Reference : Solvability of systems of invariant differential equations on symmetric spaces G/K
Dissertations and theses : Doctoral thesis
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/10993/50041
Solvability of systems of invariant differential equations on symmetric spaces G/K
English
Palmirotta, Guendalina mailto [University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) >]
15-Dec-2021
University of Luxembourg, ​​Luxembourg
Docteur en Mathématiques
119
Olbrich, Martin mailto
Schlenker, Jean-Marc mailto
Mehdi, Salah mailto
van den Ban, Erik P. mailto
Pedon, Emmanuel mailto
[en] Symmetric spaces ; Fourier transform ; Linear invariant differential equations
[en] We study the Fourier transform for distributional sections of vector bundles over symmetric spaces of non-compact type. We show how this can be used for questions of solvability of systems of invariant differential equations in analogy to Hörmander’s proof of the Ehrenpreis-Malgrange theorem. We get complete solvability for the hyperbolic plane H2 and partial results for finite products H2 × · · · × H2 and the hyperbolic 3-space H3.
[lb] Mir studéieren Fourier Transformatioun fir Distributiounal Sektiounen vu Vektorbündelen u symmetresch Réim vun engem net-kompakten Typ. Mir bewéisen wéi et fir d’Léisbarkeet vu Systémer vun invarianten Differentialequatiounen an Analogie zu Hörmander’s Schätzungen, ugewand ka ginn. Mir kréien komplett Léisbarkeet fir hyperbolesch Pléng H2 a partial Résultater fir Produkter H2 ×· · ·×H2, wéi och fir hyperbolesch 3-Réim H3.
Department of Mathematics
Fonds National de la Recherche - FnR
PRIDE15/10949314/GSM
Researchers ; Professionals ; Students
http://hdl.handle.net/10993/50041

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Solvability_Diss_Palmirotta_Dec2021.pdfPublisher postprint1.02 MBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.