Doctoral thesis (Dissertations and theses)
Solvability of systems of invariant differential equations on symmetric spaces G/K
Palmirotta, Guendalina
2021
 

Files


Full Text
Solvability_Diss_Palmirotta_Dec2021.pdf
Publisher postprint (1.04 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Symmetric spaces; Fourier transform; Linear invariant differential equations
Abstract :
[en] We study the Fourier transform for distributional sections of vector bundles over symmetric spaces of non-compact type. We show how this can be used for questions of solvability of systems of invariant differential equations in analogy to Hörmander’s proof of the Ehrenpreis-Malgrange theorem. We get complete solvability for the hyperbolic plane H2 and partial results for finite products H2 × · · · × H2 and the hyperbolic 3-space H3.
[lb] Mir studéieren Fourier Transformatioun fir Distributiounal Sektiounen vu Vektorbündelen u symmetresch Réim vun engem net-kompakten Typ. Mir bewéisen wéi et fir d’Léisbarkeet vu Systémer vun invarianten Differentialequatiounen an Analogie zu Hörmander’s Schätzungen, ugewand ka ginn. Mir kréien komplett Léisbarkeet fir hyperbolesch Pléng H2 a partial Résultater fir Produkter H2 ×· · ·×H2, wéi och fir hyperbolesch 3-Réim H3.
Research center :
Department of Mathematics
Disciplines :
Mathematics
Author, co-author :
Palmirotta, Guendalina  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Language :
English
Title :
Solvability of systems of invariant differential equations on symmetric spaces G/K
Defense date :
15 December 2021
Number of pages :
119
Institution :
Unilu - University of Luxembourg, Luxembourg
Degree :
Docteur en Mathématiques
Jury member :
Mehdi, Salah
van den Ban, Erik P.
Pedon, Emmanuel
Name of the research project :
PRIDE15/10949314/GSM
Funders :
FNR - Fonds National de la Recherche [LU]
Available on ORBilu :
since 26 January 2022

Statistics


Number of views
214 (19 by Unilu)
Number of downloads
81 (7 by Unilu)

Bibliography


Similar publications



Contact ORBilu