Thèse de doctorat (Mémoires et thèses)
Modeling and Control of Laser Wire Additive Manufacturing
MBODJ, Natago Guilé
2022
 

Documents


Texte intégral
PhD_Thesis_Natago_Updated_19_07_22.pdf
Postprint Auteur (17.78 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Laser Wire Additive Manufacturing; Parametric Modeling; Bead Geometry; Physical Modeling; Layer Height Control
Résumé :
[en] Metal Additive Manufacturing (MAM) offers many advantages such as fast product manufacturing, nearly zero material waste, prototyping of complex large parts and the automatization of the manufacturing process in the aerospace, automotive and other sectors. In the MAM, several parameters influence the product creation steps, making the MAM challenging. In this thesis, we modelize and control the deposition process for a type of MAM where a laser beam is used to melt a metallic wire to create the metal parts called the Laser Wire Additive Manufacturing Process (LWAM). In the dissertation, first, a novel parametric modeling approach is created. The goal of this approach is to use parametric product design features to simulate and print 3D metallic objects for the LWAM. The proposed method includes a pattern and the robot toolpath creation while considering several process requirements of LWAM, such as the deposition sequences and the robot system. This technique aims to develop adaptive robot toolpaths for a precise deposition process with nearly zero error in the product creation process. Second, a layer geometry (width and height) prediction model to improve deposition accuracy is proposed. A machine learning regression algorithm is applied to several experimental data to predict the bead geometry across layers. Furthermore, a neural network-based approach was used to study the influence of different deposition parameters, namely laser power, wire-feed rate and travel speed on bead geometry. The experimental results shows that the model has an error rate of (i.e., 2∼4%). Third, a physics-based model of the bead geometry including known process parameters and material properties was created. The model developed for the first time includes critical process parameters, the material properties and the thermal history to describe the relationship between the layer height with different process inputs (i.e., the power, the standoff distance, the temperature, the wire-feed rate and the travel speed). The numerical results show a match of the model with the experimental measurements. Finally, a Model Predictive Controller (MPC) was designed to keep the layer height trajectory constant, considering the constraints and the operating range of the parameters of the process inputs. The model simulation result shows an acceptable tracking of the reference height.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
MBODJ, Natago Guilé ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Langue du document :
Anglais
Titre :
Modeling and Control of Laser Wire Additive Manufacturing
Date de soutenance :
13 juillet 2022
Institution :
Unilu - University of Luxembourg, Kirchberg, Luxembourg
Intitulé du diplôme :
Docteur en Sciences de l'Ingénieur
Promoteur :
Président du jury :
Membre du jury :
VOOS, Holger  
Bruls, Olivier
Matthias, Vette-Steinkamp
Focus Area :
Physics and Materials Science
Intitulé du projet de recherche :
Fabrication Additive par Dépôt de Fil (FAFil) project (Ref. 3477)
Organisme subsidiant :
Interreg V-A Grande Région
Disponible sur ORBilu :
depuis le 22 juillet 2022

Statistiques


Nombre de vues
565 (dont 14 Unilu)
Nombre de téléchargements
264 (dont 3 Unilu)

OpenCitations
 
2
citations OpenAlex
 
15
citations WoS
 
13

Bibliographie


Publications similaires



Contacter ORBilu