhang, Y. (2016). On impact of weather on human mobility in cities. In Proceedings of the 17th International Conference on Web Information System Engineering (pp. 247-256). Springer Science & Business Media B.V. Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2016). GPU-accelerated steady-state analysis of probabilistic Boolean networks [Poster presentation]. 14th International Conference on Computational Methods in Systems Biology. |
YUAN, Q., Qu, H., PANG, J., & MIZERA, A. (2016). Improving BDD-based attractor detection for synchronous Boolean networks. Science China Information Sciences, 59 (8), 080101:1-080101:16. doi:10.1007/s11432-016-5594-9 Peer reviewed |
Qu, H., YUAN, Q., PANG, J., & MIZERA, A. (2015). Improving BDD-based attractor detection for synchronous Boolean networks. In Proceedings of the 7th Asia-Pacific Symposium on Internetware. ACM. Peer reviewed |
PANG, J., & ZHANG, Y. (2015). Cryptographic protocols for enforcing relationship-based access control policies. In Proceedings of the 39th Annual IEEE Computers, Software & Applications Conference (COMPSAC'15) (IEEE CS, pp. 484-493). Peer reviewed |
Cheng, R., PANG, J., & ZHANG, Y. (2015). Inferring friendship from check-in data of location-based social networks. In Proceedings of the 7th International Conference on Advances in Social Networks Analysis and Mining (ASONAM'15) (pp. 1284-1291). IEEE CS. Peer reviewed |
PANG, J., & ZHANG, Y. (2015). Event prediction with community leaders. In Proceedings of the 10th International Conference on Availability, Reliability and Security (ARES'15) (pp. 238-243). IEEE CS. Peer reviewed |
ZHANG, Y., & PANG, J. (2015). Community-Driven Social Influence Analysis and Applications. In Proceedings of the 15th International Conference on Web Engineering. Springer. Peer reviewed |
PANG, J., & ZHANG, Y. (2015). Exploring communities for effective location prediction. In Proceedings of the 24th World Wide Web Conference. ACM. doi:10.1145/2740908.2742720 Peer reviewed |
PANG, J., Liu, Y., & MAUW, S. (Eds.). (2015). Proceedings 4th International Workshop on Engineering Safety and Security Systems. (184). EPTCS. |
Li, Y., PANG, J., Lv, Y., Fan, D., Cao, S., & Duan, K. (2015). paraVerifier: An automatic framework for proving parameterized cache coherence protocols. In Proceedings of the 13th International Symposium on Automated Technology for Verification and Analysis (ATVA'15) (pp. 207-213). Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2015). ASSA-PBN: An approximate steady-state analyser for probabilistic Boolean networks. In Proceedings of the 13th International Symposium on Automated Technology for Verification and Analysis (ATVA'15) (pp. 214-220). Springer. Peer reviewed |
Li, Y., & PANG, J. (2015). Formalizing provable anonymity in Isabelle/HOL. Formal Aspects of Computing, 27 (2), 255-282. doi:10.1007/s00165-014-0315-x Peer reviewed |
CRAMER, M., PANG, J., & ZHANG, Y. (2015). A logical approach to restricting access in online social networks. In Proceedings of the 20th ACM Symposium on Access Control Models and Technologies. ACM. Peer reviewed |
PANG, J., & ZHANG, Y. (2015). Location prediction: Communities speak louder than friends. In Proceedings of the 3rd ACM Conference on Online Social Networks (COSN'15) (pp. 161-171). ACM. Peer reviewed |
Chen, X., MIZERA, A., & PANG, J. (2015). Activity tracking: A new attack on location privacy. In Proceedings of the 3rd IEEE Conference on Communications and Network Security (CNS'15) (pp. 22-30). IEEE CS. Peer reviewed |
PANG, J., & ZHANG, Y. (2015). A new access control scheme for Facebook-style social networks. Computers and Security, 54, 44-59. doi:10.1016/j.cose.2015.04.013 Peer reviewed |
TRAIRATPHISAN, P., MIZERA, A., PANG, J., TANTAR, A.-A., & SAUTER, T. (01 July 2014). optPBN: An Optimisation Toolbox for Probabilistic Boolean Networks. PLoS ONE, 9 (7), 98001 (1-15. doi:10.1371/journal.pone.0098001 Peer Reviewed verified by ORBi |
Mousavi, M., & PANG, J. (2014). Special issue on software verification and testing (editorial message). Science of Computer Programming, 95 (3), 273-274. doi:10.1016/j.scico.2014.06.015 |
Merz, S., & PANG, J. (Eds.). (2014). Proceedings of the 16th International Conference on Formal Engineering Methods. Springer. doi:10.1007/978-3-319-11737-9 |
Chatzikokolakis, K., Mödersheim, S., Palamidessi, C., & PANG, J. (2014). Foundational aspects of security. Journal of Computer Security, 22 (2), 201-202. doi:10.3233/JCS-140497 |
PANG, J., & Liu, Y. (Eds.). (2014). Proceedings Third International Workshop on Engineering Safety and Security Systems. EPTCS. |
PANG, J., & ZHANG, Y. (2014). A new access control scheme for Facebook-style social networks. In Proceedings of the 9th Conference on Availability, Reliability and Security (ARES 2014, Best Paper Award) (pp. 1-10). IEEE CS. doi:10.1109/ARES.2014.9 Peer reviewed |
Elrahaiby, Y., & PANG, J. (2014). Dynamic analysis of usage control policies. In Proceedings of the 11th Conference on Security and Cryptography (SECRPT). SciTePress. Peer reviewed |
CHEN, X., & PANG, J. (2014). Protecting query privacy in location-based services. GeoInformatica, 18 (1), 95-133. doi:10.1007/s10707-013-0192-0 Peer Reviewed verified by ORBi |
Chen, X., PANG, J., & Xue, R. (2014). Constructing and comparing user mobility profiles. ACM Transactions on the Web, 8 (4), 21. doi:10.1145/2637483 Peer reviewed |
Si, Y., Sun, J., Liu, Y., Dong, J. S., PANG, J., Zhang, S., & Yang, X. (2014). Model Checking with Fairness Assumptions using PAT. Frontiers of Computer Science, 8 (1), 1-16. doi:10.1007/s11704-013-3091-5 Peer reviewed |
Li, L., PANG, J., Liu, Y., Sun, J., & Dong, J. S. (2014). Symbolic analysis of an electric vehicle charging protocol. In Proceedings of 19th IEEE Conference on Engineering of Complex Computer Systems (ICECCS). IEEE CS. doi:10.1109/ICECCS.2014.11 Peer reviewed |
Chen, X., Lu, R., Ma, X., & PANG, J. (2014). Measuring User Similarity with Trajectory Patterns: Principles and New Metrics. In Proceedings of the 16th Asia-Pacific Web Conference (pp. 437-448). Springer. doi:10.1007/978-3-319-11116-2_38 Peer reviewed |
Li, Y., & PANG, J. (2014). A strand space approach to provable anonymity. In Proc. 2nd Workshop on Formal Techniques for Safety-Critical Systems (FTSCS'13) (pp. 71-87). Peer reviewed |
MIZERA, A., PANG, J., & YUAN, Q. (2014). Model-checking based approaches to parameter estimation of gene regulatory networks. In Proceedings of 19th IEEE Conference on Engineering of Complex Computer Systems (pp. 206-209). IEEE CS. doi:10.1109/ICECCS.2014.38 Peer reviewed |
Chen, X., Kordy, P., Lu, R., & PANG, J. (2014). MinUS: Mining User Similarity with Trajectory Patterns. In Proceedings of 17th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) (pp. 436-439). Springer. doi:10.1007/978-3-662-44845-8_29 Peer reviewed |
CHEN, X., Harpes, C., LENZINI, G., Martins, M., MAUW, S., & PANG, J. (2013). DEMO: Demonstrating a Trust Framework for Evaluating GNSS Signal Integrity. In Proceedings of 20th ACM Conference on Computer and Communications Security (CCS'13) (pp. 1329-1332). ACM. Peer reviewed |
TRAIRATPHISAN, P., MIZERA, A., PANG, J., TANTAR, A.-A., SCHNEIDER, J., & SAUTER, T. (01 July 2013). Recent development and biomedical applications of probabilistic Boolean networks. Cell Communication and Signaling, 11 (46). doi:10.1186/1478-811X-11-46 Peer Reviewed verified by ORBi |
PANG, J., & Mousavi, M. R. (2013). Editorial message: Special track on software verification and testing. In Proc. 28th Symposium on Applied Computing (pp. 1186-1187). ACM. |
MIZERA, A., PANG, J., SAUTER, T., & TRAIRATPHISAN, P. (2013). Mathematical modelling of the Platelet-Derived Growth Factor (PDGF) signalling pathway. In Proceedings of 4th Workshop on Computational Models for Cell Processes (CompMod'13) (pp. 35). |
Li, Y., & PANG, J. (2013). An inductive approach to strand spaces. Formal Aspects of Computing, 25 (4), 465-501. doi:10.1007/s00165-011-0187-2 Peer reviewed |
MIZERA, A., PANG, J., SAUTER, T., & TRAIRATPHISAN, P. (2013). A balancing act: Parameter estimation for biological models with steady-state measurements. In Proceedings of 11th Conference on Computational Methods in Systems Biology (CMSB'13) (pp. 253-254). Springer. Peer reviewed |
Mousavi, M. R., & PANG, J. (2013). Special issue: software verification and testing. Innovations in Systems and Software Engineering, 9 (2), 57-58. doi:10.1007/s11334-013-0211-1 Peer reviewed |
PANG, J., Liu, Y., & MAUW, S. (2013). Message from ESSS 2013 Workshop Co-chairs. In 6th IEEE International Conference on Software Testing, Verification and Validation Workshops Proceedings (pp. 1). IEEE Computer Society. doi:10.1109/ICSTW.2013.63 |
Chen, X., Harpes, C., LENZINI, G., MAUW, S., & PANG, J. (2013). Location Assurance and Privacy in GNSS Navigation. ERCIM News, 2013 (94). Peer reviewed |
JONKER, H., MAUW, S., & PANG, J. (2013). Privacy and verifiability in voting systems: Methods, developments and trends. Computer Science Review. doi:10.1016/j.cosrev.2013.08.002 Peer reviewed |
Liu, Z., PANG, J., & ZHANG, C. (2013). Design and formal verification of a certified email protocol with transparent TTP. Frontiers of Computer Science, 7 (2), 279-297. doi:10.1007/s11704-013-1268-6 Peer reviewed |
CHEN, X., LENZINI, G., Martins, M., MAUW, S., & PANG, J. (2013). A trust framework for evaluating GNSS signal integrity. In Proceedings of 26th IEEE Computer Security Foundations Symposium (CSF'13) (pp. 179-192). IEEE CS. Peer reviewed |
CHEN, X., & PANG, J. (2013). Exploring dependency for query privacy protection in location-based services. In Proc. 3rd ACM Conference on Data and Application Security and Privacy (pp. 37-47). ACM. doi:10.1145/2435349.2435354 Peer reviewed |
CHEN, X., LENZINI, G., MAUW, S., & PANG, J. (2013). Design and formal analysis of a group signature based electronic toll pricing system. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 4 (1), 55-75. Peer reviewed |
DONG, N., JONKER, H., & PANG, J. (2013). Enforcing Privacy in the Presence of Others: Notions, Formalisations and Relations. In Proceedings of the 18th European Symposium on Research in Computer Security (pp. 499-516). Springer. Peer reviewed |
Chen, M., Tan, T. H., Sun, J., Liu, Y., PANG, J., & Li, X. (2013). Verification of functional and non-functional requirements of web service composition. In Proceedings of 15th Conference on Formal Engineering Methods (ICFEM'13) (pp. 314-329). Springer. Peer reviewed |
CHEN, X., PANG, J., & Xue, R. (2013). Constructing and comparing user mobility profiles for location-based services. In Proc. 28th ACM Symposium on Applied Computing (pp. 261-266). ACM. doi:10.1145/2480362.2480418 Peer reviewed |
CHEN, X., Fonkwe, D., & PANG, J. (2013). Post-hoc analysis of user traceability in electronic toll collection systems. In Proc. 7th International Workshop on Data Privacy Management (pp. 29-42). Springer-Verlag. Peer reviewed |
JONKER, H., MAUW, S., & PANG, J. (2012). Location-Based Services: Privacy, Security and Assurance. In Digital Enlightenment Yearbook 2012 (pp. 235-244). IOS Press. doi:10.3233/978-1-61499-057-4-235 |
PANG, J., & Mousavi, M. R. (2012). Editorial message: Special track on software verification and testing. In Proc. 27th Symposium on Applied Computing (pp. 1262-1263). ACM. |
ZHANG, C., & PANG, J. (2012). An Algorithm for Probabilistic Alternating Simulation. In Proc. 38th International Conference on Current Trends in Theory and Practice of Computer Science (pp. 431-442). Peer reviewed |
CHEN, X., & PANG, J. (2012). Measuring query privacy in location-based services. In Proc. 2nd ACM Conference on Data and Application Security and Privacy (pp. 49 - 61). Peer reviewed |
SUN, Y., ZHANG, C., PANG, J., ALCALDE, B., & MAUW, S. (2012). A trust-augmented voting scheme for collaborative privacy management. Journal of Computer Security, 20 (4), 437-459. doi:10.3233/JCS-2012-0453 Peer Reviewed verified by ORBi |
ZHANG, Y., ZHANG, C., PANG, J., & MAUW, S. (2012). Game-based verification of contract signing protocols with minimal messages. Innovations in Systems and Software Engineering, 8, 111-124. doi:10.1007/s11334-012-0180-9 Peer reviewed |
CHEN, X., LENZINI, G., MAUW, S., & PANG, J. (2012). A group signature based electronic toll pricing system. In Proc. 7th International Conference on Availability, Reliability and Security (pp. 85-93). IEEE Computer Society. doi:10.1109/ARES.2012.67 Peer reviewed |
DONG, N., JONKER, H., & PANG, J. (2012). Formal analysis of privacy in an eHealth protocol. In Proc. 17th European Symposium on Research in Computer Security (pp. 325-342). Springer-Verlag. Peer reviewed |
CHEN, X., Harpes, C., LENZINI, G., Martins, M., MAUW, S., & PANG, J. (2012). Implementation and Validation of a Localisation Assurance Service Provider. In Proc. 6th ESA Workshop on Satellite Navigation Technologies (pp. 1-7). doi:10.1109/NAVITEC.2012.6423097 Peer reviewed |
DONG, N., JONKER, H., & PANG, J. (2012). Challenges in eHealth: from enabling to enforcing privacy. In Proc. 1st Symposium on Foundations of Health Information Engineering and Systems (pp. 195-206). Springer-Verlag. Peer reviewed |
LI, Q., SCHAFFER, P., PANG, J., & MAUW, S. (2012). Comparative analysis of clustering protocols with probabilistic model checking. In Proc. 6th International Symposium on Theoretical Aspects of Software Engineering (pp. 249-252). IEEE Computer Society. doi:10.1109/TASE.2012.28 Peer reviewed |
YUAN, Q., TRAIRATPHISAN, P., PANG, J., MAUW, S., WIESINGER, M., & SAUTER, T. (2012). Probabilistic model checking of the PDGF signaling pathway. Transactions on Computational Systems Biology, XIV, 151-180. Peer reviewed |
Liu, Z., PANG, J., & Zhang, C. (2011). Verification of a key-chain based TTP transparent CEM protocol. In Proc. 3rd Workshop on Harnessing Theories for Tool Support in Software. Elsevier. Peer reviewed |
Zhang, S., Sun, J., PANG, J., Liu, Y., & Dong, J. (2011). On combining state space reductions with global fairness assumptions. In Proc. 17th International Symposium on Formal Methods (pp. 432-447). Springer-Verlag. Peer reviewed |
DONG, N., JONKER, H., & PANG, J. (2011). Analysis of a receipt-free auction protocol in the applied pi calculus. In Proc. 7th Workshop on Formal Aspects in Security and Trust (pp. 223–238). Springer-Verlag. Peer reviewed |
SUN, Y., ZHANG, C., PANG, J., ALCALDE, B., & MAUW, S. (2011). A trust-augmented voting scheme for collaborative privacy management. In Proc. 6th International Workshop on Security and Trust Management (pp. 132-146). Peer reviewed |
LIU, Z., PANG, J., & ZHANG, C. (2011). Verification of a key-chain based TTP transparent CEM protocol. Proceedings of the 3rd Workshop on Harnessing Theories for Tool Support in Software, ENTCS 274, 51-65. Peer reviewed |
JONKER, H., & PANG, J. (2011). Bulletin boards in voting systems: Modelling and measuring privacy. In Proc. 6th International Conference on Availability, Reliability and Security (pp. 294-300). IEEE CS. doi:10.1109/ARES.2011.50 Peer reviewed |
Bakhshi, R., Endrullis, J., Fokkink, W., & PANG, J. (2011). Fast leader election in anonymous rings with bounded expected delay. Information Processing Letters, 111 (17), 864-870. doi:10.1016/j.ipl.2011.06.003 Peer Reviewed verified by ORBi |
LENZINI, G., MAUW, S., & PANG, J. (2011). Selective location blinding using hash chains. In Proc. 19th International Workshop on Security Protocols (pp. 132-141). Springer-Verlag. Peer reviewed |
Li, Y., & PANG, J. (2011). An inductive approach to provable anonymity. In Proc. 6th International Conference on Availability, Reliability and Security (pp. 454-459). IEEE CS. doi:10.1109/ARES.2011.70 Peer reviewed |
YUAN, Q., PANG, J., MAUW, S., TRAIRATPHISAN, P., WIESINGER, M., & SAUTER, T. (2011). A study of the PDGF signaling pathway with PRISM. Proceedings of the 3rd Workshop on Computational Models for Cell Processes, EPTCS 67, 65-81. Peer reviewed |
ZHANG, Y., ZHANG, C., PANG, J., & MAUW, S. (2010). Game-based verification of multi-party contract signing protocols. In Proceedings of 7th International Workshop on Formal Aspects in Security and Trust (FAST'09) (pp. 186-200). Springer-Verlag. Peer reviewed |
Zhang, C., & PANG, J. (2010). On probabilistic alternating simulations. In Proc. 6th IFIP Conference on Theoretical Computer Science (pp. 71–85). IFIP International Federation for Information Processing. Peer reviewed |
Li, Y., & PANG, J. (2010). Extending the Strand Space Method with Timestamps: Part I the Theor. Journal of Information Security, 1 (2), 45-55. Peer reviewed |
Li, Y., & PANG, J. (2010). Extending the Strand Space Method with Timestamps: Part II Application to Kerberos V. Journal of Information Security, 1 (2), 56-67. Peer reviewed |
Bakhshi, R., Endrullis, J., Fokkink, W. J., & PANG, J. (2010). Brief announcement: Asynchronous bounded expected delay networks. Proceedings of 29th Annual ACM Symposium on Principles of Distributed Computing, 392–393. doi:10.1145/1835698.1835787 Peer reviewed |
Liu, Z., PANG, J., & Zhang, C. (2010). Extending a key-chain based certified email protocol with transparent TTP. Proceedings of 6th IEEE/IFIP Symposium on Trusted Computing and Communications, 630–636. doi:10.1109/EUC.2010.101 Peer reviewed |
An, X., & PANG, J. (2010). Model checking round-based distributed algorithms. Proceedings of 15th IEEE International Conference on Engineering of Complex Computer Systems, 127-135. doi:10.1109/ICECCS.2010.22 Peer reviewed |
JONKER, H., MAUW, S., & PANG, J. (2009). A formal framework for quantifying voter-controlled privacy. Journal of Algorithms in Cognition, Informatics and Logic, 89-105. doi:10.1016/j.jalgor.2009.02.007 Peer reviewed |
PANG, J., & Tang, B. (2009). Message from T4CIA workshop co-chairs. In Proc. 3rd IEEE Conference on Secure Software Integration and Reliability Improvement (pp. 323). IEEE Computer Society. doi:10.1109/SSIRI.2009.5 |
CHEN, X., VAN DEURSEN, T., & PANG, J. (2009). Improving automatic verification of security protocols with XOR. In Proc. 11th International Conference on Formal Engineering Methods (pp. 107-126). Springer. Peer reviewed |
PANG, J., & Zhang, C. (2009). How to work with honest but curious judges? (preliminary report). In Proc. 7th International Workshop on Security Issues in Concurrency (pp. 31–45). Peer reviewed |
Sun, J., Liu, Y., Dong, J.-S., & PANG, J. (2009). PAT: Towards flexible verification under fairness. In Proc. 21th International Conference on Computer Aided Verification (pp. 709–714). Springer-Verlag. Peer reviewed |
JONKER, H., MAUW, S., & PANG, J. (2009). Measuring voter-controlled privacy. In Proceedings of 4th Conference on Availability, Reliability and Security (ARES'09) (pp. 289-298). IEEE Computer Society. doi:10.1109/ARES.2009.81 Peer reviewed |
Liu, Y., PANG, J., Sun, J., & Zhao, J. (2009). Verification of population ring protocols in PAT. Proceedings of 3rd IEEE Symposium on Theoretical Aspects of Software Engineering, 81–89. doi:10.1109/TASE.2009.51 Peer reviewed |
PANG, J., Luo, Z., & Deng, Y. (2008). On automatic verification of self-stabilizing population protocols. Frontiers of Computer Science in China, 2 (4), 357–367. doi:10.1007/s11704-008-0040-9 Peer Reviewed verified by ORBi |
Fokkink, W. J., PANG, J., & Wijs, A. J. (2008). Is timed branching bisimilarity a congruence indeed? Fundamenta Informaticae, 87 (3-4), 287–311. Peer Reviewed verified by ORBi |
Bakhshi, R., Fokkink, W. J., PANG, J., & van de Pol, J. C. (2008). Leader election in anonymous rings: Franklin goes probabilistic. In Proc. 5th IFIP Conference on Theoretical Computer Science (pp. 57–72). Springer-Verlag. Peer reviewed |
PANG, J., Luo, Z., & Deng, Y. (2008). On automatic verification of self-stabilizing population protocols. In Proceedings of 2nd IEEE Symposium on Theoretical Aspects of Software Engineering (TASE'08) (pp. 185–192). IEEE Computer Society. doi:10.1109/TASE.2008.8 Peer reviewed |