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Abstract

We study the Fourier transform for distributional sections of vector bundles over sym-
metric spaces of non-compact type. We show how this can be used for questions of
solvability of systems of invariant differential equations in analogy to Hörmander’s
proof of the Ehrenpreis-Malgrange theorem. We get complete solvability for the hyper-
bolic plane H2 and partial results for finite products H2 × · · · ×H2 and the hyperbolic
3-space H3.

Mir studéieren Fourier Transformatioun fir Distributiounal Sektiounen vu Vektorbün-
delen u symmetresch Réim vun engem net-kompakten Typ. Mir bewéisen wéi et fir
d’Léisbarkeet vu Systémer vun invarianten Differentialequatiounen an Analogie zu Hör-
mander’s Schätzungen, ugewand ka ginn. Mir kréien komplett Léisbarkeet fir hyperbo-
lesch Pléng H2 a partial Résultater fir Produkter H2×· · ·×H2, wéi och fir hyperbolesch
3-Réim H3.
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Introduction

Since the introduction of differential calculus by Newton and Leibniz, differential equa-
tions have played an essential role in the development of mathematics as well as in
applied sciences. One of the most important basic theoretical questions is the one of
solvability.

In the Euclidean case Rn (for some positive integer n), it is well-known by Malgrange
[Mal55] and Ehrenpreis [Ehr54] that all linear differential operators with constant co-
efficients

D =
∑
|α|≤m

cαD
α, Dα =

∂|α|

∂α1
x1 · · · ∂αnxn

, α = (α1, . . . , αn), αj ∈ N0, |α| =
n∑
j=1

αj

are solvable. Even more, there exists a fundamental solution E for D, which is a
distribution on Rn such that DE = δ and consequently, by convolution, there exists
a solution f := E ∗ g of the equation Df = g at least for g with compact support.
Here, δ denotes the Dirac measure or delta-distribution at the origin on Rn. One may
wonder whether an invariant differential operator with non-constant coefficients, but
smooth coefficients, is solvable. This is indeed not always the case, as the well-known
example of Lewy ∂

∂x
+ i ∂

∂y
− 2i(x+ iy) ∂

∂z
on R3 or even Mizohata’s example ∂

∂x
+ ix ∂

∂y

on R2 show.
Constant coefficients operators on Rn are exactly invariant differential operators, if we
consider Rn as a Lie group of translations.

Speaking of Lie groups G, one may ask the analog question for invariant differential
operators, which are left invariant under G by translations:

D(f ◦ lg) = (Df) ◦ lg, f ∈ C∞(G),∀g ∈ G, (0.1)

where lg is the left translation on G and C∞(G) denotes the space of smooth functions
on G. Concerning the above-mentioned example, the Lewy operator can be considered
as a left invariant differential operator on the Heisenberg group{ 1 x y

0 1 z
0 0 1

 , x, y, z ∈ R

}
. Such differential operators are, in general, not even

locally solvable.
On the other hand, the situation is much better for non-zero linear differential operators
D, which are bi-invariant under G, this means that (0.1) holds not only for the left but
also for the right translation on G. In fact, D is locally solvable for simply connected
nilpotent Lie groups by Raïs [Ra71], for solvable Lie groups by Raïs-Duflo [DuRa76]
and Rouvière [Ro76], and for semi-simple Lie groups by Helgason [Hel75]. Of course,
other interesting results have been found on groups (e.g. [Ce75] & [Hel75]). But the

i



CHAPTER 0. INTRODUCTION ii

key tool of most of these works is the theory of harmonic analysis on the corresponding
Lie group, in particular the application of the Fourier transform.

Now, if we consider the quotientG/K, withG a non-compact connected semi-simple
Lie group with finite center and K is its maximal compact subgroup, then Helgason
([Hel89], Chap. V) proved that all G-invariant differential operators are solvable on
Riemannian symmetric spaces X of non-compact type. His proof is essential based
on a characterisation of the image of C∞c (X) under the Fourier transform on X, in
particular the Radon transform.

However what happens if we genuinely extend this situation and consider systems
of linear invariant differential operators, e.g. D as a q × p -matrix (q, p ∈ N) of such
linear invariant differential operators? Is it still (locally) solvable?
In case of Rn, the questions have been answered completely by Malgrange ([Mal61] &
[Mal64]), Ehrenpreis ([Ehr61] & [Ehr70], Chap. 6) and Palamodov ([Pal63] & [Pal70]).
Already, here, the proof is much more complicated as for a single operator.
Let us now express the setting for symmetric space X of non-compact type. Suit-
ably interpreted, it also applies to the case X = Rn with G = Rn and K = {0}. A
system of invariant differential equations is an invariant differential operator between
homogeneous vector bundles. Let (τ, Eτ ) and (γ,Eγ) be finite dimensional, not neces-
sarily irreducible, representations of K. They determine homogeneous vector bundles
Eγ,Eτ → X. We identify the spaces of their smooth sections with the following vector
spaces:

C∞(X,E∗) ∼= {ϕ : G
C∞→ E∗ | ϕ(gk) = ∗(k−1)(ϕ(g)), ∀g ∈ G, k ∈ K}, ∗ = τ, γ.

The group G acts on C∞(X,E∗) by left translation (g · ϕ)(x) = ϕ(g−1x), for x, g ∈ G.
Consider a linear G-invariant differential operator

D : C∞(X,Eγ) −→ C∞(X,Eτ ). (0.2)

Given g ∈ C∞(X,Eτ ), does there exists a solution f ∈ C∞(X,Eγ) such that Df = g?
For many D’s, there is (another) operator

C∞(X,Eτ )
D0−→ C∞(X,Eδ),

where (δ, Eδ) is another K-representation such that D0 ◦D = 0. Therefore such a D
can not be solvable for g, if D0g 6= 0. For algebraic reasons there is, in some sense, a
maximal operator, call it D̃, of this kind.
Question. Is Df = g solvable in C∞(X,Eγ) for a given g ∈ C∞(X,Eτ ) if, and only
if, D̃g = 0 in C∞(X,Eτ )? In other words, is the sequence

C∞(X,Eγ)
D−→ C∞(X,Eτ )

D̃−→ C∞(X,Eδ)

exact in the middle, i.e. Im(D) = Ker(D̃)?

Conjecture. The answer is yes.

Maybe as an example, consider Ei = ∧p+(i−1)T ∗X (i = 1, 2, 3) as exterior powers
of the cotangent bundles T ∗X for p ∈ N. Then, by Poincaré-Lemma (e.g. in [BoT82],
Sect. 4), in this case, the conjecture is true for the exterior differention D = dp and
D̃ = dp+1 on X.
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Notice that if Eγ = Eτ = C are trivial one-dimensional vector bundles on X, then
the transposed invariant differential operator Dt is injective on C∞c (X,C). This means
that D̃ = 0, thus we have no ’integrability’ condition. This leads us back to Helgason’s
result ([Hel89], Chap. V). Also for single equations and elliptic operators, we have
D̃ = 0. In the last case, the conjecture was proved by Malgrange ([Mal55], p. 341).

Furthermore, in the Euclidean analogue, Hörmander ([Hör73], Thm. 7.6.13 &
Thm. 7.6.14) was one of the first to give a written proof of Ehrenpreis’s results ([Ehr61]
& [Ehr70], Chap. 6), also known as the Ehrenpreis Fundamental Principle. He even
went beyond by inventing new methods for bounds for L2 estimates and related them
with the theory of analytic sheaves on a Stein manifold.

Not only Hörmander extended Ehrenpreis’s fundamental principle but also Os-
hima, Saburi and Wakayama for symmetric spaces X. They announced in their paper
([OSW91], Sect. 8, Thm. 4) that the conjecture is true if Eγ = Cp,Eτ = Cq and
Eδ = Cr, p, q, r ∈ N, with trivial K-representations.

Another interesting result is that of Kashiwara-Schmid [KS95]. By taking the du-
alization of the sequence (0.2), i.e., Dt : C−∞{o} (X,Eγ̃) −→ C−∞{o} (X,Eτ̃ ) and restricting
to distributions supported at the origin o ∈ X, we obtain an operator, also denoted by
Dt:

Dt : U(g)⊗U(k) Eγ̃ −→ U(g)⊗U(k) Eτ̃ .

If Dt occurs in a projective resolution of a Harish-Chandra-module W , e.g. an irre-
ducible (g, K)-module

0→ · · · Ps+3→ U(g)⊗U(k) Es+2
Ps+2→ U(g)⊗U(k) Es+1

Ps+1→ · · · P0→ U(g)⊗U(k) E0 → W → 0

with Dt = Ps, s ∈ N0, then the conjecture is true for D. Here U(g) (resp. U(k)) is the
universal enveloping algebra of the complexification of the Lie algebra g (resp. k) of G
(resp. K). The full proof appeared in [Ka08] and is based on D-modules.

We see that for many special cases, the conjecture is true, but it is not proved in
general. The aim of this thesis is to present a possible strategy to solve the conjecture
and apply it for some instructive examples. The following diagram, which we will try to
explain in the sequel, pictures the strategy and also the ’jungle’ into which the reader
is about to adventure.

C∞(X,Eγ) C∞(X,Eτ )
exact

C∞(X,Eδ)

C−∞c (X,Eδ̃) C−∞c (X,Eτ̃ )
exact

C−∞c (X,Eγ̃)
closed range

PWSδ̃(a
∗
C ×K/M) PWSτ̃ (a

∗
C ×K/M)

exact
PWSγ̃(a

∗
C ×K/M)

closed range
(Level 2)

µPWS δ̃(a
∗
C) µPWS τ̃ (a

∗
C)

exact
µPWS γ̃(a

∗
C)

closed range
(Level 3)

D

dualization

D̃

Fδ̃

D̃t

Fτ̃

Dt

Fγ̃

Q P

µQ µP



CHAPTER 0. INTRODUCTION iv

Roughly speaking, to prove that Im(D) = Ker(D̃), the idea is to prove that D has
a closed and dense range in Ker(D̃). In terms of duals, we wish to prove that Dt is
injective modulo Ker(D̃) with closed range in the strong dual topology. Write (τ̃ , Eτ̃ )
for the contragredient K-representation of (τ, Eτ ) and

C−∞c (X,Eτ̃ ) := C∞(X,Eτ )′

for the space of compactly supported distributions. The next step will be to apply
the Fourier transform for sections and describe the image of the Fourier transform of
C−∞c (X,Eτ̃ ) as the space of holomorphic and smooth functions with some slow growth
and intertwining conditions. This will lead us to the Paley-Wiener-Schwartz theorem
for distributionals sections.

Theorem A (Thm. 2.40). Let PWSτ̃ (a
∗
C×K/M) be the Paley-Wiener-Schwartz space

for sections of homogeneous vector bundles Eτ̃ . Then, there is a topological isomorphism
through the Fourier transform

C−∞c (X,Eτ̃ )
Fτ̃−→ PWSτ̃ (a

∗
C ×K/M).

In particular, our starting point will be Delorme’s Paley-Wiener theorem for C∞c (G)
([Del05], Thm. 2), which we refer to as (Level 1) and which we would like to apply
and make more concerete for our proposes. The most difficult, but at the same time
exciting task, will be to control his intertwining conditions ([Del05] & [vdBS14]). For
three examples, G = SL(2,R), G = SL(2,R) × · · · × SL(2,R) (finite copies) and
G = SL(2,C), we will completely determine the intertwining conditions for the Paley-
Wiener-Schwartz space. Now by using the impact of Thm. A, the Fourier transform
of D̃t (resp. Dt) will be a matrix of polynomials Q (resp. P ) which also satisfies
these intertwining conditions. Therefore, the conjecture can be reformulated in terms
of action of Q on PWSτ̃ (a

∗
C ×K/M) (resp. P on PWSγ̃(a

∗
C ×K/M)). Nevertheless,

the modified problem is still too difficult to be solved in general. It is appropriate to
quote here Hörmander’s doctoral adviser Lars Gårding:
„When a problem of partial differential operators has been fitted into the abstract theory,
all that remains is usually to prove a suitable inequality and much of our new knowledge
is, in fact, essentially contained in such inequalitites.“
Hörmander repeatedly followed this principle in his work. In particular, we can relate
the above with Hörmander’s results ([Hör73], Thm. 7.6.11 and Cor. 7.6.12) on the ’a’-
part under some conditions on the K-type. More precisely, we will fix an irreducible
K-representation (µ,Eµ) on the left while a rightK-type is fixed by the bundle E∗̃ → X,
∗ = δ, γ, τ , which we will refer to as (Level 3). Of course, (Level 2) will correspond to
the desired situation. In this framework, we can immediately solve the conjecture in
(Level 3).

Hypothesis B (Hyp. 2 & Hyp. 3). There exist M ∈ N0, for all r ≥ 0 and N ∈ N0,
as well as a constant Cr,N ∈ N0 so that for each function u ∈ µPWS τ̃ ,H(a∗C) such that
||Pu||r,N <∞, one can find a function v ∈ µPWS τ̃ (a

∗
C) with

(i) Pu = Pv and

(ii) ||v||r,N+M ≤ Cr,N ||Pu||r,N .

The constant M can be chosen to be independent of the K-type µ and Cr,N to be a
constant of at most of polynomial growth in the length of µ.
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Here, ||ϕ||r,N := supλ∈a∗C(1 + |λ|2)−Ne−r|Re(λ)|||ϕ(λ)||op denotes the semi-norm for
ϕ ∈ µPWS τ̃ (a

∗
C), where || · ||op is the operator norm in the corresponding space and

µPWS τ̃ ,H(a∗C) is the Paley-Wiener-Schwartz without the growth condition.
The final step would be to move back to (Level 2) and take the inverse Fourier

transform to get to the initial problem.

Theorem C (Thm. 4.10 & Cor. 4.11). Assume that Hyp. B is satisfied. Then, under
a mild additional assumption (Hyp. 1), we have solvability on the symmetric space
X = G/K and in the ball Br(x) ⊂X,∀r ≥ 0, x ∈ X.

In particular, we will establish Hyp. 1, Hyp. B and Hyp. B in (Level 2) forG = SL(2,R).

Theorem D (Thm. 5.1 & Thm. 5.2). The conjecture is true on the hyperbolic plane
H2.

Also partial results will be obtained for G = SL(2,R)d (d ≥ 2) and G = SL(2,C).

Roadmap of the thesis. The thesis consists of five chapters. The first three provide
key preparations and tools for the conjecture, which will be then merged in the fourth
chapter and afterwards, in the last one, applied to several illustrative examples.

In Chapter 1, we will start with some preliminary results on harmonic analysis
on semi-simple Lie groups. In particular, we will introduce the notions of invariant
differential operators on Riemannian symmetric spaces in order to give the precise
statement of the conjecture (Sect. 1.3 & Conj. 1).

Chapter 2 will contain crucial and important tools for the solvability questions,
namely the Fourier transform and the Paley-Wiener theorems for sections over ho-
mogeneous vector bundles. Starting with Delorme’s Paley-Wiener theorem, we will
adjust it for our proposes. We will consider three levels, (Level 1) refers to Delorme’s
Paley-Wiener theorem (Thm. 2.7), (Level 2) corresponds to the desired Paley-Wiener
theorem for sections (Thm. 2.31) and (Level 3) stands for the Paley-Wiener theorem
for sections for ’spherical functions’ (Thm. 2.31). Using Frobenius-reciprocity, we will
transfer Delorme’s intertwining condition to the other levels (Prop. 2.26 & Thm. 2.28).
Furthermore, we will present a topological Paley-Wiener-Schwartz theorem for distri-
butional sections (Thm. 2.40) by using a version of Plancherel theorem for sections
(Thm. 2.34 & Cor. 2.35). This chapter will end by analysing the consequence of De-
lorme’s theorem on the invariant differential operators (Thm. 2.46).

Chapter 3 will be devoted to the description of a family of examples of general
interest for Delorme’s intertwining conditions exposed in the previous chapter. More
precisely, we will introduce the Knapp-Stein and Želobenko intertwining operators. We
will develop a criterion to check when a subset of Delorme’s intertwining condition is
already sufficient to describe the Paley-Wiener space completely (Thm. 3.13). This
criterion is already contained implicitely in Delorme’s proof of his Paley-Wiener theo-
rem. To apply it, one has to know rather the complete composition series of reducible
principle series representations.
For example, for the case of G = SL(2,R), we will describe this composition series and
the corresponding intertwining conditions for each levels (Thms. 3.17, 3.18 & 3.20), in
particular in (Level 2), with the help of ’box-pictures ’ (Fig. 3.1). After that, we will
observe that if we consider the product of G = SL(2,R) × · · · × SL(2,R), the inter-
twining conditions remain the ’same’ (Thm. 3.25). As third example, we will consider
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G = SL(2,C). Here, the interpretation of Delorme’s intertwining conditions will be
more complicated than for the previous two examples (Thms. 3.28, 3.29 & 3.35). In
these three cases, we will have complete explicit Paley-Wiener(-Schwartz) theorems.

In Chapter 4, we will gather all our tools from the previous chapters and explain a
possible strategy to attack the conjecture, which we will refer to as our four hypotheses
(Hyps. 1 - 4). In fact, the plan will be to prove the conjecture for K-finite elements,
this means in (Level 3) and then go up to the desired situation (Level 2) by applying
some convergence arguments and the Fourier decomposition (Thm. 4.1). We will com-
plete the proof of the conjecture by employing abstract function analytic criteria for
closedness and density of images of operators (Thm. 4.10 & Cor. 4.11).

Finally, in Chapter 5, the hypotheses stated in the previous chapter, will then
be proved (partially) for three specific examples. Namely, for the hyperbolic plane H2

(Thms. 5.1 & 5.2), in particular we obtain Thm. D, and partial results for H2×· · ·×H2

(Thms. 5.4 & 5.5) and H3 (Thm. 5.7).

Keywords. Symmetric spaces, Fourier transform, Fourier series, Paley-Wiener theo-
rem, Linear invariant differential operators, Intertwining operators, Homogeneous vec-
tor bundles,...
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„The analysis of PDE is a beautiful subject, combining the rigour and technique of
modern analysis and geometry with the very concrete real-world of physics and other

sciences.“
– Terence Tao (2006)



Chapter 1

Invariant differential operators on
symmetric spaces and statement of
the conjecture

In this chapter, we introduce the main objects of study, namely the invariant differen-
tial operators on Riemannian symmetric spaces X, as well as the notions of harmonic
analysis on X that will be used in the rest of the thesis. The chapter ends with the
precise statement of Conjecture 1.

In Section 1.1, we start to review briefly the basic terminology and important results
of sections over complex homogeneous vector bundles over X. Then, we describe
the invariant differential operators and give their algebraic interpretation in terms of
universal enveloping algebra. We adopt the standard notation and refer to ([Wal88],
[Jac62] & [KoRe00]) for more details.

Next, in Section 1.2, we move to their interpretation in terms of symmetric algebra
and universal enveloping algebra. This gives rise to the discussion of their image under
the so-called Harish-Chandra homomorphism, which will be useful for our exposition
in Chapter 2, in particular in Section 2.4. For further details we refer to ([Olb95] &
[Wal88]).

Finally, in Section 1.3, in view to state rigorously the main problem we are interested
in, we construct, by dualization, an invariant differential operator D̃ so that its kernel
is equal to the image of a given invariant differential operator D. This turns out to
attend the solvability of such invariant differential operators.

1.1 Invariant differential operators on sections of ho-
mogeneous vector bundles

Let G be a real connected semi-simple Lie group with finite center of non-compact
type and K ⊂ G a maximal compact subgroup. The quotient X = G/K, then is a
Riemannian symmetric space of non-compact type.
Consider Eτ a vector space over C and denote by GL(Eτ ) the group of all invertible
elements of End(Eτ ), which is the space of continuous endomorphism of Eτ . Let K̂ be
the set of all isomorphism classes of, not necessary irreducible, unitary representations

τ : K → GL(Eτ )

1
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of K on Eτ . Recall that a representation (τ, Eτ ) is irreducible, if the only invariant
subspace of Eτ are {0} and itself ([Wal88], 1.1.1). Since K is compact, every τ ∈ K̂ is
finite-dimensional.

With the data (G,K,Eτ ), we can construct a homogeneous vector bundle over X
as follows. Let Eτ := (G× Eτ )/K = G×K Eτ be the quotient space of G× Eτ under
the equivalence relation

[g, v]k ∼ [gk, τ(k−1)v], g ∈ G, v ∈ Eτ , k ∈ K

and consider the canonical projection p : Eτ −→ X mapping the equivalence class of
[g, v] to gK, for g ∈ G and v ∈ Eτ . The pair (p, Eτ ) is a vector bundle over X with fiber
p−1(gK) = [g, Eτ ] = {[g, v] | v ∈ Eτ}. In particular, Eτ is a complex (G-)homogeneous
vector bundle over X induced by Eτ since it carries the smooth left G-action given by
g[x, v] := [gx, v], for every x, g ∈ G and v ∈ Eτ . It is compatible with the map p

p(g[x, v]) = gp([x, v]), g, x ∈ G, v ∈ Eτ .

Let s : X → Eτ be a section of the (G-)homogeneous vector bundle Eτ , i.e. p ◦ s =
IdX . The space of its smooth sections C∞(X,Eτ ) is equipped with a smooth left
G-action given by

(g · s)(x) := g(s(g−1x)), g ∈ G, x ∈ X, s ∈ C∞(X,Eτ ).

Note that the space C∞(X,Eτ ) carries a natural Fréchet topology, this means it is a
locally convex topological vector space where the family of semi-norms is countable.

The next isomorphism of G-modules will be useful. Here, we denote by WK the
space of the K-invariants of a K-representation W . The complete proof can be found
for example in [KoRe00].

Proposition 1.1. In the previous notation, let

C∞(G,Eτ )
K := {f : G

C∞→ Eτ | f(gk) = τ(k)−1(f(g)),∀g ∈ G, k ∈ K}

denotes the space of all infinitely often differentiable maps from G to Eτ , where the
group G acts on the space by translations from the left. Then, one has the G-isomorphism

C∞(G,Eτ )
K ∼= C∞(X,Eτ )

given by f 7→ sf (gK) = [g, f(g)] with g · sf = slgf , where

(lgf)(x) := f(g−1x), g, x ∈ G

denotes the left translation on the vector space C∞(G) of all smooth function of G. �

Moreover, let [C∞(G)⊗Eτ ]K be the set of all K-invariant vectors of C∞(G)⊗Eτ ,
where K acts on C∞(G) by right translation via

(rgf)(x) := f(xg), g, x ∈ G

and on Eτ by τ . While G acts by left translation and trivial on Eτ . Then, there is an
isomorphism between

[C∞(G)⊗ Eτ ]K ∼= C∞(G,Eτ )
K
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given by
∑

i fi ⊗ vi 7→
∑

i fi · vi, for fi ∈ C∞(G) and vi runs a vector basis of Eτ , for
all i. Hence we can identify the space of sections over homogeneous vector bundles
over X by

C∞(X,Eτ ) ∼= C∞(G,Eτ )
K ∼= [C∞(G)⊗ Eτ ]K .

Consider now an additional, not necessary irreducible, K-representation (γ,Eγ) and
its associated complex homogeneous vector bundle Eγ := G×K Eγ over X.

Definition 1.2. A linear non-zero differential operator

D : C∞(X,Eγ)→ C∞(X,Eτ )

between sections over homogeneous vector bundles is said to be G-invariant if

D(g · f) = g · (Df), ∀g ∈ G, f ∈ C∞(X,Eγ).

This meansD is equivariant with respect to the left regular translations lg by G. We
denote by DG(Eγ,Eτ ), the vector space of all these G-invariant differential operators
on sections.

Enveloping algebras and invariant differential operators

Here and in the following, we use the convention to denote Lie groups by Roman
capitals and their Lie algebras by the corresponding lower case Gothic letters.
Let g (resp. k) be the Lie algebra of the Lie group of G (resp. K) and U(g) (resp.
U(k)) be the universal enveloping algebra of complexification of g (resp. k) (e.g. [Jac62]
Chap. V).

Let Z ∈ g, then, we have a left invariant (first order) differential operator on G

Zf(g) = rZf(g) =
d

dt

∣∣∣
t=0
f(g exp(tZ)), g ∈ G, f ∈ C∞(G)

so that lg(Zf) = Z(lgf). Here the suffix |t=0 means the evaluation in real variables
t = 0 after differentation. In a similar way, one can define a right invariant differential
operator on G by

lZf(g) =
d

dt

∣∣∣
t=0
f((− exp(tZ))g).

The left lZ and right rZ invariant differential operator can be extended for Z ∈ U(g).

Various ways of looking at space of invariant differential operators DG(Eγ,Eτ ) are
known from the literature, e.g. in [KoRe00]. We will present an interpretation which
suits our purpose. To do this, let us analyse an important construction related to U(k)-
modules. Write Hom(Eγ, Eτ ) for the vector space of complex homomorphism from Eγ
to Eτ . We turn U(g)⊗ Hom(Eγ, Eτ ) into U(g)-module by

Z(Y ⊗ a) := ZY ⊗ a,

where Z ∈ U(g), Y ∈ U(k) and a ∈ Hom(Eγ, Eτ ). Let

opp : U(k)→ U(k)

be the anti-automorphism algebra map of U(k) given by opp(Y ) := −Y , for Y ∈ k
([Wal88] Chap.0 p.10). Then, Hom(Eγ, Eτ ) turns into a left U(k)-module by
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Y a := aγ(opp(Y )). Hence, the tensor product of the modules U(g) and Hom(Eγ, Eτ )
over U(k) is the tensor product over C modulo the equivalence relation determined by
the linear span J of the elements

ZY ⊗ a− Z ⊗ aγ(opp(Y )).

The standard notation of this tensor product of a left and a right U(k)-module is written
by

U(g)⊗U(k) Hom(Eγ, Eτ ) := (U(g)⊗ Hom(Eγ, Eτ ))/J

(e.g. [KoRe00], p. 373 or [Wal88], 0.6.5.). Note that, by convention, we will not
distinguish between the notation of the induced representation of k resp. of U(k) on
a vector space Eγ, with the notion of a representation γ of K on Eγ. Elements in
U(g)⊗U(k) Hom(Eγ, Eτ ) act on function f ∈ C∞(X,Eγ) by

D(f(g)) = (Z ⊗ a)(f(g)) := a(Zf)(g), g ∈ G.

It is clear that it is left invariant and thus it commutes with lg. Note also that, since
the elements in J act trivially, the above action is well-defined. Indeed, for Y ∈ k

(ZY ⊗ a)(f(g)) = a(ZY )(f(g)) = a
d

dt

∣∣∣
t=0

(Zf)(g exp(tY ))

= a
d

dt

∣∣∣
t=0
γ(exp(−tY ))(Zf)(g)

= a ◦ γ(opp(Y ))(Zf)(g)

= (Z ⊗ a ◦ γ(opp(Y )))(f)(g).

To guarantee that the elements in U(g) ⊗U(k) Hom(Eγ, Eτ ), which describe all left
invariant linear differential operators, operate from C∞(X,Eγ) to C∞(X,Eτ ), a further
condition is required. The subgroup K acts on U(g), by the adjoint representation and
naturally on Hom(Eγ, Eτ ) by k ∈ K, sending any element a to τ(k) ◦ a ◦ γ(k)−1. Thus,
we set

k(Z ⊗ a) = Ad(k)Z ⊗ τ(k)aγ(k)−1.

Since the tensor product action leaves the subspace J invariant, K acts on the tensor
product over U(k). We will denote by [U(g) ⊗U(k) Hom(Eγ, Eτ )]

K the subset of K-
invariants elements. Hence, we have the following isomorphism, which is quite explicit.

Proposition 1.3 ([KoRe00], Prop. 1.2.). Given two finite-dimensionalK-representations
(γ,Eγ) and (τ, Eτ ) with their associated complex homogeneous vector bundles Eγ resp.
Eτ over X. The space of G-equivariant differential operators acting from C∞(X,Eγ)
to C∞(X,Eτ ) is isomorphic to [U(g)⊗U(k) Hom(Eγ, Eτ )]

K:

DG(Eγ,Eτ ) ∼= [U(g)⊗U(k) Hom(Eγ, Eτ )]
K

action induced by (Z ⊗ a)(f(g)) = a(Zf)(g), for Z ∈ U(g), a ∈ Hom(Eγ, Eτ ) and
f ∈ C∞(X,Eγ). �

Remark 1.4. (a) Notice that the above isomorphism respects the multiplication. In
fact, consider an additional K-representation (δ, Eδ) and let {Zi, i = 1, . . . , n}
and {Wj, j = 1, . . . ,m} in U(g). Take two invariant differential operators of the
form

D1 =
n∑
i=1

Zi ⊗ ai, and D2 =
m∑
j=1

Wj ⊗ bj
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with ai ∈ Hom(Eγ, Eτ ) and bj ∈ Hom(Eτ , Eδ) two constant matrices. Then for
g ∈ G and f ∈ C∞(X,Eγ):

(D2 ◦D1)(f(g)) =
m∑
j=1

bj(Wj(D1f))(g) =
m∑
j=1

bj

(
Wj

n∑
i=1

ai(Zif)
)

(g)

=
m∑
j=1

n∑
i=1

bj ◦ ai(WjZif)(g).

(b) When (γ,Eγ) = (τ, Eτ ) =: (∗, E∗), then the vector space U(g) ⊗U(k) End(E∗) is
actually an algebra DG(E∗,E∗).

(c) When (∗, E∗) is the trivial one-dimensional representation, i.e. E∗ = C, one has
an isomorphism of algebras

DG(C,C) ∼= U(g)K/U(g)K ∩ U(g)k,

where DG(C,C) coincides with the commutative algebra D(G/K) of left-invariant
differential operators acting on smooth functions on X = G/K.
More generally, if (∗, E∗) is an irreducible representation, not necessarily trivial,
one can prove (see [Olb95], Satz 2.4) that

DG(E∗,E∗) ∼= U(g)K/[U(g)Ker(∗̃)]K ,

where Ker(∗̃) is the kernel of the dual of a K-representation of ∗.
Next, let us delve into another decomposition so that Hom(Eγ, Eτ ) turns into a

right U(k)-module by Y a := τ(Y )a, for Y ∈ U(k) and a ∈ Hom(Eγ, Eτ ). In this case,
we operate on the second term. Set I as the U(g)-submodule of U(g) ⊗ Hom(Eγ, Eτ )
generated by the elements

WY ⊗ a−W ⊗ τ(Y )a, W ∈ U(g).

In order to distinguish, between the U(g)-action on U(g) ⊗ Hom(Eγ, Eτ ) by left and
right translation in the first factor, for convenience, we rewrite the tensor product of
the modules U(g) and Hom(Eγ, Eτ ) over U(k) by

U(g)⊗U(k),τ Hom(Eγ, Eτ ) := (U(g)⊗ Hom(Eγ, Eτ )/I

and
U(g)⊗U(k),γ Hom(Eγ, Eτ ) := (U(g)⊗ Hom(Eγ, Eτ )/J.

Let D =
∑n

i=1 Zi ⊗ ai be an element in [U(g) ⊗U(k),γ Hom(Eγ, Eτ )]
K and consider the

map
U(g)⊗U(k) Eγ −→ U(g)⊗U(k) Eτ

so that D operates on W ⊗ u ∈ U(g)⊗U(k) Eγ by

D(W ⊗ u) =
( n∑
i=1

Zi ⊗ ai
)

(W ⊗ u) :=
n∑
i=1

WZi ⊗ ai(u).

This leads us to prove the following statement.
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Proposition 1.5. The mapping

[U(g)⊗U(k),γ Hom(Eγ, Eτ )]
K ι−→ [U(g)⊗U(k),τ Hom(Eγ, Eτ )]

K

defined by ι(
∑n

i=1 Zi ⊗ ai) =
∑n

i=1 opp(Zi)⊗ ai is an isomorphism.
In particular, D ∈ [U(g)⊗U(k),γ Hom(Eγ, Eτ )]

K operates on U(g)⊗U(k) Eτ by

D(W ⊗ v) =
( n∑
i=1

Zi ⊗ ai
)

(W ⊗ v) :=
n∑
i=1

Wopp(Zi)⊗ ai(v)

for W ∈ U(g) and v ∈ Eτ .

Proof. The main point of this proof lies on the well-definedness of the isomorphism
map ι. To do this, we will proceed by a directly algebraic approach. Let

n∑
i=1

(ZiYi ⊗ ai + Zi ⊗ aiγ(Yi)) ∈ [U(g)⊗C Hom(Eγ, Eτ )]
K

with Zi ∈ U(g), Yi ∈ k (or U(k)) and ai ∈ Hom(Eγ, Eτ ),∀i. Note, that, here, the tensor
product is over C and not {U(k), γ}, otherwise the LHS would be equal to 0. Since∑n

i=1 Zi ⊗ ai 7→
∑n

i=1 opp(Zi)⊗ ai is K-equinvariant (also for the tensor product over
C), it is sufficient to prove that

n∑
i=1

(opp(ZiYi)⊗ ai + opp(Zi)⊗ aiγ(Yi)) = 0 in [U(g)⊗U(k),τ Hom(Eγ, Eτ )]
K .

By computation, we obtain

n∑
i=1

(opp(ZiYi)⊗ ai + opp(Zi)⊗ aiγ(Yi))

=
n∑
i=1

(−Yiopp(Zi)⊗ ai + opp(Zi)⊗ aiγ(Yi))

=
n∑
i=1

(
− pK

{
Yiopp(Zi)⊗ ai− opp(Zi)Yi ⊗ ai+ opp(Zi)⊗ τ(Yi)ai

−opp(Zi)⊗ aiγ(Yi)
}

+ pK{− opp(Zi)Yi ⊗ ai + opp(Zi)⊗ τ(Yi)ai}
)

= 0 + pK

{ n∑
i=1

(− opp(Zi)Yi ⊗ ai + opp(Zi)⊗ τ(Yi)ai)
}
, (1.1)

where pK denotes the projection on the K-invariants. Now consider the space Cτ
defined by the element of the linear span I. Cτ is an K-invariant subspace of U(g)⊗C
Hom(Eγ, Eτ ). Thus, we have that pK(Cτ ) ⊂ Cτ and therefore (1.1) ∈ Cτ . In conclusion,
we proved that (1.1) = 0 in [U(g)⊗U(k),τ Hom(Eγ, Eτ )]

K .

Thus, by Prop. 1.5, we can regard D ∈ DG(Eγ,Eτ ) as a linear map

U(g)⊗U(k) Eγ
D−→ U(g)⊗U(k) Eτ . (1.2)

Both U(g)⊗U(k) Eγ and U(g)⊗U(k) Eτ are finitely generated U(g)-modules.
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1.2 Chevalley restriction and Harish-Chandra type
homomorphism

In this section, we want to describe the vector space of G-invariant differential operators
DG(Eγ,Eτ ) in terms of symmetric algebra over p and the universal enveloping algebra
U(g). This leads us to the definition of a general Harish-Chandra-homomorphism
Φγ,τ , which embeeds DG(Eγ,Eτ ) in the space of polynomials with values in a finite-
dimensional space of Hom(Eγ, Eτ ).

Let us fix some notations related to the structure of the complex Lie algebra g of
G. Let

g = k⊕ p

be the Cartan decomposition of g into an orthogonal (under the Cartan-Killing form
B of g) direct product of the ±1 eigenspaces of the Cartan involution.

The symmetric algebra S(g) generated by the vector space g is build as follows.
Let T (g) :=

⊕∞
n=0 T

n(g) =
⊕∞

n=0 g⊗ · · · ⊗ g (with convention that T 0(g) = C) be the
tensor algebra over the vector space g and denote by I(g) the two-sided ideal generated
by the commutators Z ⊗ Y − Y ⊗ Z, for Z, Y ∈ g. Set

S(g) := T (g)/I(g) =
∞⊕
n=0

Sn(g),

where Sn(g) are the n-th symmetric power of g ([Jac62], Chap.V.). There is a natural
homomorphism between S(g) and U(g). We define a linear (bijective) map symm :
S(g) −→ U(g) by

symm(Z1 · · ·Zp) =
1

p!

∑
s∈Sp

Zs(1) × · · · × Zs(p), {Zi, i = 1, . . . , n} ∈ g,

which is equivariant under all automorphism of g, extended to S(g) and U(g). In par-
ticular, under adjoint Lie algebra Ad(g), g ∈ G. Here, Sp is the permuations group
of the p letters. By Poincaré-Birkhoff-Witt’s (short PBW) theorem ([Jac62], Thm. 3,
p.159), this map symm is even an isomorphism and is called symmetrization map,
([Wal88] 0.4.2).

Note that by Wallach ([Wal88], 0.4.3), U(k) can be identified with the associative
subalgebra of U(g) generated by 1 and k. Thus, we have an injective canonical map of
U(k) into U(g). Hence, due to the Cartan decomposition of g, we have symm(S(p)) ⊂
U(g) and a linear isomorphism

symm(S(p))⊗ U(k) ∼= U(g)

defined by Z1 · · ·Zp ⊗ Y 7→ Z1 · · ·ZpY , for Y ∈ U(k) and Z1 · · ·Zp ∈ symm(S(p)).
By Wallach ([Wal88], 0.4.3) again, this means that U(g) is the free module (resp. free
U(k)-module) on the generators symm(S(p)) as a U(k) module under left multiplica-
tion (resp. generated by symm(S(p)) under the right multiplication by U(k)). This
observation, together with Prop. 1.3, breed to the following well-defined isomorphism.
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Proposition 1.6. The vector space of all invariant differential operators DG(Eγ,Eτ )
is isomorphic to [S(p)⊗ Hom(Eγ, Eτ )]

K. �

Next, notice that the vector space DG(Eγ,Eτ ) is a filtered space by degree and
with Gr(DG(Eγ,Eτ )) we denote its corresponding graded space. Similarly for U(g), if
Un(g) ⊂ Un+1(g) is canonical filtration of U(g), then its associated graded algebra is
defined by

Gr(U(g)) =
∞⊕
n=0

Un(g)/Un−1(g)

([Wal88], 0.4.2). By PBW’s theorem, we know that Gr(U(g)) ∼= S(g), thus by Prop. 1.6
and Olbrich’s result ([Olb95], Folgerung 2.5), we can easily deduce the following algebra
isomorphism

Gr(DG(Eγ,Eτ )) ∼= [S(p)⊗ Hom(Eγ, Eτ )]
K . (1.3)

Now, set Pol(g) as the space of complex valued polynomial functions on the real
vector space g. By Wallach ([Wal88], 3.2.2), we know that

S(g) ∼= Pol(g∗) (1.4)

is isomorphic and we can identify S(g) and Pol(g∗) as g-modules. Thus, by replacing g
by p, we have that DG(Eγ,Eτ ) is isomorphic to the space of all polynomials in p∗ with
values in Hom(Eγ, Eτ ):

DG(Eγ,Eτ )
Prop.1.3∼= [U(g)⊗U(k) Hom(Eγ, Eτ )]

K
Prop.1.6∼= [S(p)⊗ Hom(Eγ, Eτ )]

K

(1.4)∼= [Pol(p∗)⊗ Hom(Eγ, Eτ )]
K

∼= Pol(p∗,Hom(Eγ, Eτ ))
K .

Note that K acts on Pol(p∗) by kp(Y ) = p(Ad∗(k−1)Y ), for k ∈ K,Y ∈ p∗ and
p ∈ Pol(p∗), ([Wal88], 3.1.1.). Here Ad∗ denotes the dual or coadjoint adjoint repre-
sentation.

Choose now a maximal abelian subalgebra a ⊂ p, called Cartan subspace, and write
by a∗ its (real) dual. The dimension of any a is a constant called the (real) rank of
G. Any two Cartan subspaces are conjugate under the adjoint representation Ad(K)
of K.

Consider WA = M ′/M the analytic Weyl group, where

M ′ := NK(a) = {k ∈ K | Ad(k) ⊂ a} ⊂ K

is the normalizer of a in K, and M := ZK(a) = {k ∈ K | Ad(k)H = H,∀H ∈ a} is the
centralizer of a in K.

The restriction of the exponential map of G to a is an analytic diffeomorphism onto
the abelian subgroup A := exp(a). The inverse diffeomorphism is denoted by log. The
action on a of the Weyl group WA induces actions of WA on a∗ by duality, on A via
the exponential map, and on aC by complex linearity. We have

Ad(K)a = p, (1.5)
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i.e. every point in p is conjugate to some element H of a. Thus, since p carries an
Ad(K)-invariant Euclidean scalar product, we therefore can view a∗ as a subspace of
p∗ :

a∗ ∼= a ⊂ p ∼= p∗.

We then obtain a restriction map

res : Pol(p∗,Hom(Eγ, Eτ ))
K −→ Pol(a∗,Hom(Eγ, Eτ ))

M ′ .

By (1.5) this map is injective and we get

Pol(a∗,Hom(Eγ, Eτ ))
M ′ ∼= Pol(a∗,HomM(Eγ, Eτ ))

WA ,

where WA acts on Pol(a∗) by wp(H) = p(w−1H) for w ∈ WA, H ∈ a∗ and p ∈ Pol(a∗)
and on HomM(Eγ, Eτ ) by wa := τ(mw)aγ(m−1

w ) for a ∈ HomM(Eγ, Eτ ),mw ∈ M ′. So
we get an embedding

res : DG(Eγ, Eτ ) ∼= Pol(p∗,Hom(Eγ, Eτ ))
K ↪−→ Pol(a∗,HomM(Eγ, Eτ ))

WA (1.6)

with respect to a graded multiplication. In some cases, the image of res is known, but
it is difficult to compute in general. The complete proof of the followng proposition,
can be found for example in ([Hel20], Thm. 6.10, p.430) or in ([Wal88], 3.1.2).

Proposition 1.7 (Chevalley restriction Theorem). Let Eγ = Eτ = C be trivial one
dimensional vector bundles. Then, we have an algebra isomorphism between Pol(p∗)K
and Pol(a∗)WA . �

Remark 1.8. (i) This theorem is due to Chevally (unpublished, [HC58], I, Sect. 3).

(ii) If for instance Eγ = Eτ =: E is not irreducible under M ′, then the analog of
Prop. 1.7 can not be true even on the level of constant polynomials. In fact, we
have that EndK(E) is one-dimensional and EndM ′(E) is higher dimensional.

However (1.6) gives a lot of information on DG(Eγ,Eτ ). To see this, we need to
modify (1.6) for an embedding of algebras and decompose the universal enveloping
algebra U(g). Note, that by considering two complex finite-dimensional vector spaces
Eγ and Eτ , the map

DG(Eγ,Eτ ) −→ Pol(a∗,HomM(Eγ, Eτ ))

is no longer an homomorphism of algebra but of associated algebroids, which respect
the multiplication.

Consider ∆+
a as the set of non-vanishing restricted simple positive roots of the pair

g with respect to a. Then, the Lie algebra g decomposes as

g = g0 ⊕
⊕
α∈∆+

a

gα

with gα := {X ∈ g | [H,X] = α(H)X, ∀H ∈ a} the root subspace of a root α with
multiplicity mα := dim(gα). The subspace n :=

⊕
α∈∆+

a
gα is a nilpotent subalgebra of

g. Write ρ ∈ a+ the half sum of all positive roots α ∈ ∆+
a in a+, counted with their

multiplicities mα:

ρ :=
1

2

∑
α∈∆+

a

αmα. (1.7)
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The Iwasawa decomposition ([Kna02], Chap. VI.4):

g = n⊕ a⊕ k ∈ NAK = G

provides, together with PBW’s theorem, the decomposition of the universal enveloping
algebra on linear subspaces ([Wal88], 3.2.1):

U(g) = nU(g)⊕ U(a) · U(k).

Let p be the projection on the second summands, then we identify

U(a) · U(k) ∼= U(a)⊗ U(k)

as linear space. Consider the corresponding algebra of the RHS of the above tensor
product, then

pγ : U(g) −→ U(a)⊗ U(k) −→ U(a)⊗ End(Eγ)

Z
p7→
∑n

i=1Hi ⊗ Yi 7→
n∑
i=1

Hi ⊗ γ(opp(Yi)).

Now, if we consider two K-representations, we obtain the linear map:

pγ,τ : U(g)⊗U(k) Hom(Eγ, Eτ ) −→ U(a)⊗ Hom(Eγ, Eτ ) ∼= Pol(a∗C,Hom(Eγ, Eτ ))

Z ⊗ a 7→ (
∑n

i=1Hi ⊗ Yi)⊗ a 7→
n∑
i=1

Hi ⊗ a ◦ γ(opp(Yi)),

where H ∈ U(a), Y ∈ U(k) and a ∈ Hom(Eγ, Eτ ). Thus, we have

pγ,τ (Z ⊗ a) = (1⊗ a) ◦ pγ(Z).

By restricting it to [U(a)⊗ Hom(Eγ, Eτ )]
K , we obtain the desired homomorphism.

Proposition 1.9. The restriction map Φ̃γ,τ := pγ,τ |[U(a)⊗Hom(Eγ ,Eτ )]K is a homomor-
phism of algebroids and it is injective.

Proof. For the injectivity, one checks that on the ’graded level’, it coincides with res
(1.6). In fact, if D ∈ [Un(g)⊗U(k) Hom(Eγ, Eτ )]

K then, this implies that

pγ,τ (D)− res(D) ∈ Un−1(a)⊗ HomM(Eγ, Eτ ).

Hence, form the injectivity of the map res, the assertation follows.
For the homomorphism of algebroids, since n ⊂ n⊕ a is an ideal and n⊕ a→ a is

a Lie algebra homomorphism, we have that

p0 : U(n + a) −→ U(a)

is a linear algebra homomorphism. Note that U(n+a) ∼= U(n)U(a) = U(a)⊕nU(n+a)
and U(g)⊗U(k) Hom(Eγ, Eτ ) ∼= U(n + a)⊗ Hom(Eγ, Eτ ) as vector space. Thus

pγ,τ : U(g)⊗U(k) Hom(Eγ, Eτ ) ↪→ U(n + a)⊗ Hom(Eγ, Eτ )
p0→ U(a)⊗ Hom(Eγ, Eτ ).
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Consider

D1 =
∑
i

Yi ⊗ ai ∈ U(n + a)⊗ Hom(Eγ, Eτ )

D2 =
∑
j

Zj ⊗ bj ∈ U(n + a)⊗ Hom(Eτ , Eδ)

with Yi, Zj ∈ U(n + a) and ai ∈ Hom(Eγ, Eτ ) respectively bj ∈ Hom(Eτ , Eδ). Here
(δ, Eδ) is a, not necessary irreducible, K-representation. Then, pγ,τ (D1) =

∑
i p0(Yi)⊗

ai and pτ,δ(D2) =
∑

j p0(Zj)⊗ bj. Hence

pγ,δ(D2 ◦D1) =
∑
i,j

p0(ZjYi)⊗ bjai =
∑
i,j

p0(Zj)p0(Yi)⊗ bjai = pτ,δ(D2) ◦ pγ,τ (D1).

Definition 1.10. Let pγ,τ as above and vρ : U(a) → U(a), H 7→ H + ρ(H), H ∈ a
be an automorphism. The Harish-Chandra homomorphism is an injective algebroid-
homomorphism

Φγ,τ : DG(Eγ,Eτ ) −→ U(a)⊗ HomM(Eγ, Eτ )

defined by Φγ,τ = vρ ◦ pγ,τ .
Remark 1.11. (i) If Eγ = Eτ is irreducible, then by Olbrich ([Olb95], Satz 2.8), we

even get an isomorphism.

(iii) Furthermore, with the help of Φγ, it will be easy to show the necessity and
sufficiently criterion for the commutativity of the algebra DG(Eγ,Eγ). For more
details, we refer to Sect. 2.2. in [Olb95].

1.3 Integrability conditions and the conjecture
Given a linear invariant differential operator D ∈ DG(Eγ,Eτ ). We wish that the equa-
tion Df = g is solvable in C∞(X,Eγ), if and only, if D̃g = 0, for all g ∈ C∞(X,Eτ )
given and for a certain differential operator D̃. To do so, we need to construct, first, a
candidate for D̃. Ideally, we want to find a homogeneous vector bundle F→ X and a
certain D̃ ∈ DG(Eτ ,F), such that, in particular, D̃ ◦D = 0.

Since D is G-invariant and by (1.2), we have that Ker(D) is a U(g)-submodule
and a (g, K)-submodule of U(g) ⊗U(k) Eγ. Since U(g) is Noetherian ([Wal88], 0.6.1.)
and U(g) ⊗U(k) Eγ is finitely generated, there exists a finite-dimensional K-invariant
generating subspace E0 of Ker(D). It carries a representation τ0 : K → GL(E0).
Consider the natural embedding

i : E0 ↪→ Ker(D) ↪→ U(g)⊗U(k) Eγ

and recall the following isomoprhism

Hom(Eγ, Eτ ) ∼= Eτ ⊗ Eγ̃. (1.8)

Note that

i ∈ HomK(E0,U(g)⊗U(k) Eγ)
(1.8)∼= [U(g)⊗U(k),γ Eγ ⊗ E0̃]K

(1.8)∼= [U(g)⊗U(k),γ Hom(E0, Eγ)]
K

Prop. 1.3∼= DG(E0,Eγ). (1.9)
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Next, we consider the induced U(g)-module U(g)⊗U(k) E0 and the linear map

D0 : U(g)⊗U(k) E0 −→ U(g)⊗U(k) Eγ

defined by D0(Z ⊗ w) = Z(w), for w ∈ E0 ⊂ U(g) ⊗U(k) Eγ and Z ∈ U(g). Moreover,
D0 is surjective on Ker(D) and D0 can be viewed as an element of DG(E0,Eγ), via
(1.9). In particular, we have that

D ◦D0 = 0. (1.10)

However, we want the opposite direction, thus, we need to dualize. Write by (γ̃, Eγ̃)
(resp. (τ̃ , Eτ̃ )) the dual of the representation (γ,Eγ) (resp. (τ, Eτ )). The dual or
’adjoint’ of D is the transposed invariant differential operator

Dt : C−∞c (X,Eτ̃ ) −→ C−∞c (X,Eγ̃)

defined by the natural pairing∫
G/K

〈Dtϕ(g), h(g)〉γ dg :=

∫
G/K

〈ϕ(g), Dh(g)〉τ dg (1.11)

with ϕ ∈ C−∞c (X,Eτ̃ ), h ∈ C∞(X,Eγ) and where the pairing 〈·, ·〉∗ denotes the pairing
in E∗, ∗ = γ, τ . Note that the space of compactly supported distributions

C−∞c (X,E∗̃) := (C∞(X,E∗))′

is the topological linear dual of C∞(X,E∗). So, we have that

Dt : U(g)⊗U(k) Eτ̃ −→ U(g)⊗U(k) Eγ̃.

Choose F0 ⊂ Ker(Dt) ⊂ U(g) ⊗U(k) Eτ̃ a finite-dimensional K-invariant generating
subspace of Ker(Dt). By the above, we obtain thatD0 ∈ DG(F0,Eτ̃ ) such thatDt◦D0 =
0. Now, set

F := F∗0 (dual of F0) and D̃ := Dt
0 ∈ DG(Eτ ,F).

Then, by (1.10), this implies that (D̃ ◦D)t = Dt ◦ D̃t = Dt ◦D0 = 0. Thus, D̃ ◦D = 0

on C∞(X,Eγ), i.e. Im(D) ⊂ Ker(D̃). This leads us to state the following problem.

Conjecture 1. Let D ∈ DG(Eγ,Eτ ) and D̃ ∈ DG(Eτ ,F) as above.
Then, the differential equation Df = g is solvable in C∞(X,Eγ) for given g ∈ C∞(X,Eτ ),
if and only, if D̃g = 0 in C∞(X,Eτ ). In other words, the sequence

C∞(X,Eγ)
D−→ C∞(X,Eτ )

exact

D̃−→ C∞(X,F) (1.12)

is exact in the middle, i.e. Im(D) = Ker(D̃).

Note that one implication is obvious, since D̃ ◦D = 0 implies that D̃g = D̃ ◦Df = 0.
In the coming chapter, we will state and prove an important tool for the conjecture,
namely the Fourier transform and the Paley-Wiener-(Schwartz) theorems for sections
over homogeneous vector bundles.



Chapter 2

Fourier transforms and the
Paley-Wiener theorems

In the Euclidean case Rn, it is well-known that the Fourier transform of an integrable
measurable function on Rn is defined by

f̂(λ) =

∫
Rn
f(x)ei〈λ,x〉 dx ∈ C, for λ ∈ Rn (2.1)

whenever the integral converges. Note that f̂(λ) is defined for λ ∈ Cn, not only for Rn,
and f̂ is holomorphic on Cn. We will, however, restrict to those functions which satisfy
certain properties. This leads us to one of the central theorems of harmonic analysis on
Rn, the so-called Paley-Wiener theorem, named after the two mathematicians Raymond
Paley and Norbert Wiener. It describes the image of the Fourier transform of the space
C∞c (Rn) of smooth functions with compact support as the space of entire functions on
Cn with the following growth condition. There exists r > 0, for each N ∈ N and one
can find a positive constant CN,r, depending on N and r, such that

|f̂(λ)| ≤ CN,r(1 + |λ|2)−Ner|Im(λ)|,

where Im(λ) is the imaginary part of λ ∈ Cn. The theorem has a counterpart, known as
Paley-Wiener-Schwartz theorem. Here, the smooth functions are replaced by distribu-
tions and the growth condition above by a ’slow’ growth ([Hör83], Thm. 7.3.1). Regard-
ing the inverse Euclidean Fourier transform of a smooth Schwartz-function f ∈ S(Rn),
it is given by

f(x) =

∫
Rn
f̂(λ)e−i〈λ,x〉

dλ

(2π)n
, for x ∈ Rn,

where dλ
(2π)n

is known as the Plancherel measure.

Now to generalize this theorem for general Lie groups G and furthermore for smooth
manifold carrying some symmetries, we need first to recall some basic and abstract
results from representation theory as well as harmonic analysis. Note that one can
reformulate (2.1) in terms of irreducible unitary representations of (Rn,+):

πλ : Rn −→ U(1)

given by πλ(y) := ei〈λ,y〉 ∈ U(1), the unitary Lie group isomorphic to the circle group.
Thus

f̂(λ) =

∫
Rn
f(x)πλ(x) dx ∈ End(C) ∼= C.

13
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For a unimodular Lie group G, with bi-invariant Haar measure dg, we expect:

f̂(π) = π(f) :=

∫
G

f(g)π(g) dg ∈ End(Eπ),

where f is an integrable measurable function on G and (π,Eπ) belongs to the set
Ĝ of all equivalence classes of irreducible unitary representations of G. There is an
equivariance or intertwining property:

(l̂xryf)(π) =

∫
G

f(x−1gy)π(g) dg =

∫
G

f(g)π(xgy−1) dg = π(x)f̂(π)π(y)−1, x, y ∈ G.

It will be important to find a nice family of representations of Ĝ, in terms of a good
parametrization, to invert the Fourier transform as well as define the Fourier transform
for C∞c (G) and then establish a Paley-Wiener theorem.

The Paley-Wiener theorem is known in many interesting cases. For example, the
case of Riemannian symmetric spaces of non-compact type X = G/K was considered
by Helgason [Hel66] and Gangolli [Gan71]. They proved a Paley-Wiener theorem for
compactly supported K-invariant smooth functions and Helgason [Hel73] even showed
it for general compactly supported smooth functions on X.
There is also a Paley-Wiener theorem for K-finite compactly supported smooth func-
tions on a real reductive Lie group G of Harish-Chandra class due to Arthur [Art83]
and Delorme [Del05], reformulated in terms of the so-called Arthur-Campolli and De-
lorme conditions respectively.
Furthermore, later van den Ban and Souaifi [vdBS14] proved, without using the proof
nor validity of any associated Paley-Wiener theorems of Arthur or Delorme, that the
two compatibility conditions are equivalent.

The main task in this chapter is to define the Fourier transform for sections over
homogeneous vector bundles and use Delorme’s Paley-Wiener theorem to inspect the
image of the Fourier transform as well as of invariant differential operators introduced
in the previous chapter. This part of the exposition will later, in Chapter 3, applied
on specific examples.

In order to be more specific on the contents of this chapter, we start in Section 2.1,
in particular Subsection 2.1.1, by briefly reminding Delorme’s Paley-Wiener theorem
(Thm. 2.7) in the setting of van den Ban and Souaifi [vdBS14]. Then, in Subsec-
tion 2.1.2, we prepare our analysis for our purpose by describing explicitly Delorme’s in-
tertwining conditions for special cases and state the Paley-Wiener theorem (Thm. 2.31)
for sections.

Moreover, in Section 2.2, we also prove a version of Plancherel theorem (Thm. 2.33)
for sections over homogeneous vector bundles for smooth compactly supported func-
tions on X which behave finitely under both left and right translations by K.

Later, in Section 2.3, we do the same study for (Schwartz) distributions and es-
tablish a topological Paley-Wiener-Schwartz theorem for sections (Thm. 2.40). Here,
the growth properties are replaced by similar exponential conditions of ’slow’ growth,
which is alike to its Euclidean analogue, whereas the compatibility conditions remain
the same. We used some recent results of van den Ban and Schlichtkrull [vdBS06] as
well as the Plancherel theorem exposed in the above section.
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Finally, in Section 2.4, we use the Paley-Wiener-Schwartz theorem to compute the
Fourier transform of invariant differential operators acting on sections (Thm. 2.46).

2.1 Fourier transform and Delorme’s Paley-Wiener
theorem in three different levels

In this part, we state Delorme’s Paley-Wiener theorem ([Del05], Thm. 2) under certain
compatibility conditions, in three levels, as follows:

(Level 1): Refers to the original Delorme’s Paley-Wiener theorem reformulated
in the framework of van den Ban and Souaifi [vdBS14], (Subsection 2.1.1).

(Level 2): Corresponds to the desired Delorme’s Paley-Wiener theorem for our
situation, that is for sections over complex homogeneous vector bundles, where
the right K-type comes from the vector bundle (Subsection 2.1.2).

(Level 3): By considering an additional K-type (coming from the left) in con-
trast to (Level 2), we deal with a Paley-Wiener theorem with two irreducible
K-representations (Subsection 2.1.2).

In this way, it will be much easier to manage the intertwining conditions. We will
show, in Subsection 2.1.3, that the corresponding conditions at the three levels are
equivalent. Roughly speaking, it will allow us to easily switch and move from one level
to the other (Thm. 2.28).

2.1.1 On Delorme’s Paley-Wiener Theorem

Under the previous notation, fix a minimal parabolic subgroup P of G with split
component A ([Kna02], Chap. VII, Sect. 7). It has a Langlands decomposition of the
form P = MAN , where N := exp(n) is a nilpotent Lie group. Let (σ,Eσ) ∈ M̂ be a
finite-dimensional irreducible representation of M and λ ∈ a∗C

∼= Cn.
For fixed (σ, λ) ∈ M̂ × a∗C, let (σλ, Eσ,λ) be the representation of P on the vector

space Eσ,λ = Eσ such that

σλ(man) = aλ+ρσ(m) ∈ End(Eσ,λ)

for m ∈M , a ∈ A and n ∈ N . We use the notation aλ for eλ log(a). Then, the space

Hσ,λ
∞ := {f : G

C∞→ Eσ,λ | f(gman) = a−(λ+ρ)σ(m)−1(f(g))} ∼= C∞(G/P,Eσ,λ)

together with the left regular action πσ,λ of G

(πσ,λ(g)f)(x) := f(g−1x) = (lgf)(x), g, x ∈ G, f ∈ Hσ,λ
∞

is the space of smooth vectors of the principal series representations of G induced from
the P -representation σλ on Eσ,λ ([Kna86], p. 168).
The restriction map from continuous functions in Hσ,λ

∞ to functions on K is injective
by the Iwasawa decomposition KAN of G

g = κ(g)ea(g)n(g) ∈ G.
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In particular, for f ∈ Hσ,λ
∞ we have

f(g) = f(κ(g)ea(g)n(g)) = a(g)−(λ+ρ)(f(κ(g))).

This yields, the so-called compact picture ofHσ,λ
∞ ([Kna86], p.168). It has the advantage

that the representation space

Hσ
∞ := {ϕ : K

C∞→ Eσ | ϕ(km) = σ(m)−1ϕ(k), k ∈ K,m ∈M} ∼= C∞(K/M,Eσ)
(2.2)

does not depend on λ. Here, Hσ
∞ is equipped with the usual Fréchet topology. From

time to time, we need the L2-norm. In the compact picture, the action of all elements
g ∈ G, which are not in K, is slightly more involved, since we need to commute them
with the argument k ∈ K:

(πσ,λ(g)ϕ)(k) = a(g−1k)−(λ+ρ)ϕ(κ(g−1k)), ϕ ∈ Hσ
∞. (2.3)

Fourier transform for G in (Level 1)

Let
C∞c (G) =

⋃
r>0

C∞r (G) :=
⋃
r>0

{f ∈ C∞(G) | supp(f) ∈ Br(o)}

be the space of compactly supported smooth complex functions on G, where

Br(o) := {g ∈ G | distX(gK, o) ≤ r} ⊂ G

denotes the preimage of the closed ball of radius r and center o = eK in X under the
projection G → X. Here, distX means the Riemaniann distance on X and e is the
neutral element of G. We equip C∞r (G) with the usual Fréchet topology, thus C∞c (G)
is a LF-space [Tre67].

Given σ ∈ M̂ , let us consider the map

πσ,· : G→ (a∗C → End(Hσ
∞)), g 7→ (λ 7→ πσ,λ(g)).

For g ∈ Br(o) and r > 0, we know by Delorme ([Del05], (1.25)), the relation

||πσ,λ(g)||op ≤ er|Re(λ)|,

where || · ||op is the operator norm with respect to the L2-norm on Hσ
∞ and Re(λ)

denotes the real part of λ ∈ a∗C.

Definition 2.1 (Fourier transform for G in (Level 1)). Fix (σ, λ) ∈ M̂ × a∗C, we define
the Fourier transform of f ∈ C∞c (G) by the operator

Fσ,λ(f) := πσ,λ(f) =

∫
G

f(g)πσ,λ(g) dg ∈ End(Hσ
∞).

We denote by Hol(a∗C) the space of holomorphic functions in a∗C and by Hol(a∗C,End(Hσ
∞))

the space of maps M̂ × a∗C 3 (σ, λ) 7→ φ(σ, λ) ∈ End(Hσ
∞) such that

(1.i) for ϕ ∈ Hσ
∞, the function λ 7→ φ(σ, λ)ϕ ∈ Hσ

∞ is holomorphic in λ ∈ a∗C.

From ([Del05], Lem. 10 (ii)), we deduce the following statement.
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Proposition 2.2. The application f 7→ Fσ,λ(f) is a linear map from C∞c (G) into∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)).

Proof. Let us fix σ ∈ M̂ and ϕ ∈ Hσ
∞. To show that the condition (1.i) for f ∈ C∞c (G)

is holomorphic in λ ∈ a∗C, it is sufficient to prove that the map in (1.i) is weakly
holomorphic, due Osgood’s theorem (e.g. [FrGr02], Thm. 4.3.). This means that for a
vector distribution T ∈ H σ̃

−∞ := (Hσ
∞)′ on K, we need to show that

λ 7→ 〈T, πσ,λ(f)ϕ〉Hσ
∞ ∈ Hol(a∗C).

Since a(g−1k)−(λ+ρ) is an entire function on λ ∈ a∗C, we have that

(πσ,λ(g)ϕ)(k)
(2.3)
= a(g−1k)−(λ+ρ)ϕ(κ(g−1k)) ∈ Hol(a∗C)

for fixed k ∈ K and g ∈ G. By taking the integral on K, it still remains holomorphic
in λ ∈ a∗C. Furthermore by Wallach ([Wal88], Lem. 3.8.1), if U is a compact set of a∗C,
then there exists a positive constant CU depending on U such that

||πσ,λ(f)ϕ||U ≤ CU sup
k∈K
|ϕ(k)|, λ ∈ U, f ∈ C∞c (G). (2.4)

Now, for ε > 0, take a smooth function Tε on K given by elements in H σ̃
−∞, such that

T can be approximated by Tε, i.e., Tε
ε→0−→ T with strong topology. Then, by (2.4) and

Vitali’s convergence theorem (e.g. [El18], Chap. 3), the vector-valued function∫
K

〈Tε(k), πσ,λ(f)ϕ(k)〉 dk

is holomorphic and converges uniformly on compact sets U of λ to 〈T, πσ,λ(f)ϕ〉.

Delorme’s Paley-Wiener theorem and intertwining conditions in (Level 1)

We now proceed with the definition of Delorme’s Paley-Wiener space ([Del05], Def.
3) for a fixed P . To handle some conditions introduced by Arthur ([vdBS14], Sect.
3), Delorme considers derived versions of Hσ

∞ ([Del05], Sect. 1.5). Unfortunately, his
intertwining conditions ([Del05], Déf. 3 (4.4)) are not easy to understand and check,
even in particular cases. Van den Ban and Souaifi present a more elegant reformulation
of them ([vdBS14], Sect. 4.5, in particular Lem. 4.4. and Prop. 4.5.). In the same
spirit, we present another definition of derived G-representations.

Definition 2.3 (m-th derived representation). For λ ∈ a∗C, let Holλ be the set of germs
at λ of C-valued holomorphic functions µ 7→ fµ and mλ ⊂ Holλ the maximal ideal of
germs vanishing at λ.
Denote by Hσ

[λ] the set of germs at λ of Hσ
∞-valued holomorphic functions µ 7→ φµ ∈ Hσ

∞
with G-action

(gφ)µ = πσ,µ(g)φµ, g ∈ G.

We define by
Hσ,λ
∞,(m) := Hσ

[λ]/m
m+1
λ Hσ

[λ], m ∈ N0 (2.5)

the m-th derived G-representation, which is equipped with the natural Fréchet topology.
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Here, Holλ acts on Hσ
[λ] by pointwise multiplication. Note that the m =0-th derived

representation Hσ,λ
∞,(0)

∼= Hσ
∞ is the space of smooth vectors of the principal series G-

representation in the compact picture. Intuitively, we can say that Hσ,λ
∞,(m) contains

all Taylor polynomials of order m at λ of holomorphic families φµ. Moreover, φ ∈∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)) induces an operator on each Hσ,λ
∞,(m).

The following reminder will serve nicely. Consider a closed subspace W of Hσ,λ
∞,(m).

It is a G-invariant subrepresentation (or submodule) of Hσ,λ
∞,(m), if W is stable by the

action of G, i.e., πσ,λ(g)W ⊆ W , for g ∈ G [Kna02].
The following definition is equivalent to Delorme’s intertwining condition ([Del05],

Déf. 3 (4.4)).

Definition 2.4 (Delorme’s intertwining condition in (Level 1)). Let Ξ be the set of all
3-tuples (σ, λ,m) with σ ∈ M̂ , λ ∈ a∗C and m ∈ N0. Consider the m-th derived G-
representation Hσ,λ

∞,(m) defined in (2.5). For every finite sequence ξ = (ξ1, ξ2, . . . , ξs) ∈
Ξs, s ∈ N, we define the G-representations

Hξ :=
s⊕
i=1

Hσi,λi
∞,(mi).

We consider proper closed G-subrepresentations W ⊆ Hξ.
We call (ξ,W ) the intertwining data. Every function φ ∈

∏
σ∈M̂ Hol(a∗C,End(Hσ

∞))
induces an element

φξ ∈
s⊕
i=1

End(Hσi,λi
∞,(mi)) ⊂ End(Hξ).

(D.a) We say that φ satisfies Delorme’s intertwining condition, if φξ(W ) ⊆ W for every
intertwining datum (ξ,W ).

Next, we define Delorme’s Paley-Wiener space ([Del05], Déf. 3).

Definition 2.5 (Paley-Wiener space in (Level 1)). For r > 0, Delorme’s Paley-Wiener
space is the vector space

PWr(G) :=
{
φ ∈

∏
σ∈M̂

Hol(a∗C,End(Hσ
∞)) | φ satisfies conditions (1.ii)r and (D.a)

}
(2.6)

with growth condition:

(1.ii)r for all Y1, Y2 ∈ U(k), (σ, λ) ∈ M̂ × a∗C and N ∈ N0, there exists a constant
Cr,N,Y1,Y2 > 0 such that

||πσ,λ(Y1)φ(σ, λ)πσ,λ(Y2)||Hσ
∞ ≤ Cr,N,Y1,Y2(1 + |Λσ|2 + |λ|2)−Ner|Re(λ)|

for φ ∈ End(Hσ
∞) and where Λσ is the highest weight of G, || · ||Hσ

∞ is the operator
norms on Hσ

∞ with respect to the L2-norm.

Notice that, due Lem. 10 (i) in [Del05], the space PWr(G) equipped with semi-
norms:

||φ||r,N,Y1,Y2 := sup
(σ,λ)∈M̂×a∗C

(1+|Λσ|2+|λ|2)Ne−r|Re(λ)|||πσ,λ(Y1)φ(σ, λ)πσ,λ(Y2)||Hσ
∞ , φ ∈ PWr(G)
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is a Fréchet space.
Furthermore, the intertwining condition (D.a) in Def. 2.5 is a special case of van

den Ban and Souaifi’s one ([vdBS14], Cor. 4.7 and Prop. 4.10.). The small difference
is, that instead of the defined m-th derived representations Hσ,λ

∞,(m) (2.5), they consider

Hσ
[λ],E := Hσ

[λ] ⊗Holλ E,

where E is a finite-dimensional Holλ-module.

Proposition 2.6. With the previous notations, let (σ, λ) ∈ M̂ × a∗C. Then, for E =
Holλ/mm+1

λ , we have that Hσ
[λ],E
∼= Hσ,λ

∞,(m).
Moreover, for any finite-dimensional Holλ-module E, there exists m1, . . . ,ms ∈ N0 such
that Hσ

[λ],E is a quotient of Hσ,λ
∞,(m1) ⊕ · · · ⊕H

σ,λ
∞,(ms).

Proof. Consider a (commutative) ring R with neutral element 1, a R-module M and
I ⊂ R an ideal. Then, we have the following isomorphism

M ⊗R R/I ∼= M/IM.

In fact, by an algebraic computation, one can easily show that the two maps

α : M ⊗R R/I →M/IM and β : M/IM →M ⊗R R/I
α(m⊗ [r]) := [rm] β([m]) := m⊗ [1]

are well-defined and inverse to each other. Here, [·] denotes the class in the correspond-
ing quotient. For m ∈ N0 and R = Holλ, consider its maximal ideal mm+1

λ ⊂ Holλ.
Take E = Holλ/mm+1

λ = R/I and M = Hσ
[λ], then

Hσ
[λ] ⊗Holλ E

∼= Hσ
[λ]/m

m+1
λ Hσ

[λ] =: Hσ,λ
∞,(m).

Van den Ban and Souaifi ([vdBS14], Sect. 2) consider a cofinite ideal I in Holλ, that
is, if the quotient Holλ/I is finite-dimensional as a vector space over C. Moreover, by
their Lem. 2.1 in [vdBS14], an ideal I in Holλ is cofinite, if and only, if there exists
m ∈ N0 such that mm+1

λ ⊂ I.
Thus, for some s ∈ N and finitely many cofinite ideals mm1+1

λ , . . . ,mms+1
λ of Holλ, we

have that E is a quotient of the direct sum

Holλ/mm1+1
λ ⊕ Holλ/mm2+1

λ ⊕ · · · ⊕ Holλ/mms+1
λ .

Hence, the map
Hσ,λ
∞,(m1) ⊕ · · · ⊕H

σ,λ
∞,(ms) −→ E

is surjective and the result follows.

Finally, we are in the position to state a Paley-Wiener theorem for G, the complete
proof can be found in [Del05].

Theorem 2.7 (Paley-Wiener Theorem, [Del05], Thm. 2). For r > 0, the Fourier
transform

C∞r (G) 3 f 7→ Fσ,λ(f) ∈ PWr(G), (σ, λ) ∈ M̂ × a∗C

is a topological isomorphism between the two Fréchet spaces C∞r (G) and PWr(G).
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2.1.2 Application to sections over homogeneous vector bundles
over G/K

Before we proceed with the investigation to adapt Delorme’s Paley-Wiener Thm. 2.7
for our purposes, we first of all need to introduce some preparations. We will start by
defining the so-called isotypic components ([Wal88], Sect. 1.4.7.) and then establish
the Fourier transform for smooth compactly sections over homogeneous vector bundles
over X.

Isotypic compositions and multiplicities

Consider, for the moment, K as a compact topological group. Let (π, V ) be fixed a
K-representation on a locally convex topological vector space V . If τ ∈ K̂, then we
define the τ -isotypic component of V , denoted by V (τ), as the closure of the sum of
all the closed, invariant, irreducible, subspaces E of V that are in the class τ , i.e., such
that π|E ∼= τ :

V (τ) =
∑

E

([Wal88], Sect. 1.4.7.). Note that the closure of the sum above means that V (τ) ⊂ V
is closed.

By combining two important results from harmonic analysis, Schur’s lemma ([Wal88],
Lem. 12.1) and Peter-Weyl’s theorem ([Wal73], Thm. 2.8.2.), we obtain the following
isotypic composition. In particular, the analytic definition concides with the algebraic
one

V (τ) =
∑

E. (2.7)

Proposition 2.8. Let V be a locally convex topological vector space and consider the
algebraic definition (2.7). If τ ∈ K̂, then

V (τ) ∼= HomK(Eτ , V )⊗ Eτ , (2.8)

where HomK(Eτ , V ) is the so-called multiplicity space.
Furthermore, by taking the algebraic direct sum over all τ , we obtain the subspace of
K-finite vectors of V and

V =
⊕

τ∈K̂
V (τ) ∼=

⊕
τ∈K̂

HomK(Eτ , V )⊗ Eτ . (2.9)

Proof. Consider the natural map

α : HomK(Eτ , V )⊗ Eτ −→ V (τ)

and let us show in the following that it is an isomorphism. With the algebraic definition
(2.7), we have directly that α is surjective. The reason is that, by definition, every
element in V (τ) is of the form

v := w1 + · · ·+ wr =
r∑
i=1

wi

for wi ∈ Ei ∼= Eτ , ∀i ∈ {1, . . . , r}, r ∈ N, i.e., there exist φi ∈ HomK(Eτ , V ) and
vi ∈ Eτ with wi := φi(vi) ∈ Eτ . This implies that

u := α(φ1 ⊗ v1 + · · ·+ φr ⊗ vr) = α
( r∑
i=1

φi ⊗ vi
)
∈ V (τ).
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To show that the map α is injective, we know that every element of HomK(Eτ , V )⊗Eτ
can be described by T = φ1 ⊗ v1 + · · ·+ φr ⊗ vr =:

∑r
i=1 φi ⊗ vi, where {φ1, . . . , φr} is

linear independent. Now, if we can prove that

r∑
i=1

Im(φi) ⊂ V (τ) (2.10)

is a direct sum of vector space, we can conclude that α is injective. In fact, by Schur’s
lemma, we have that the φi 6= 0,∀i. Hence

u = 0 ⇐⇒ α
( r∑
i=1

φi⊗vi
)

= 0 ⇐⇒
r∑
i=1

φi(vi) = 0 ⇐⇒ (v1, . . . , vr) = 0 ⇐⇒ T = 0.

By contradiction, assume that the sum (2.10) is not direct, this means that a vec-
tor space intersects with another one. By induction on the integer r, assume that∑r−1

i=1 Im(φi) is direct, i.e., Im(φr) ∩
⊕r−1

i=1 Im(φi) 6= {0} by irreducibility of Im(φr).
Consider K-projections pi on the components Im(φi) ⊂

⊕r−1
i=1 Im(φi). Then, for i 6= 0,

we have the intertwining operator pi ◦ φr : Eτ −→ Im(φi). By Schur’s lemma again,
this implies that there exists λi ∈ C such that

pi ◦ φr = λiφi, ∀i

i.e., φr =
∑r−1

i=1 λiφi. But this contradicts the fact that φi are linear independent.
Hence, we proved that the map α is injective and thus the isomorphism (2.8).

It remains to show (2.9). Denote by V ′ the topological dual of the vector space V
and consider the matrix coefficients ([Wal88], 1.3.2):

cv′,v(k) := 〈v′, π(k)v〉, v ∈ V, v′ ∈ V ′, k ∈ K.

Fix v′ ∈ V ′ and consider the map cv′,· : V −→ C(K) defined by cv′,·(v) := cv′,v, where
C(K) denotes the space of all continuous functions on K with the usual supremum
norm. Notice that for a continuous V -representations, we have that

K ×K → V, (k, v) 7→ π(k)v

is continuous, which implies that the map cv′,· is continuous as well.
Let C(K)τ ⊂ C(K) be the space of all matrix coefficients defined as above. By a
result of Wallach ([Wal73], Cor. 1.4.6.) and by Peter-Weyl’s theorem, we have that
dim(C(K)τ ) ≤ d2

τ , where dτ denotes the dimension of the vector space Eτ . In particu-
lar, we have that C(K)τ is closed. Furthermore, for k ∈ K, v′ ∈ V ′ and w =

∑r
i=1 φi(vi):

cv′,w(k) =
r∑
i=1

〈v′, π(k)φi(vi)〉 =
r∑
i=1

〈v′, φi(τ(k)vi)〉 =
r∑
i=1

〈φti(v′)︸ ︷︷ ︸
∈Eτ̃

, τ(k)vi︸ ︷︷ ︸
∈Eτ

〉 ∈ C(K)τ

are the matrix coefficients of Eτ , where φti : V ′ → Eτ̃ is the transpose of φi,∀i. Thus,
we have that cv′,·

∣∣∣
V (τ)

has range in this space C(K)τ .

Now consider the closed space

A := {v ∈ V | cv′,w ∈ C(K)τ , ∀v′ ∈ V ′, w ∈ Eτ} ⊂ V.
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Since V (τ) ⊂ V , we have that V (τ) ⊂ A. Concerning the inverse inclusion, it suffices
to prove that dim(B) := dim(span{π(k)w | k ∈ K}) ≤ d2

τ <∞ with B ⊂ A.
For this, fix w ∈ Eτ , we define the map c·,w : V ′ −→ C(K)τ by c·,w(v′) := cv′,w. Then,
since an element v′ ∈ V ′ is in Ker(c·,w) if, and only if, v′

∣∣∣
B

= 0, we have

d2
τ ≥ dim(C(K)τ ) = dim(V ′/Ker(c·,w)) = dim(V ′/annV ′(B)) = dim(B),

where annV ′(B) is the annihilator of B in V ′, i.e., the kernel of the map c·,w. Hence,
B splits into a finite direct sum of irreducible invariant subspaces Ẽi ∼= Eγ ⊂ B ⊂ A
each in the class of γ ∈ K̂, i.e., B =

⊕r
i=1 Ẽi.

By the above, we have that the matrix coefficients map Ẽi by C(K)γ. More precisely,
if w ∈ Eτ and w̃ ∈ Eγ, with τ and γ distinct, then

cw̃,w ∈ C(K)γ ∩ C(K)τ = {0}.

This implies that 〈Eγ, Eτ 〉 = 0 and for Ẽi ⊂ V, ∀i, we get B ⊂ V (τ). Hence, each
element of A is in V (τ), thus A ⊂ V (τ). Finally, we proved that A = V (τ) and thus
we obtain the desired result (2.8).

We now focus on the multiplicity space

HomK(Eτ , V )
(1.8)∼= [V ⊗ Eτ̃ ]K . (2.11)

Example 2.9. 1) Let K ⊂ G be compact subgroup and consider V = C∞(G) with
right regular representation r. If τ ∈ K̂, then the multiplicity space is given by

HomK(Eτ , C
∞(G))

(2.11)∼= [C∞(G)⊗ Eτ̃ ]K ∼= C∞(X,Eτ̃ ),

which corresponds to the space of sections over homogeneous vector bundles.

2) Consider now V = C∞(G) with K ×K-action. For γ, τ ∈ K̂, let Eγ ⊗ Eτ be an
irreducible K ×K representation. Then, as multiplicity space we obtain

HomK×K(Eγ ⊗ Eτ , C∞(G))
(2.11)∼= HomK(Eγ, C

∞(X,Eτ̃ ))
β∼= C∞(G, γ, τ̃),

where

C∞(G, γ, τ̃) := {f : G→ Hom(Eγ, Eτ̃ ) |
f(k1gk2) = τ̃(k2)−1f(g)γ(k1)−1,∀k1, k2 ∈ K} (2.12)

is known as the (γ, τ̃)-spherical functions on G. More precisely, if
f ∈ HomK(Eγ, C

∞(X,Eτ̃ )) and F ∈ C∞(G, γ, τ̃), then the isomorphism β is
given by fF (g)v := F (v)(g) and Ff (v)(g) := f(g)v,∀v ∈ Eγ, g ∈ G.

Remark 2.10. (i) (Special case of 2)) If γ = τ = 1 are trivial representations, then
the multiplicity space is the smooth space of K-bi-invariant functions on G:

C∞(K\G/K) := {f : G→ C | f(k1gk2) = f(g), k1, k2 ∈ K}, (2.13)

which are left K-invariant function on X.

(ii) The (γ, τ)-spherical functions on G can be viewed (by convolution from the right)
as G-invariant integral operators between sections over homogeneous vector bun-
dles:

C∞(c)(X,Eγ) −→ C∞(c)(X,Eτ ).
We refer to Prop. 2.21 for a more precise statement and proof.
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Fourier transform for sections over homogeneous vector bundles

In this part, we want to define the Fourier transform, as well as, establish Delorme’s
Paley-Wiener theorem for sections over homogeneous vector bundles:

C∞c (X,Eτ ) =
⋃
r>0

C∞r (X,Eτ ) ∼=
⋃
r>0

[C∞r (G)⊗ Eτ ]K .

More precisely, we want to study the reduced Fourier transform F on the above space
by

dτ∑
i=1

fi ⊗ vi 7→
dτ∑
i=1

F(fi)⊗ vi, f ∈ C∞c (G),

where dτ denotes the dimension of Eτ and vi, i ∈ {1, · · · , dτ}, is a basis of Eτ . Roughly,
for r > 0, one can deduce from Thm. 2.7, that

C∞r (X,Eτ ) ∼= [C∞r (G)⊗ Eτ ]K
Thm. 2.7∼= [PWr(G)⊗ Eτ ]K ,

where PWr(G) is Delorme’s Paley-Wiener space defined in (2.6). The goal is to make
[PWr(G)⊗ Eτ ]K more explicit. For this, let us study the map

C∞r (X,Eτ ) 3 f 7→
dτ∑
i=1

fi ⊗ vi ∈ [C∞r (G)⊗ Eτ ]K

Thm. 2.77→
dτ∑
i=1

Fσ,λ(fi)⊗ vi ∈ [End(Hσ
∞)⊗ Eτ ]K ∼= Hσ

∞ ⊗ HomK(Hσ
∞, Eτ ).

Bringing the Frobenius-reciprocity into play, it gives us a better description of the space
HomK(Hσ

∞, Eτ ). Namely, we have

HomK(Hσ
∞, Eτ )

Frob∼= HomM(Eσ, Eτ ) defined by
〈Frob(S)w, ṽ〉 = 〈w, S∗ṽ(e)〉, w ∈ Eσ, ṽ ∈ Eτ̃ , S∗ : Eτ̃ → H σ̃

∞. (2.14)

Let us next compute the inverse of Frob.

Lemma 2.11 ([Olb95], Lem. 2.12). Let s ∈ HomM(Eσ, Eτ ) and f ∈ Hσ
∞. Then, we

have
Frob−1(s)(f) =

∫
K

τ(k)sf(k) dk.

Proof. Let S = Frob−1(s), f ∈ Hσ
∞ and ṽ ∈ Eτ̃ . We compute, then

〈Sf, ṽ〉τ = 〈f, S∗ṽ〉Hσ,λ
∞

=

∫
K

〈f(k), S∗ṽ(k)〉σ dk =

∫
K

〈f(k), S∗(τ̃(k−1ṽ))(e)〉σ dk

=

∫
K

〈τ(k)sf(k), ṽ〉τ dk.

The dual of Frob is given by

HomK(Eτ , H
σ
∞)

F̃ rob∼= HomM(Eτ , Eσ)

F̃ rob(T )(v) = T (v)(e), v ∈ Eτ (2.15)
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and for t ∈ HomM(Eτ , Eσ) and v ∈ Eτ , the inverse of F̃ rob will be

F̃ rob
−1

(t)(v)(k) = tτ(k−1)v. (2.16)

Coming back to our previous computation, we get

[End(Hσ
∞)⊗ Eτ ]K

(1.8)∼= Hσ
∞ ⊗ HomK(Hσ

∞, Eτ )
Frob∼= Hσ

∞ ⊗ HomM(Eσ, Eτ )
(2.2)∼= C∞(K/M,Eσ ⊗ HomM(Eσ, Eτ ))
(2.8)∼= C∞(K/M,Eτ |M (σ))

∼= Hτ |M (σ)
∞ , (2.17)

where Eτ |M (σ) is the σ-isotypic component of Eτ |M . Here, τ is restricted to M , it is
generally no more irreducible and splits into a finite direct sum

τ |M =
⊕
σ∈M̂

m(σ, τ)σ,

where m(σ, τ) = dim(HomM(Eσ, Eτ )) ≥ 0 is the multiplicity of σ in τ |M . Now by
taking the algebraic direct sum over all σ ∈ M̂ , where only finitely many of them
appears, we obtain⊕
σ∈M̂

[End(Hσ
∞)⊗ Eτ ]K

(2.17)∼=
⊕
σ∈M̂

Hτ |M (σ)
∞

(2.9)∼= Hτ |M
∞ = {f : K

C∞→ Eτ | f(km) = τ(m)−1f(k)},

which can be viewed as the principal series representations corresponding to τ |M .
Let us now define the Fourier transform on this space by considering the integral

kernel. Namely
End(Hσ

∞) ∼= C∞(K ×K,End(Eσ))M×M (2.18)

can be characterised by A 7→ φA with

(Aϕ)(k) =

∫
K/M

φA(k, y)ϕ(y) dy, k ∈ K,ϕ ∈ Hσ
∞.

Therefore by using the identification (2.18) to the space [End(Hσ
∞)⊗ Eτ ]K , we obtain

the same isomorphism as above (2.17) but without using the Frobenius-reciprocity:

[End(Hσ
∞)⊗ Eτ ]K

(2.2)∼= [C∞(K ×K,End(Eσ))M×M ⊗ Eτ ]K
evaluate in (k,1)∼= [C∞(K,End(Eσ))M ⊗ Eτ ]M×K

∼= C∞(K,Eσ)M ⊗ HomM(Eσ, Eτ )
∼= C∞(K,Eτ (σ))M ∼= Hτ |M (σ)

∞ .

Proposition 2.12. Let f0 ∈ C∞c (G) be a scalar-valued function and ϕ ∈ Hσ
∞. Then,

for k ∈ K, we have that

(πσ,λ(f0)ϕ)(k) =

∫
K/M

φf0(k, y)ϕ(y) dy,

where the integral kernel φf0 of πσ,λ(f0) is given by

φf0(k, y) =

∫
M

(∫
G

f0(gκ(g−1k)my−1)a(g−1k)−(λ+ρ) dg
)
σ(m) dm.
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Proof. By computation, we obtain

(πσ,λ(f0)ϕ)(k) =

∫
G

f0(g)(πσ,λ(g)ϕ)(k) dg

G-action
=

∫
G

f0(g)ϕ(g−1k) dg

=

∫
G=KAN

f0(g)ϕ
(
κ(g−1k)ea(g−1k)n(g−1k)

)
dg

=

∫
G

f0(g)ϕ(κ(g−1k))a(g−1k)−(λ+ρ) dg

=

∫
G/K

(∫
K

f0(gl)ϕ(l−1κ(g−1k)) dl
)
a(g−1k)−(λ+ρ) dg =: I(f0, ϕ).

Now, if we set y := l−1κ(g−1k) in the above integral, then

I(f0, ϕ) =

∫
G/K

(∫
K

f0(gκ(g−1k)y−1)ϕ(y) dy
)
a(g−1k)−(λ+ρ) dg

=

∫
G/K

(∫
K/M

(∫
M

f0(gκ(g−1k)my−1)σ(m) dm
)
ϕ(y) dy

)
a(g−1k)−(λ+ρ) dg

=

∫
K/M

(∫
M

(∫
G

f0(gκ(g−1k)my−1)a(g−1k)−(λ+ρ) dg
)
σ(m) dm

)
ϕ(y) dy

=

∫
K/M

φf0(k, y)ϕ(y) dy,

where φf0(k, y) =
∫
M

( ∫
G
f0(gκ(g−1k)my−1)a(g−1k)−(λ+ρ) dg

)
σ(m) dm.

Note that by evaluating the integral kernel at y = 1, we get

φf0(k, 1) =

∫
M

(∫
G

f0(gκ(g−1k)m)a(g−1k)−(λ+ρ) dg
)
σ(m) dm.

By a slight abuse of notation, we denote the map

C∞c (X,Eτ ) ∼= [C∞c (G)⊗ Eτ ]K
Fσ,λ⊗Id
−→ [End(Hσ

∞)⊗ Eτ ]K

also by Fσ,λ.

Corollary 2.13. Consider a vector-valued function f ∈ [C∞c (G)⊗ Eτ ]K given by
f =

∑
i fi ⊗ vi, where vi runs a vector basis of Eτ . Then, the Fourier transform of f

is given by

Fσ,λ(f) =
1

dσ
prσ

(∫
G

τ(κ(g−1k))−1a(g−1k)−(λ+ρ)f(g) dg
)
, (2.19)

where prσ : Eτ → Eτ (σ) the projection on the σ-isotypic component.

Proof. For f ∈ [C∞c (G)⊗ Eτ ]K , we have that φf (k, 1) ∈ End(Eσ)⊗ Eτ :

φf (k, 1) =

∫
M

(
σ(m)⊗

∫
G

f(gκ(g−1k)m)a(g−1k)−(λ+ρ) dg
)
dm.
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Denote by Trσ the trace with respect to Eσ. By applying Trσ ⊗ 1 and using the fact
that Trσ(σ(m)) := χσ(m) is equal to the character of M with respect to σ, we then
have

(Trσ ⊗ 1)φf (k, 1) =

∫
M

χσ(m)
(∫

G

τ(m)−1τ(κ(g−1k))−1a(g−1k)−(λ+ρ)f(g) dg
)
dm

m 7→m−1

=

∫
M

χσ(m)τ(m)
(∫

G

τ(κ(g−1k))−1a(g−1k)−(λ+ρ)f(g) dg
)
dm

=
1

dσ
prσ

(∫
G

τ(κ(g−1k))−1a(g−1k)−(λ+ρ)f(g) dg
)
.

In the last line, we used the properties of characters in representation theory, namely
that χσ(1Eσ) = dim(Eσ) =: dσ and that

χσ(m−1) = Trσ(σ(m)−1) =
dσ∑
j=1

λ−1
j =

dσ∑
j=1

λj = χσ(m),

where {λj, j = 1, . . . , dσ} are the eigenvalues of σ(m), which are unitary, therefore
λ−1 = λ.

More precisely, the outcome of this identification variant leads us to define the
Fourier transform for a function f ∈ C∞c (X,Eτ ) in (Level 2).

Definition 2.14 (Fourier transform for sections over homogeneous vector bundles in
(Level 2)). Let g = κ(g)a(g)n(g) ∈ KAN = G be the Iwasawa decomposition. For
fixed λ ∈ a∗C and k ∈ K, we define the function eτλ,k by

eτλ,k : G → End(Eτ ) ∼= Eτ̃ ⊗ Eτ
g 7→ eτλ,k(g) := τ(κ(g−1k))−1a(g−1k)−(λ+ρ), (2.20)

where ρ is the half sum of the positive roots of (g, a), (1.7). For f ∈ C∞c (X,Eτ ), the
Fourier transformation is given by

Fτf(λ, k) =

∫
G

eτλ,k(g)f(g) dg =

∫
G/K

eτλ,k(g)f(g) dg, (2.21)

where the last equality makes sense, since the integrand is right K-invariant.

Note that the Fourier transform for sections has already been introduced and stud-
ied by Camporesi ([Ca97], (3.18)). It is a direct generalization of Helgason’s Fourier
transform for Eτ = C.

Observe that, for k ∈ K and g ∈ G, we have, by definition

eτλ,k(g) = lk(e
τ
λ,1(g)) = eτλ,1(k−1g). (2.22)

This function eτλ,k in Def. 2.14 can be interpreted like the ’exponential’ function in
the definition of Fourier transform in the Euclidean case Rn. It has some interesting
properties.

Proposition 2.15. Let τ ∈ K̂, λ ∈ a∗C and k ∈ K. Then, we have

eτλ,k(hg) = eτλ,κ(h−1k)(g)a(h−1k)−(λ+ρ), g, h ∈ G. (2.23)
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Proof. Let h, g ∈ G = KAN , then by Iwasawa decomposition, we have

hg = hκ(g)a(g)n(g) = κ(h(κ(g)) a(hκ(g)) n(hκ(g)) a(g) n(g)

= κ(hκ(g))︸ ︷︷ ︸
∈K

a(hκ(g)) a(g)︸ ︷︷ ︸
∈A

n(hκ(g)) n(g)︸ ︷︷ ︸
∈N

.

In other words, we have κ(hg) = κ(hκ(g)a(g)n(g)) = κ(h(κ(g)) and
a(hg) = a(hκ(g)a(g)n(g)) = a(hκ(g)) a(g). Hence

eτλ,k(hg)
(2.20)
= τ(κ(g−1h−1k))−1a(g−1h−1k)−(λ+ρ)

= τ(κ(g−1κ(h−1k))−1a(g−1κ(h−1k))−(λ+ρ)a(h−1k)−(λ+ρ)

(2.20)
= eτλ,κ(h−1k)(g)a(h−1k)−(λ+ρ).

Proposition 2.16. For fixed g ∈ G, the function eτλ,k(g), defined in (2.20), is an entire
function on λ ∈ a∗C.

Proof. It is obvious, since a(g−1k)−(λ+ρ) is an entire function on λ ∈ a∗C.

Furthermore, by considering an invariant differential operator on sections, we get
the following relation.

Proposition 2.17. Let Q ∈ DG(Eτ̃ ,Eγ̃) be an invariant linear differential operator.
Then, we have

Qeτλ,k = (Qeτλ,1(1)) ◦ eγλ,k, λ ∈ a∗C, k ∈ K. (2.24)

Proof. Let us first consider the case k = 1. We then have for g ∈ G = NAK:

eτλ,1(g) = eτλ,1(nak1) = aλ+ρτ(k1) = aλ+ρeτλ,1(k1), n ∈ N, a ∈ A, k1 ∈ K. (2.25)

In particular, for n1a1 ∈ NA

l(n1a1)−1eτλ,1(nak1) = eτλ,1(n1a1nak1) = eτλ,1(n1(a1na
−1
1 )a1ak1)

(2.25)
= aλ+ρ

1 aλ+ρτ(k1)

= aλ+ρ
1 eτλ,1(g).

Hence, since Q is linear and G-invariant, we obtain that

l(n1a1)−1(Qeτλ,1(g)) = Q(l(n1a1)−1eτλ,1(g)) = Q(aλ+ρ
1 eτλ,1(g)) = aλ+ρ

1 Q(eτλ,1(g)) (2.26)

and by setting g = k1 = 1, we have

Qeτλ,1(n1a1)
(2.26)
= aλ+ρ

1 Qeτλ,1(1). (2.27)

Therefore, since eτλ,1 ∈ C∞(X,Eτ̃ ) ⊗ Eτ ⊂ C∞(G,End(Eτ )), we have that Qeτλ,1 ∈
C∞(X,Eγ̃) ⊗ Eτ ⊂ C∞(G,Hom(Eγ, Eτ )). Therefore, for g = n1a1k2 ∈ G, we can
conclude that

Qeτλ,1(n1a1k2) = Qeτλ,1(n1a1)γ(k2)
(2.27)
= aλ+ρ

1 (Qeτλ,1(1))γ(k2)
(2.25)
= (Qeτλ,1(1))eγλ,1(n1a1k2).

(2.28)

Now for general k ∈ K, we observe that eτλ,k = lke
τ
λ,1. Hence

Qeτλ,k = Q(lke
τ
λ,1)

(2.28)
= lk(Qe

τ
λ,1(1))eγλ,1 = (Qeτλ,1(1)) ◦ eγλ,k.

Thus, we get the desired result.
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Back to our Fourier transform Fτ , we thus see that it has values in the functions
space

{f : a∗C ×K/M → Eτ | f(λ, km) = τ(m)−1f(λ, k),∀m ∈M} = Fτ (C∞c (X,Eτ )),

which is in the range of the Fourier transform Fτ . In other words, we proved the
following result merging Prop. 2.8.

Lemma 2.18. Let (τ, Eγ) be a K-representation and Hσ
∞ the space of smooth vectors

of the principal series representations defined in (2.2). Then, we have

Hτ |M
∞
∼= C∞(K/M,Eτ |M ) ∼=

⊕
σ∈M̂

[End(Hσ
∞)⊗ Eτ ]K ∼=

⊕
σ∈M̂

C∞(K/M,Eτ |M (σ)). (2.29)

In this identification, the Fourier transform is given by (2.19).

Fourier transform in (Level 3) and its properties

Now consider an additional finite-dimensional K-representation γ : K → GL(Eγ) with
its associated homogeneous vector bundle Eγ over X. It induces a mapping

HomK(Eγ, C
∞
c (X,Eτ )) −→ HomK(Eγ,Fτ (C∞c (X,Eτ ))). (2.30)

The LHS of (2.30) can be identify with a space of functions with values in Hom(Eγ, Eτ ),
the (γ, τ)-spherical functions (2.12):

HomK(Eγ, C
∞
c (X,Eτ )) ∼= C∞c (G, γ, τ).

For the RHS of (2.30), we use the Frobenius-reciprocity between K and M , by evalu-
ating at k = 1, and we obtain the space of functions

{φ : a∗C → HomM(Eγ, Eτ )} ⊃ Im(γF τ ), (2.31)

which is the image of the Fourier transformation γF τ , where, here, the double in-
dices on the left and right, specifies the K-types. In particular, we define the Fourier
transformation γF τ of f ∈ C∞c (G, γ, τ).

Definition 2.19 (Fourier transform in (Level 3)). With the previous notations, the
Fourier transformation for f ∈ C∞c (G, γ, τ) is given by

γF τf(λ) :=

∫
G

eτλ,1(g)f(g) dg. (2.32)

Moreover, for irreducible γ, it describes γF τ as the behaviour on the γ-isotypic
component

C∞c (X,Eτ )(γ) ∼= C∞c (G, γ, τ)⊗ Eτ .

Thus, with F (g) = f(g)v, for v ∈ Eτ , we have

γF τf(λ)(v) = FτF (λ, 1) =

∫
G

eτλ,1(g)F (g)dg =

∫
NA

F (na)aλ−ρ dn da,

which is the Fourier transformation for F ∈ C∞c (X,Eτ )(γ) in (Level 3). The last
equality makes sense since the integrand is right K-invariant.



CHAPTER 2. FOURIER TRANSFORMS & PALEY-WIENER THEOREMS 29

Corollary 2.20. Let (γ,Eγ) and (τ, Eτ ) be two K-representations. Then, we have

HomM(Eγ, Eτ ) ∼=
⊕
σ∈M̂

HomM(Eγ, Eτ (σ)) ∼=
⊕
σ∈M̂

[End(Hσ
∞)⊗ Hom(Eγ, Eτ )]

K×K .

(2.33)

Proof. By using Lem. 2.18 and the dual Frobenius-reciprocity (2.15) for φ 7→ φ(·)(1),
we obtain

[End(Hσ
∞)⊗ Hom(Eγ, Eτ )]

K×K
(1.8)∼= [End(Hσ

∞)⊗ (Eτ ⊗ Eγ̃)]K×K
∼= HomK(Eγ, [End(Hσ

∞)⊗ Eτ ]K)
Lem. 2.18

= HomK(Eγ, C
∞(K/M,Eτ |M (σ)))

F̃ rob∼= HomM(Eγ, Eτ |M (σ)).

Let us consider now the convolution G of a smooth compactly supported function
f to a right K ×K-invariant endomorphism function ϕ, which is defined by

(f ∗ ϕ)(g) :=

∫
G

ϕ(x−1g)f(x) dx =

∫
G

ϕ(xg)f(x−1) dx, g ∈ G. (2.34)

By considering the corresponding Fourier transform, we obtain the following result,
which is analogous as Lem. 1.4. in ([Hel89], Chap. 3).

Proposition 2.21. Consider a (γ, τ)-spherical function ϕ ∈ C∞c (G, γ, τ) and f ∈
C∞c (X,Eγ). Then, we have that

Fτ (f ∗ ϕ)(λ, k) = γF τϕ(λ)Fγf(λ, k), λ ∈ a∗C, k ∈ K.

Proof. For (λ, k) ∈ a∗C ×K, we compute

Fτ (f ∗ ϕ)(λ, k) =

∫
G

eτλ,k(g)(f ∗ ϕ)(g) dg

(2.34)
=

∫
G×G

eτλ,k(g)ϕ(x−1g︸︷︷︸
=:h

)f(x) dx dg

Fubini’s thm.
=

∫
G

(∫
G

eτλ,k(xh)ϕ(h) dh
)
f(x) dx

(2.20)
=

∫
G

(∫
G

eτλ,κ(x−1k)(h)a(x−1k)−(λ+ρ)ϕ(h) dh
)
f(x) dx

(2.22)
=

∫
G

(∫
G

eτλ,1(κ(x−1k)−1h︸ ︷︷ ︸
=:g

)ϕ(h) dh
)
a(x−1k)−(λ+ρ)f(x) dx

=

∫
G

(∫
G

eτλ,1(g)ϕ(κ(g−1k)g) dg
)
a(x−1k)−(λ+ρ)f(x) dx

=

∫
G

(∫
G

eτλ,1(g)ϕ(g) dg
)
γ(κ(x−1k))−1a(x−1k)−(λ+ρ)f(x) dx

= γF τϕ(λ)

∫
G

eγλ,k(x)f(x) dx = γF τϕ(λ)Fγf(λ, k),

thus the result follows.
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Remark 2.22. (a) If γ = τ , then we have

Fτ (f ∗ ϕ)(λ, k) = τF τϕ(λ)Fτf(λ, k), λ ∈ a∗C, k ∈ K,

for f ∈ C∞c (X,Eτ ) and a spherical function ϕ ∈ C∞c (G, τ, τ).

(b) In a smiliar way, one can define the left convolution for scalar valued-function
ϕ ∈ C∞c (G). In fact, we know that, for f ∈ C∞c (X,Eτ ) and g ∈ G, we have

Fτ (lgf)(λ, k) =

∫
G

eτλ,k(x)lgf(x) dx =

∫
G

eτλ,k(x)f(g−1x︸︷︷︸
=:h

) dx

=

∫
G

eτλ,k(gh)f(h) dh

(2.23)
= a(g−1k)−(λ+ρ)

∫
G

eτλ,κ(g−1k)(h)f(h) dh

= a(g−1k)−(λ+ρ)Fτ (f)(λ, κ(g−1k)).
(2.3)
= (πτ,λ(g)Fτf(λ, ·))(k).

Hence, we can deduce for ϕ ∈ C∞c (G):

Fτ (ϕ ∗ f)(λ, k) = (πτ,λ(ϕ)Fτf(λ, ·))(k). (2.35)

Now, for positive ε > 0, take aK-conjugation invariant open neighbourhood Uε ⊂ Bε(0)
so that

⋂
ε>0 Uε = {0}, and for ε1 < ε2, we have Uε1 ⊂ Uε2 . Consider a scalar-valued

function η̃ε ∈ C∞c (Uε) ⊂ C∞c (G) in G by∫
Uε

η̃ε(g) dg = 1 (2.36)

so that η̃ε(g) ≥ 0. Note that η̃ε is no longer K-bi-invariant in this neighbourhood. Let
us construct from this an endomorphism function ηε ∈ C∞(G, τ, τ) by

ηε(g) :=

∫
K×K

η̃ε(k1gk2)τ(k1k2) dk1 dk2, g ∈ G. (2.37)

Then, we get the following observation.

Corollary 2.23. For each ε > 0, let ηε ∈ C∞c (G, τ, τ) be the K-bi-invariant endomor-
phism function (2.37). Then, its Fourier transform τF τ (ηε) converges uniformly on
compact sets C on a∗C to the identity map:

τF τηε(λ)→ Id, λ ∈ C

when ε→ 0.

Proof. Consider ηε ∈ C∞(G, τ, τ), then for g ∈ G:

ηε(g) =

∫
K

∫
K

η̃ε(k1gk2)τ(k1k2) dk1 dk2 =

∫
K

∫
K

η̃ε(k1glk
−1
1 )τ(l) dk1 dl =

∫
K

ηε(gl)τ(l) dl,
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where we did a change of variable and set ηε(g) :=
∫
K
η̃ε(k1gk

−1
1 ) dk1. Here, η̃ε ∈

C∞c (Uε) as above (2.36). By computing its Fourier transform, we obtain, for λ ∈ a∗C

τF τηε(λ)
(2.32)
=

∫
G

eτλ,1(g)ηε(g) dg =

∫
G

(∫
K

eτλ,1(g)ηε(gl)τ(l) dl
)
dg

(2.25)
=

∫
G

(∫
K

eτλ,1(gl)ηε(gl) dl
)
dg

=

∫
G

eτλ,1(g)ηε(g) dg

=

∫
Uε

ηε(g)(eτλ,1(g)− Id)dg + Id.

Now, consider a compact set C on a∗C and δ > 0, then there exists ε > 0 such that

|eτλ,1(g)− Id| < δ for g ∈ Uε, λ ∈ C.

Thus, this implies that τF τ (ηε) converges uniformly on compact sets to Id, when ε
converges to 0.

In order to define the Paley-Wiener spaces and the corresponding theorems for
sections, we need, first of all, adapt Delorme’s intertwining conditions (D.a) in Def.
2.4, for our levels. This will be established in the following subsection.

2.1.3 Intertwining conditions and Paley-Wiener theorems for
sections

In this part, we will focus on establishing and proving Delorme’s intertwining condition
(D.a) in Def. 2.4 for sections as well as the equivalence between our different levels,
i.e.,

(Level 1) ⇐⇒ (Level 2) ⇐⇒ (Level 3).

To do this, we firstly need some preparations. In the previous subsection, we proved
in Lem. 2.18, the identification (2.29). Let us now take a closer look. Consider the
Frobenius-reciprocity (2.14) with its dual (2.15) and define the map

I :
⊕
σ∈M̂

Hσ
∞ ⊗ HomK(Hσ

∞, Eτ ) −→ Hτ |M
∞

by I(α) = dσ
∑m(τ,σ)

i=1 siαi, for α =
∑m(τ,σ)

i=1 αi ⊗ Si ∈ Hσ
∞ ⊗ HomK(Hσ

∞, Eτ ), where
si = Frob(Si) runs a basis through HomM(Eσ, Eτ ), for all i. Here, m(τ, σ) stands for
the dimension of the multiplicity space HomK(Hσ

∞, Eτ ). For T ∈ HomK(Eτ , H
σ
∞), let

〈α, T 〉 :=

m(τ,σ)∑
i=1

αi · Trτ (Si ◦ T ).

Now, by using the identification [End(Hσ
∞)⊗Eτ ]K

(1.8),j∼= Hσ
∞⊗HomK(Hσ

∞, Eτ ), we can
define the map

J :
⊕
σ∈M̂

[End(Hσ
∞)⊗ Eτ ]K −→ Hτ |M

∞ (2.38)
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by J = I ◦ j. In addition, for β =
∑dτ

i=1 βi ⊗ vi ∈
⊕

σ∈M̂ [End(Hσ
∞) ⊗ Eτ ]

K and
T ∈ HomK(Eτ , H

σ
∞), let

〈β, T 〉 :=
dτ∑
i=1

βi ◦ T (vi) ∈ Hσ
∞, (2.39)

where {vi, i = 1, . . . , dτ} runs a vector basis of Eτ . One checks that 〈β, T 〉 = 〈j(β), T 〉.

Proposition 2.24. With the previous notations, let f :=
∑dτ

i fi ⊗ vi ∈ C∞c (X,Eτ ).
Denote by Fτ (f) its Fourier transform in Hτ |M

∞ given in (2.21).
Then, for T ∈ HomK(Eτ , H

σ
∞) and t = F̃ rob

−1
(T ) ∈ HomM(Eτ , Eσ), we obtain

(1) 〈α, T 〉 = t ◦ I(α),

(2) 〈Fσ,λ(f), T 〉 = t ◦ Fτf(λ, ·) ∈ Hσ,λ
∞ , for λ ∈ a∗C,

(3) Fτf(λ, ·) = J(
⊕

σ∈M̂ Fσ,λ(f)), for λ ∈ a∗C.

Proof. (1) It is sufficient to prove it for only one summand in α, hence let α = α1⊗S.
For T = F̃ rob(t) ∈ HomK(Eτ , H

σ
∞) and S = Frob(s) ∈ HomK(Hσ

∞, Eτ ), we thus
obtain

〈α, T 〉 = α1Trτ (S ◦ T )
Lem. 2.11+(2.16)

= α1Trτ
(
v 7→

∫
K

τ(k)s ◦ t(τ(k−1))v dk
)
, v ∈ Eτ

= α1Trτ
(∫

K

τ(k)s ◦ tτ(k−1) dk
)

= α1Trτ (s ◦ t)
= Trσ(t ◦ s)α1.

Since σ ∈ M̂ is irreducible and t ◦ s ∈ EndM(Eσ), by Schur’s lemma, we have
that t ◦ s = λ · Id, for some λ ∈ C and thus Trσ(t ◦ s) = λ. Hence

〈α, T 〉 = (t ◦ s)(α1) = t(I(α)).

(2) By computation, we obtain

〈Fσ,λ(f), T 〉 =
dτ∑
i=1

Fσ,λ(fi) ◦ T (vi)
(2.16)
=

dτ∑
i=1

Fσ,λ(fi)(tτ(·)(vi))

Def. 2.1
=

dτ∑
i=1

∫
G

fi(g)πσ,λ(g)(tτ(·)(vi)) dg

=
dτ∑
i=1

∫
G

fi(g)(πσ,λ(g)ϕi)(·) dg.

In the last line, we set ϕi(k) := tτ(k−1)(vi), for k ∈ K. Fix k ∈ K, by applying
(2.3), we have (πσ,λ(g)ϕi)(k) = a(g−1k)−(λ+ρ)ϕ(κ(g−1k))−1.
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Thus
dτ∑
i=1

∫
G

fi(g)tτ(κ(g−1k))−1a(g−1k)−(λ+ρ)vi dg =
dτ∑
i=1

∫
G

fi(g)teτλ,k(g)vi dg

= t ◦
∫
G

dτ∑
i=1

eτλ,k(g)fi(g)vi dg

= t ◦
∫
G

eτλ,k(g)f(g) dg = t ◦ Fτ (f)(λ, k).

(3) By rewritting (1) and (2) in the following way:

(1’) Trτ (I−1(α) ◦ T ) = t ◦ α,
(2’) Trτ (Fσ,λ(f) ◦ T ) = t ◦ Fτf(λ, ·)

we get that

Trτ (J−1(Fτf(λ, ·))◦T ) = Trτ (I−1(Fτf(λ, ·))◦T )
(1′)
= t◦Fτf(λ, ·) (2′)

= Trτ (Fσ,λ(f)◦T ).

By taking only the σ-component of
⊕

σ∈M̂ [End(Hσ
∞) ⊗ Eτ ]K , we have that the

parining in Trσ is non-degenerate, thus J−1(Fτf(λ, ·)) =
⊕

σ∈M̂ Fσ,λ(f).

Let us formulate Delorme’s intertwining condition (Def. 2.4) in (Level 1) for function
in Hτ |M

∞ .

Definition 2.25. Consider τ ∈ K̂.

(1) We say that a function

φ ∈
∏
σ∈M̂

[Hol(a∗C,End(Hσ
∞))⊗ Eτ ]K ∼=

⊕
σ⊂τ |M

Hol(a∗C, [End(Hσ
∞)⊗ Eτ ]K)

satisfies the intertwining condition, if for each ṽ ∈ Eτ̃ :

〈φ, ṽ〉τ ∈
∏
σ∈M̂

Hol(a∗C,End(Hσ
∞))

satisfies the intertwining condition in Def. 2.4.

Proposition 2.26. Let φ ∈
∏

σ∈M̂ [Hol(a∗C,End(Hσ
∞)) ⊗ Eτ ]

K as in Def. 2.25 and
(ξ,W ) the intertwining data defined in Def. 2.4.

(D.1) Then, φ satisfies the intertwining condition (1) of Def. 2.25 if, and only if, for
each intertwining datum (ξ,W ) and T ∈ HomK(Eτ ,W ) ⊂ HomK(Eτ , Hξ), the
induced element φξ ∈ [End(Hξ)⊗ Eτ ]K satisfies

〈φξ, T 〉 ∈ W.

Proof. For each i ∈ {1, . . . , dτ}, consider fi ∈ End(Hξ) so that for each intertwining
datum (ξ,W ), we have fi(W ) ⊆ W . Consider

φξ =
dτ∑
i=1

fi ⊗ vi ∈ [End(Hξ)⊗ Eτ ]K
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as in Thm. 2.28. It is sufficient to show that for each i and T ∈ HomK(Eτ ,W ), we
have fi ◦ T ∈ W if, and only if, 〈φξ, T 〉 ∈ W, ∀T ∈ HomK(Eτ ,W ).

The right implication is obvious. By using the definition of the brackets 〈·, ·〉 as in
(2.39), we have

〈φξ, T 〉 =
dτ∑
i=1

fi ◦ T (vi) ∈ W

since for vi ∈ Eτ , T (vi) ∈ W ⊂ Hξ.
For the left implication, write fi = 〈φξ, ṽi〉τ , for all i ∈ {1, . . . , dτ}, where ṽi runs

a dual basis of Eτ̃ . Consider the mapping Aij ∈ End(Eτ ) such that vi 7→ vj and
vk 7→ 0, k 6= i. Then, for all i, j ∈ {1, . . . , dτ}, we have

fi ◦ T (vj) = 〈φξ, T (vj) · ṽi〉 = 〈φξ, T ◦ Aij〉 = 〈φξ, pK(T ◦ Aij)〉,

where pK : Hom(Eτ ,W ) → HomK(Eτ ,W ) is the orthogonal projection. Note that
T (vj) · ṽi ∈ Hom(Eτ ,W ), for all i, j. By setting, now in the last line T ′ij := pK(T ◦Aij),
we get that 〈φξ, T ′ij〉 ∈ W . Thus, for all i ∈ {1, . . . , dτ}, we have fi ◦ T ∈ W .

Similar, we state Delorme’s intertwining conditions for our setting.

Definition 2.27 (Intertwining conditions in (Level 2) and (Level 3)). Let τ, γ ∈ K̂
and consider the map J defined in (2.38).

(2) We say that a function ψ ∈ Hol(a∗C, H
τ |M
∞ ) satisfies the intertwining condition, if

J−1ψ ∈
⊕
σ⊂τ |M

Hol(a∗C, [End(Hσ
∞)⊗ Eτ ]K)

satisfies the intertwining condition (1) in Def. 2.25.

(3) We say that a function ϕ ∈ Hol(a∗C,HomM(Eγ, Eτ )) satisfies the intertwining
condition, if

ϕ(λ)γ(k−1)w ∈ Hol(a∗C, H
τ |M
∞ )

for λ ∈ a∗C, k ∈ K and w ∈ Eγ, satisfies the above intertwining condition (2).

Note that in (2), the function ψ is holomorphic in λ ∈ a∗C and smooth in K/M .

Combining the above result together with Frobenius-reciprocity, we have finally the
equivalence of the intertwining conditions between each level.

Theorem 2.28 (Equivalence of the intertwining conditions in three levels). Let Ξ be
the set of all 2-tuples (λ,m) with λ ∈ a∗C and m ∈ N0. For τ ∈ K̂ and each intertwining
datum (ξ,W ), consider

Dτ
W := {t ∈

s⊕
i=1

HomM(Eτ , Eσi)
λi
(mi)
| T = F̃ rob

−1
(t) ∈ HomK(Eτ ,W ) ⊂ HomK(Eτ , Hξ)}

⊂
s⊕
i=1

HomM(Eτ , Eσi)
λi
(mi)

(2.40)

and a finite sequence ξ = (ξ1, ξ2, . . . , ξs) ∈ Ξ
s.
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(D.2) (Level 2) Then, ψ ∈ Hol(a∗C, H
τ |M
∞ ) satisfies the intertwining condition (2) of

Def. 2.27 if, and only if, for each intertwining datum (ξ,W ) and each t =

(t1, t2, . . . , ts) ∈ Dτ
W 6= {0}, the induced element ψξ ∈

⊕s
i=1 H

τ |M ,λi
∞,(mi) =: H

τ |M
ξ

satisfies
t ◦ ψξ = (t1 ◦ ψ1, . . . , t2 ◦ ψs) ∈ W.

(D.3) (Level 3) Then, ϕ ∈ Hol(a∗C,HomM(Eγ, Eτ )) satisfies the intertwining condition
(3) of Def. 2.27 if, and only if, for each intertwining datum (ξ,W ) and each t =
(t1, t2, . . . , ts) ∈ Dτ

W 6= {0}, the induced element ϕξ ∈
⊕s

i=1 HomM(Eγ, Eτ )
λi
(mi)

=:

Hγ,τ

ξ
satisfies

t ◦ ϕξ = (t1 ◦ ϕ1, . . . , t2 ◦ ϕs) ∈ Dγ
W .

Here, the m-th derived representation HomM(Eτ , Eσ)λ(m) as well as Hτ |M ,λ
∞,(m) are defined

similar as in (2.5) in Def. 2.3.

Proof. We obtain directly the equivalence between (D.1) and (D.2) by applying the
Frobenius-reciprocity, Prop. 2.26 and Prop. 2.24 (2).

Concerning (D.2) ⇐⇒ (D.3), one implication is trivial. For the other one, we
have, by the inverse dual Frobenius-reciprocity, that

W 3 t ◦ ψξ = t ◦ F̃ rob
−1

(ϕξ)(w)(k)
(2.15)
= t ◦ ϕξ ◦ γ(k−1)w, ∀t ∈ Dτ

W

for w ∈ Eγ and k ∈ K. This means that F̃ rob
−1

(t◦ϕξ)(w) ∈ HomK(Eγ,W ) and hence

by applying the dual Frobenius-reciprocity HomK(Eγ,W )
F̃ rob∼= Dγ

W , this implies that
t ◦ ϕξ ∈ D

γ
W .

Example 2.29. (a) Consider s = 1 and m = 0. Let ξ := (σ, λ, 0) ∈ Ξ and W ⊂
Hσ,λ
∞ . Consider Dτ

W ⊂ HomM(Eτ , Eσ) as in Thm. 2.28. Then, we have the
following intertwining conditions in the corresponding levels:

(D.2a) (Level 2) For each intertwining datum (ξ,W ) and t ∈ Dτ
W 6= {0}, we have

t ◦ ψ(λ, ·) ∈ W.

Note that for each ξ ∈ Ξ, the induced element ψξ = ψ(λ, ·).
(D.3a) (Level 3) For each intertwining datum (ξ,W ) and t ∈ Dτ

W 6= {0}, we have

t ◦ ϕ(λ) ∈ Dγ
W .

Note that for each ξ ∈ Ξ, the induced element ϕξ = ϕ(λ).

(b) Consider now s = 2 and m1 = m2 = 0. Let L : Hσ1,λ1
∞ −→ Hσ2,λ2

∞ be an
intertwining operator between the two principal series representations. Let ξ :=
((σ1, λ1, 0), (σ2, λ2, 0)) ∈ Ξ2 and W = graph(L) ⊂ Hσ1,λ1

∞ ⊕ Hσ2,λ2
∞ . Moreover,

define lτ : HomM(Eτ , Eσ1) −→ HomM(Eτ , Eσ2) by

lτ (t)(v) = L(tτ(·)−1v)(e)

for v ∈ Eτ and t ∈ HomM(Eτ , Eσ1). Then

Dτ
W = {(t1, t2) | t2 = lτ (t1)} = {(t, lτ (t)) | t ∈ HomM(Eτ , Eσ1)}

⊂ HomM(Eτ , Eσ1)⊕ HomM(Eτ , Eσ2).

In this situation, we have the following intertwining conditions.
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(D2.b) (Level 2) For each intertwining datum (ξ,W ) and t ∈ HomM(Eτ , Eσ1), we
have for ψ(λi, ·) ∈ Hτ |M ,·

∞ , i = 1, 2

L(t ◦ ψ(λ1, ·)) = lτ (t) ◦ ψ(λ2, ·). (2.41)

(D3.b) (Level 3) For each intertwining datum (ξ,W ) and t ∈ HomM(Eτ , Eσ1), we
have for ϕ(λi) ∈ HomM(Eγ, Eτ ), i = 1, 2

lγ(t ◦ ϕ(λ1)) = lτ (t) ◦ ϕ(λ2). (2.42)

Now we are in the position to state Delorme’s Paley-Wiener space for sections.

Definition 2.30 (Paley-Wiener space for sections in (Level 2) and (Level 3)).

(a) For r > 0, let PWτ,r(a
∗
C×K/M) be the space of sections ψ ∈ C∞(a∗C×K/M,Eτ |M )

be such that

(2.i) the section ψ is holomorphic in λ ∈ a∗C.

(2.ii)r (growth condition) for all Y ∈ U(k) and N ∈ N0, there exists a constant
Cr,N,Y > 0 such that

||lY ψ(λ, k)||Eτ ≤ Cr,N,Y (1 + |λ|2)−Ner|Re(λ)|, k ∈ K,

where || · ||Eτ denotes the norm on finite-dimensional vector space Eτ (for
convenience, we often denotes it by | · |).

(2.iii) (intertwining condition) (D.2) from Thm. 2.28.

(b) By considering an additional K-type, let γPW τ,r(a
∗
C) be the space of functions

a∗C 3 λ 7→ ϕ(λ) ∈ HomM(Eγ, Eτ )

be such that

(3.i) the function ϕ is holomorphic in λ ∈ a∗C.

(3.ii)r (growth condition) for all N ∈ N0, there exists a constant Cr,N > 0 such
that

||ϕ(λ)||op ≤ Cr,N(1 + |λ|2)−Ner|Re(λ)|,

where || · ||op denotes the operator norm on the corresponding space.

(3.iii) (intertwining condition) (D.3) from Thm. 2.28.

The inequalities provide semi-norms || · ||r,N,Y (resp. || · ||r,N) on PWτ,r(a
∗
C×K/M)

(resp. γPW τ,r(a
∗
C)) and made the vector space PWτ,r(a

∗
C ×K/M) (resp. γPW τ,r(a

∗
C))

to Fréchet space, e.g. one can compare Lem. 10 of Delorme [Del05].
Combining Delorme’s Paley-Wiener theorem with the above identifications and obser-
vations, this leads us to the Paley-Wiener theorem for our purposes.

Theorem 2.31 (Topological Paley-Wiener theorem for sections in (Level 2) and
(Level 3)). Let (τ, Eτ ) be a K-representation with associated homogeneous vector bundle
Eτ . For r > 0, then the Fourier transform

C∞r (X,Eτ ) 3 ψ 7→ Fτ (ψ)(λ, k) ∈ PWτ,r(a
∗
C ×K/M), (λ, k) ∈ a∗C ×K
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is a topological isomorphism between C∞r (X,Eτ ) and PWτ,r(a
∗
C ×K/M).

Moreover, by considering an additional K-representation (γ,Eγ) with associated ho-
mogeneous vector bundle Eγ, then the Fourier transform

C∞r (G, γ, τ) 3 ϕ 7→ γF τ (ϕ)(λ) ∈ γPW τ,r(a
∗
C), λ ∈ a∗C

is a topological isomorphism between C∞r (G, γ, τ) and γPW τ,r(a
∗
C). �

Furthermore, by taking the union of all r > 0, the Paley-Wiener space PWτ (a
∗
C ×

K/M) is defined as

PWτ (a
∗
C ×K/M) :=

⋃
r>0

PWτ,r(a
∗
C ×K/M)

similar for γPW τ (a
∗
C). Hence, by the above result (Thm. 2.31), we also have a linear

topological Fourier transform isomorphism from C∞c (X,Eτ ) (resp. C∞c (G, γ, τ)) onto
PWτ (a

∗
C ×K/M) (resp. γPW τ (a

∗
C)).

Remark 2.32. Helgason proved Thm. 2.31 in (Level 2) for trivial K-representation
([Hel89], Thm. 5.1.). In 1966, he even proved the topological isomorphism between
the Paley-Wiener space in (Level 3) and the smooth space of K-bi-invariant functions
on G defined in (2.13) for trivial K-representations and G of real rank one or with
complex structure ([Hel20], Thm. 7.1). Gangolli [Gan71] completed the proof for
arbitrary G.

2.2 Harish-Chandra inversion and the Plancherel the-
orem for sections

It is well-known that the Harish-Chandra inversion formula (2.44), also called Plancherel
theorem, for smooth compactly function on G is given by the following theorem. A
complete proof as well as the structure theory behind can be found for example in
Wallach’s book ([Wal92], Chap. 13).

Theorem 2.33 (Harish-Chandra inversion, [HC76])). Let Q be a complete set of rep-
resentatives of association classes of cuspidal parabolic subgroups Q = MQAQNQ with
Q ⊃ P = MAN and AQ ⊂ A. Then, a∗ = a∗Q ⊕ a∗mQ.
For each Q ∈ Q and any discrete series representations ξ of the corresponding group
M̂Q,d, there exsits a meromorphic function of polynomial growth

µξ : ia∗Q −→ [0,∞]

known as the Plancherel density, which is regular, non-negative on ia∗, such that for
each f ∈ C∞c (G) ⊂ L2(G), we have

f(e) =
∑
Q∈Q

∑
ξ∈M̂Q,d

∫
ia∗Q

Tr(πξ,λ(f))µξ(λ) dλ. (2.43)

Note that the Plancherel measures µξ(λ)dλ depends on the normalization of the Haar
measure dg.
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Moreover, for f, ϕ ∈ C∞c (G), the Plancherel formula in L2 is given by

〈f, ϕ〉L2 :=

∫
G

f(g)ϕ(g) dg =
∑
Q∈Q

∑
ξ∈M̂Q,d

∫
ia∗Q

Tr(πξ,λ(f)πξ,λ(ϕ)∗)µξ(λ) dλ,

where by ϕ∗ we mean the adjoint of ϕ, and thus∫
G

〈f(g), ϕ(g)〉 dg =
∑
Q∈Q

∑
ξ∈M̂Q,d

∫
ia∗Q

Tr(πξ,λ(f)πξ̃,−λ(ϕ)t)µξ(λ) dλ, (2.44)

where ξ̃ is the dual of ξ and ϕt is the transpose of ϕ.

Nevertheless, we want to adapt the Harish-Chandra Plancherel inversion formula
(2.44) for sections over homogeneous vector bundles. This will be useful later for
the proof of the surjectivity and topological part of the Paley-Wiener theorem for
distributions.

The following theorem is a consequence of Harish-Chandra Plancherel Thm. 2.33
and Casselman’s embedding theorem (e.g. [Wal88], Thm. 3.8.3). More precisely,
Camporesi ([Ca97], Thm. 3.4 & Thm. 4.3) have already proved a similar Harish-
Chandra’s inversion formulas as below for homogeneous vector bundles over X.

Theorem 2.34. Let (τ, Eτ ) be a finite-dimensional K-representation and Q as in
Thm. 2.33. Then, there exists a finite set AτQ ⊂ a∗mQ ⊂ a∗ and for ν ∈ AτQ, there exists
an analytic function of at most polynomial growth

µQν : ia∗Q −→ EndM(Eτ )

such that for each f ∈ C∞c (X,Eτ ), we have

f(e) =
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

τ(k)µQν (λ)Fτ (f)(ν + λ, k) dk dλ.

Note that AτP = {0}. We postpone the proof of Thm. 2.34 and first derive the
following corollary from it.

Corollary 2.35. With the notations above, let f ∈ C∞c (X,Eτ ) and ϕ ∈ C∞c (X,Eτ̃ ).
Then∫
G

〈ϕ(g), f(g)〉τ dg =
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (ϕ)(−ν−λ, k), µQν (λ)Fτ (f)(ν+λ, k)〉τ dk dλ.

(2.45)

Proof. Let {ṽi, i = 1, . . . , dτ} be a vector basis of Eτ̃ . We write ϕ =
∑dτ

i=1 ϕi · ṽi with
ϕi ∈ C∞c (G). For h ∈ C∞c (G), we set h∨(g) := h(g−1). Then∫

G

〈ϕ(g), f(g)〉 dg =
dτ∑
i=1

〈(ϕ∨i ∗ f)(e), ṽi〉,

where we used the usual convolution defined in (2.34). Note that h ∗ f = l(h)f , where
l is the (left) regular representation of G on C∞c (X,Eτ ). By the G-equivariance of the
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Fourier transform, we have by (2.35): Fτ (h ∗ f)(λ, k) = πτ,λ(h)(Fτ (f)(λ, ·))(k). By
applying Thm. 2.34, we obtain for all i ∈ {1, . . . , dτ}

〈ṽi, (ϕ∨i ∗ f)(e)〉 =
∑
Q,ν

∫
ia∗Q

∫
K

〈ṽi, τ(k)µQν (λ)πτ,ν+λ(ϕ
∨
i )(Fτ (f)(ν + λ, ·))(k)〉 dk dλ.

Using that µQν commutes with πτ,ν+λ and that integration over K gives a G-equivariant
pairing between Hτ,ν+λ

∞ and H τ̃ ,−(ν+λ)
∞ , we obtain that the K-integral equals∫

K

〈τ̃(k−1)ṽi, πτ,ν+λ(ϕ
∨
i )µQν (λ)(Fτ (f)(ν + λ, ·))(k)〉 dk

=

∫
K

〈(πτ̃ ,−(ν+λ)(ϕi)τ̃(·)−1ṽi)(k), µQν (λ)Fτ (f)(ν + λ, k)〉 dk.

Now

(πτ̃ ,−(ν+λ)(ϕi)τ̃(·)−1ṽi)(k) =

∫
G

ϕi(g)τ̃(κ(g−1k))−1a(g−1k)ν+λ−ρṽi dg

=

∫
G

ϕi(g)eτ̃−(ν+λ),k(g)ṽi dg.

The sum over all i equals to Fτ̃ (ϕ)(−(ν + λ), k). Combining all the previous formulas,
we obtain the corollary.

Proof of Thm. 2.34. Our starting point is Harish-Chandra’s Plancherel formula (2.43)
for f ∈ C∞c (G). It remains valid for f ∈ C∞c (G,Eτ ) ∼= [C∞c (G)⊗Eτ ]K , if we set (with a
slight abuse of notation) for f =

∑dτ
i=1 fi⊗vi ∈ [C∞c (G)⊗Eτ ]K , where {vi, i = 1, · · · , dτ}

is a vector basis of Eτ :

πξ,λ(f) =
dτ∑
i=1

πξ,λ(fi)⊗ vi ∈ [End(Hξ
∞)⊗ Eτ ]K

and thus

Tr(πξ,λ(f)⊗ vi) =
dτ∑
i=1

Tr(πξ,λ(fi)) · vi ∈ Eτ .

Note that, because of the right K-finiteness of fi, πξ,λ(fi) is an operator of finite rank,
which has a well-defined trace independent of the theory of trace class operators or
nuclear operators ([Wal88], 8.A.1). Moreover, for fixed τ and any Q ∈ Q, there are
only finitely many ξ ∈ M̂Q,d really appearing in (2.43). Namely, for all but finitely
many ξ ∈ M̂Q,d, we have [End(Hξ

∞) ⊗ Eτ ]K = {0}. In fact, by Frobenius-reciprocity
(2.14)

[End(Hξ
∞)⊗ Eτ ]K

(1.8)∼= Hξ
∞ ⊗ HomK(Hξ

∞, Eτ )
Frob∼= Hξ

∞ ⊗ HomK∩MQ
(Eξ, Eτ ),

where Eξ denotes the representation space for ξ ∈ M̂Q,d. By a result of Harish-Chandra
([Wal88], Cor. 7.7.3), there are only finitely many discrete series representations (ξ, Eξ)
of MQ containing a given K ∩MQ-type. This together with the finite dimension of Eτ
gives the above assertion.
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Second, we want to rewrite (2.43) entirely in terms of the minimal parabolic P .
Casselman’s embedding theorem says that any irreducible (g, K)-module E can be
(g, K)-equivariantly embedded into a principal series representation Hσ,λ

∞ , for (σ, λ) ∈
M̂ ×a∗C, corresponding to the minimal parabolic P of G. If E is the underlying (g, K)-
module of a discrete series representation, then λ is necessarily real, i.e., λ ∈ a∗. This
follows from the fact that E has integral, in particular real, infinitesimal character.
We apply this theorem to MQ instead of G and to E = Eξ,K∩MQ

by the (mQ, K ∩MQ)-
module of (K ∩ MQ)-finite elements in Eξ. We observe that P ∩ MQ is a minimal
parabolic of MQ with ’M ’-part being our original M = MP ⊂ P ⊂ G. Then, we fix
σ = σ(ξ) ∈ M̂ , ν = ν(ξ) ∈ a∗mQ (in general not uniquely determined) such that there
exists a (mQ, K ∩MQ)-equivariant embedding

Eξ,K∩MQ
↪→ MQHσ,ν

∞ ,

where MQHσ,ν
∞ is the principal series representation for minimal parabolic of MQ. Let

MQW ξ be the closure of the image of this embedding. It carries a MQ-representation.
By the Casselman-Wallach globalization theorem ([Wal92], Thm. 11.6.6.) this MQ

representation is isomorphic to the space of smooth vectors Eξ,∞.
Now we fix λ ∈ ia∗Q. This equips MQHσ,ν

∞ (and hence also MQW ξ) with the structure of
a Q-representation (Q = MQAQNQ and NQ acts trivally). Now we induce from Q to
G (smooth double induction):

IndGQ(MQHσ,ν
∞ ) ∼= Hσ,ν+iλ

∞ ,

where Hσ,ν+iλ
∞ is the principal series representation of G and

W ξ := IndGQ(MQW ξ) ∼= Hξ,λ
∞

is a closed G-equivariant subspace of Hσ,ν+iλ
∞ . We will view it in the compact picture

W ξ ⊂ Hσ
∞. Then, it is really independent of λ ∈ ia∗Q.

We will only consider the finitely many ξ ∈ M̂Q,d with HomK(Hξ,λ
∞ , Eτ ) 6= {0}, i.e.,

HomK(W ξ, Eτ ) 6= {0}, which implies by Frobenius-reciprocity

HomM(Eσ(ξ), Eτ ) 6= {0}.

The above discussion implies that we can replace Tr(πξ,λ(f)) in (2.43) by

TrW ξ(πσ(ξ),ν(ξ)+λ(f)), (2.46)

where TrW ξ denotes the trace of the restriction of W ξ of an operator leaving W ξ

invariant.
As a last step, we make the connection to the Fourier transform Fτ . The crucial

observation is given in Lem. 2.36. We remark that for W = Hσ,λ
∞ , we have pW = pσ,

where pσ is the orthogonal projection to the M -isotypic component Eτ (σ) ⊂ Eτ .
For ν ∈ AτQ and λ ∈ ia∗Q, we set

µQν (λ) :=
∑
B

µξ(λ)

dσ(ξ)

· pW ξ ∈ EndM(Eτ ),

where B := {ξ ∈ M̂Q,d | ν(ξ) = ν,HomK∩MQ
(Eξ, Eτ ) 6= {0}}. Then, (2.43) with the

replacement (2.46) together with Lem. 2.36, gives the desired formula for f(e).
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Lemma 2.36. Consider f ∈ C∞c (X,Eτ ). Let (σ, λ) ∈ M̂ × a∗C and W ⊂ Hσ,λ
∞ be a

closed G-invariant subspace.
Then, there exists an orthogonal projection pW ∈ EndM(Eτ ) with values in Eτ (σ) such
that

TrW (πσ,λ(f)) =
1

dσ

∫
K

τ(k)pW (Fτ (f)(λ, k)) dk.

Proof. As in Thm. 2.28, we consider the space

Dτ
W = {t ∈ HomM(Eτ , Eσ) | T = F̃ rob

−1
(t) ∈ HomK(Eτ ,W ) ⊂ HomK(Eτ , H

σ
∞)}.

We set AW := {v ∈ Eτ | t(v) = 0, ∀t ∈ Dτ
W} and BW := A⊥W ⊂ Eτ . Note that BW ⊂

Eτ (σ). Let pW be the orthogonal projection to BW . We have a natural isomorphism:

πσ,λ(f) ∈ [End(Hσ
∞)⊗ Eτ ]K

(1.8)+Frob∼= HomM(Eσ, Eτ )⊗Hσ
∞.

We choose a basis s1, . . . , sk, sk+1, . . . , sl of HomM(Eσ, Eτ ) such that

Im(sj) ⊂ BW , j = 1, . . . , k

Im(sj) ⊂ AW , j = k + 1, . . . , l. (2.47)

Let
∑l

j=1 sj⊗ϕj ∈ HomM(Eσ, Eτ )⊗Hσ
∞ be the element corresponding to πσ,λ(f). Since

W is G-invariant by Thm. 2.28, we have ϕj ∈ W, for j = 1, . . . , k. Also, by (2.19), we
have

pσ(Fτ (f)) = dσ

l∑
j=1

sj · ϕj. (2.48)

Now let {vi, i = 1 . . . , dτ} be a vector basis of Eτ with dual basis ṽi of Eτ̃ . We write
f =

∑dτ
i=1 fi ⊗ vi, for fi ∈ C∞c (G) and πσ,λ(f) =

∑dτ
i=1 πσ,λ(fi)⊗ vi.

Then, by Lem. 2.11, the operator πσ,λ(fi) is given by the operator

Hσ
∞ 3 ψ 7→

l∑
j=1

〈Sj(ψ), ṽi〉ϕj =:
l∑

j=1

Aij(ψ), ∀i = 1 . . . , dτ ,

where Sj(ψ) :=
∫
K
τ(k)sjψ(k) dk.

We claim that, for j = k+1, . . . , l, we have Sj
∣∣
W

= 0. Indeed, let T ∈ HomK(Eτ ,W )

with corresponding t = F̃ rob(T ) ∈ Dτ
W . As in the proof of Prop. 2.24 (a), we obtain

Trτ (Sj ◦ T ) = Trσ(t ◦ sj).

The right hand side vanishes since by (2.47), we have t ◦ sj = 0. Since the pairing
between HomK(W,Eτ ) and HomK(Eτ ,W ) : S, T 7→ Trτ (S ◦ T ) is non-degenerate, we
obtain Sj

∣∣
W

= 0. The claim follows.
The claim implies that Trτ (πσ,λ(f)) =

∑dτ
i=1

∑k
j=1 TrWAij · vi. Note that Aij is an

operator of rank one (or zero) with image spanned by ϕj ∈ W . Hence, TrWAij =
TrAij = 〈Sj(ϕj), ṽi〉. We obtain

TrW (πσ,λ(f)) =
k∑
j=1

∫
K

τ(k)sjϕj(k) dk =
l∑

j=1

∫
K

τ(k)pW sjϕj(k) dk

(2.48)
=

1

dσ

∫
K

τ(k)pWpσFτ (f) dk

=
1

dσ

∫
K

τ(k)pW (Fτ (f)) dk,
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where pWpσ = pW .

2.3 Distributional topological Paley-Wiener theorem
So far, we have seen that the Paley-Wiener theorem for sections (Thm. 2.31) asserts
that the Fourier transform is a linear topological isomorphism from C∞c (X,Eτ ) onto
PWτ (a

∗
C×K/M) (resp. C∞c (G, γ, τ) onto γPW τ (a

∗
C)). Nevertheless, the theorem has a

counterpart, the Paley-Wiener-Schwartz theorem, where smooth functions are replaced
by distributions and the growth condition by a condition of ’slow’ growth. We use,
here, the concept of ’distributions’ for generalized functions.

We start in Subsection 2.3.1 by bringing up a framework for dual spaces equipped
with their natural topologies. This will be useful later, to establish the topological
Fourier isomorphism between the Paley-Wiener-Schwartz space and a space of smooth
compactly supported distributions.

In Subsection 2.3.2 we introduce the Fourier transform for distributions as well as
the Paley-Wiener-Schwartz spaces with their corresponding topologies.

The interesting part lies in Subsection 2.3.3, where we prove the topological Paley-
Wiener-Schwartz theorem (Thm. 2.40) using the Fourier inversion formula, introduced
in Section 2.2. Helgason’s distributional topological Paley-Wiener theorem on X
([Hel89], Cor. 5.9., Chap. 3) as well as van den Ban and Schlichtkrull’s paper [vdBS06]
are the main sources of inspiration for our proof.

2.3.1 Dual spaces and their corresponding topologies

In Sect. 1.3, we already have seen that the space of compactly supported distributions
C−∞c (X,Eτ ) := (C∞(X,Eτ̃ ))′ is the topological linear dual of C∞(X,Eτ̃ ). Likewise for
space of distributions, we have

C−∞(X,Eτ ) := (C∞c (X,Eτ̃ ))′.

We provide C−∞c (X,Eτ ) with the strong dual topology. Actually, we know that C∞(X,Eτ̃ )
is a Fréchet space with semi-norm

||h||Ω,Y := sup
g∈Ω
|lY h(g)|, h ∈ C∞(X,Eτ̃ ), (2.49)

where Y ∈ U(g) and Ω is a compact subset of G. Furthermore, a subset B is called
bounded, if it is a subset of C∞(X,Eτ̃ ), then for each Ω ⊂ G and Y ∈ U(g) there
exists a constant CΩ,Y > 0 such that supϕ∈B ||ϕ||Ω,Y ≤ CΩ,Y . Thus, every semi-norm is
bounded on B.
The strong dual topology on C−∞c (X,Eτ ) is a locally convex topology vector space
given by the semi-norm system

pB(T ) := ||T ||B = sup
ϕ∈B
|T (ϕ)| = sup

ϕ∈B
|〈T, ϕ〉|, T ∈ C−∞c (X,Eτ ), (2.50)

where B belongs to the family of all bounded subsets of C∞(X,Eτ̃ ).
As an immediate consequence of theses dualities, the topologies on C−∞c (X,Eτ ) and
C−∞(X,Eτ ) induce the same topology on the space of distributions supported in a fixed
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compact subset Ω of G ([vdBS06], Sect. 14). For example, one can take Ω = Br(o).
Later, we will use the weak-* topology that is defined in a similar way, except that the
bounded subsets are replaced by finite one.

A subset B′ ⊂ C−∞c (X,Eτ ) is bounded in the strong dual topology, if for each
bounded B ⊂ C∞(X,Eτ̃ ), we have

sup
T∈B′

pB(T ) = sup
T∈B′,ϕ∈B

|T (ϕ)| <∞. (2.51)

Since, by Schaefer ([Sch71], Cor. 1.6, p. 127), we know that all such sets B′ are equicon-
tinuous, this means that there exist a continuous semi-norm p on C∞(X,Eτ̃ ) and a
constant C > 0 such that

B′ ⊂ {T ∈ C−∞c (X,Eτ ) | |T (ϕ)| ≤ Cp(ϕ),∀ϕ ∈ C∞(X,Eτ̃ )}.

Let Y1, . . . , Yn be a basis, then for all multi-indices α = (α1, . . . , αn), αj ∈ N0, we have

Yα := Y α1
1 · · ·Y αn

n ∈ U(g).

We may assume that this semi-norm p has the form

p(ϕ) :=
∑
|α|≤m

||ϕ||Ω,α
(2.49)
=

∑
|α|≤m

sup
g∈Ω
|lYαϕ(g)|, ϕ ∈ C∞(X,Eτ̃ ),∀α (2.52)

for some m ∈ N0 and compact Ω ⊂ G.
It is interesting to notice that C∞(X,Eτ̃ ) is a reflexive Fréchet space, even a Montel

space, that is, it is reflexive and a subset is bounded if, and only if, it is relatively
compact ([Sch71], p. 147).
Thus, since C−∞c (X,Eτ ) is the strong dual space of a Montel space C∞(X,Eτ̃ ), we can
deduce by Cor. 1 in ([Sch71], p. 154) that C−∞c (X,Eτ ) is a bornological space, that
is a locally convex space on which each semi-norm pB, which is bounded on bounded
subsets, is continuous ([Sch71], Chap. 2.8, p. 61).
This observation leads us to the following general result, which will play an imporant
role in the topological statement of the main theorem. For bornological spaces, bounded
linear maps are continuous ([Sch71], Thm. 8.3., p. 62), hence, we obtain the following.

Lemma 2.37. Let W be any locally convex topological vector space and consider a
linear map A : C−∞c (X,Eτ ) → W. Then A is continuous if, and only if, A(B′) is
bounded in W , for every bounded subset B′ ⊂ C−∞c (X,Eτ ). �

Analogously, we equip the space C−∞c (G, γ, τ) with the strong dual topology of
C∞(G, γ̃, τ̃).

2.3.2 Distributional Fourier transform and Paley-Wiener-Schwartz
spaces

In a similar way as in Def. 2.14, we define the Fourier transform for distributional
functions on sections.
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Definition 2.38 (Fourier transform on distributions). Let eτλ,k ∈ C∞(X,Eτ̃ ) ⊗ Eτ be
the ’exponential’ function (2.20). The Fourier transform for distributional function
T ∈ C−∞c (X,Eτ ) is defined by

FτT (λ, k) := 〈T, eτλ,k〉 = T (eτλ,k) ∈ Eτ , (λ, k) ∈ a∗C ×K/M.

Similarly, by considering an additional finite-dimensional, not necessary irreducible,
K-representation (γ,Eγ), we define the Fourier transform for S ∈ C−∞c (G, γ, τ) by

γF τS(λ) := 〈S, eτλ,1〉, λ ∈ a∗C.

Analogously as for smooth compactly functions (2.34), we define the convolution
for distributions T ∈ C−∞c (X,Eτ ) by

(T ∗ ϕ)(g) := T (lgϕ
∨) = 〈T, lgϕ∨〉, g ∈ G,ϕ ∈ C∞c (G, τ, τ),

where ϕ∨ ∈ C∞c (X,Eτ̃ )⊗Eτ is given by ϕ∨(g) := ϕ(g−1), g ∈ G. Note that the results
obtained in Prop, 2.21, its Cor. 2.23 and Remark 2.22 can be applied for distributions
T ∈ C−∞c (X,Eτ ) as well.

Now let us define the Paley-Wiener space in (Level 2) and (Level 3) for distributions.

Definition 2.39 (Paley-Wiener-Schwartz space for sections). For r ≥ 0, the Paley-
Wiener-Schwartz space PWSτ,r(a

∗
C×K/M) for sections over homogeneous vector bun-

dle Eτ in (Level 2), is the vector space which contains all smooth sections ψ ∈ C∞(a∗C×
K/M,Eτ |M ) satisfying conditions (2.i), (2.iii) of Def. 2.30 and with the following slow
growth condition:

(2.iis)r for all multi-indices α, there exist N ∈ N0 and a positive constant Cr,N,α such
that

||lYαψ(λ, k)||Eτ ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|, k ∈ K.

The Paley-Wiener-Schwartz space in (Level 3), for two K-representations, is denoted
by γPWSτ,r(a

∗
C). Here, the condition (3.ii)r in Def. 2.30 is replaced by

(3.iis)r there exist N ∈ N0 and a positive constant Cr,N such that

||ϕ(λ)||op ≤ Cr,N(1 + |λ|2)Ner|Re(λ)|, ϕ ∈ Hol(a∗C,HomM(Eγ, Eτ )).

Next, we will provide PWSτ (a
∗
C ×K/M) :=

⋃
r≥0 PWSτ,r(a

∗
C ×K/M) (similar for

γPWSτ (a
∗
C)) with the inductive limit topology. We will only explain the topology for

the space PWSτ (a
∗
C ×K/M), since the procedure is the same for γPWSτ (a

∗
C).

For all N ∈ N0 and r ≥ 0, we consider the Paley-Wiener-Schwartz space:

PWSτ,r,N := {ψ ∈ PWSτ,r(a
∗
C ×K/M) | ||ψ||r,N,α <∞,∀α}.

It is not difficult to see that PWSτ,r,N equipped with the semi-norm

||ψ||r,N,α := sup
λ∈a∗C, k∈K/M

(1 + |λ|2)−(N+
|α|
2

)e−r|Re(λ)|||lYαψ(λ, k)||Eτ , ∀α, k ∈ K

is a Fréchet space (e.g. see [vdBS06], Lem. 15.2.).
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Now, by following Schaefer’s requirements ([Sch71], p. 57) for the construction of
an inductive limit topology, consider PWSτ,r(a

∗
C×K/M) =

⋃
N∈N0

PWSτ,r,N such that
PWSτ,r,N1 6= PWSτ,r,N2 for N1 6= N2 ∈ N0, directed under inclusion. Moreover, on
each PWSτ,r,N1 consider a (Hausdorff) locally convex topology TN1 , so that, whenever
N1 ≤ N2, the topology induced by TN2 on PWSτ,r,N2 is finer than TN1 . Thus, for
N1 ≤ N2, we have that the canonical embedding

PWSτ,r,N1

iN1,N2
↪→ PWSτ,r,N2

is continuous. In these circumstances, the family of spaces PWSτ,r,N indexed by N ∈
N0, is thus a directed family and we can give PWSτ,r the finest locally convex topology,
called the inductive limit topology, of Fréchet spaces for the union over N .
Notice, that it is not a strict inductive limit, that is, if TN2 induces TN1 on PWSτ,r,N1 ,
whenever N1 ≤ N2, and that for each N ∈ N0, the space PWSτ,r,N is closed.
Furthermore, this topology is characterized by a linear continuous map
A : PWSτ,r → W, where W is any locally convex space if, and only if,

PWSτ,r,N
iN
↪→ PWSτ,r

A−→ W

is continuous, i.e., A ◦ iN is continuous. As next step, we provide
⋃
r≥0 PWSτ,r(a

∗
C ×

K/M) = PWSτ (a
∗
C × K/M) with the inductive limit topology, in the same way as

above.

2.3.3 On topological Paley-Wiener-Schwartz theorem and its
proof

We are now in the position to state the main theorem.

Theorem 2.40 (Topological Paley-Wiener-Schwartz theorem for sections).

(a) Let (τ, Eτ ) be a finite-dimensional K-representation with associated homogeneous
vector bundle Eτ .
Then, for each r ≥ 0, the Fourier transform Fτ is a linear bijection between
the two spaces C−∞r (X,Eτ ) and the Paley-Wiener-Schwartz space PWSτ,r(a

∗
C ×

K/M). Moreover, it is a linear topological isomorphism from C−∞c (X,Eτ ) onto
PWSτ (a

∗
C ×K/M).

(b) Similarly, if we consider an additional finite-dimensional K-representation (γ,Eγ)
with associated homogeneous vector bundle Eγ. Then, the Fourier transform
γF τ is a linear bijection between the two spaces C−∞r (G, γ, τ) and γPWSτ,r(a

∗
C),

for each r ≥ 0, and a linear topological isomorphism from C−∞c (G, γ, τ) onto
γPWSτ (a

∗
C).

Remark 2.41. Delorme proved in his paper [Del05], the Paley-Wiener theorem in
(Level 1) for Hecke algebra

H(G,K) := C−∞r=0 (G)K ∼= U(g)⊗U(k) C
∞(K)K , (2.53)

which consists of all K ×K-finite distributions on G supported by K ⊂ G.

Let us first prove the injectivity and surjectivity of the Fourier transform.
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Proposition 2.42. Consider a finite-dimensional K-representation (τ, Eτ ).

(a) Let T ∈ C−∞c (X,Eτ ) such that its Fourier transform Fτ (T ) = 0, then T = 0.

(b) For T̃ ∈ PWSτ (a
∗
C ×K/M), there exists T ∈ C−∞c (X,Eτ ) such that T̃ = Fτ (T ).

(c) For r ≥ 0, let T ∈ C−∞r (X,Eτ ), then its Fourier transform Fτ (T ) satisfies the
conditions of the Paley-Wiener-Schwartz space PWSτ,r(a

∗
C×K/M) in Def. 2.39.

Proof. For each ε > 0, consider aK-bi-invariant endomorphism function ηε ∈ C∞(G, τ, τ)
with compact support on the closed ball Bε(o) as in Cor. 2.23. Let T ∈ C−∞c (X,Eτ )
be a distribution, then

Tε := T ∗ ηε ∈ C∞c (X,Eτ ).

Moreover, by using the same arguements as in the proof of Cor. 2.23, we have that
Tε

ε→0−→ T (weakly). Hence, by the Paley-Wiener Thm. 2.31, this implies that Fτ (Tε) ∈
PWτ (a

∗
C × K/M). Note that Fτ (Tε) is holomorphic on λ ∈ a∗C and it satisfies the

conditions (2.i) and (2.ii)r of Def. 2.30. Furthermore, by Prop. 2.21, we have

Fτ (Tε)(λ, k) = τF τ (ηε)(λ)Fτ (T )(λ, k), (λ, k) ∈ a∗C ×K/M. (2.54)

Due to Cor. 2.23, τF τ (ηε) converges uniformly on compact subsets of a∗C to the identity
map, whenever ε tends to 0. Hence, limε→0Fτ (Tε) = Fτ (T ) uniformly on compact sets
on a∗C.

(a) Now assume that Fτ (T ) = 0. By (2.54), we have that Fτ (Tε) = 0. By applying
the Paley-Wiener Thm. 2.31, this implies that Tε = 0. Hence, since Tε

ε→0−→
T weakly, we have that T = 0. This means that T 7→ Fτ (T ) is injective on
C−∞c (X,Eτ ).

(b) Consider ψ ∈ PWSτ (a
∗
C ×K/M). For each ε > 0 and h ∈ C∞c (X,Eτ̃ ), let Tε be

the functional given by

Tε(h) :=
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k) ,

µQν (λ) τF τ (ηε)(ν + λ)ψ(ν + λ, k)〉 dk dλ (2.55)

under the same notations introduced in Thm. 2.34. Notice that, since supp(ηε) ⊂
Bε(o) and ψ satisfies the slow growth condition (2.iis)r of Def. 2.39, for all r ≥ 0,
this implies that for each multi-index α ∈ N0 and N ∈ N0, there exists a constant
Cr,N,α > 0 such that

|lYα τF τ (ηε)(λ)ψ(λ, k)| ≤ Cr,N,α(1 + |λ|2)−Ne(r+ε)|Re(λ)|, (λ, k) ∈ a∗C×K. (2.56)

In addition, for each intertwining datum (ξ,W ), the induced operator
(τF τ (ηε)ψ)ξ = τF τ (ηε)ξψξ ∈ H

τ |M
∞ satisfies the intertwining condition (2.iii) of

Def. 2.30. In fact, for t ∈ Dτ
W , we have t ◦ τF τ (ηε)ξ ∈ Dτ

W and since ψ ∈
PWSτ (a

∗
C ×K/M), this implies that

(t ◦ τF τ (ηε)ξ) ◦ ψξ ∈ W.
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Therefore, by the Paley-Wiener Thm. 2.31, we have that τF τ (ηε)ψ is the Fourier
transform of a function fε ∈ C∞c (X,Eτ ), i.e.,

Fτ (fε) := τF τ (ηε)ψ.

On the other side, by (2.55) and Cor. 2.35, we have Tε = fε. By (2.56), we have
that supp(Tε) ⊂ Br+ε(o). Thus, by Cor. 2.23, this implies that

Tε(h)
ε→0−→ T (h) :=

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k), µQν (λ)ψ(ν + λ, k)〉 dk dλ

(2.57)

and thus supp(T ) ⊂ Br(o). Note that µQν has maximal polynomial growth, thus
T is continuous. Since T is compactly supported, we can set h := eτλ,k. In
conclusion, we have found a distribution T ∈ C−∞c (X,Eτ ) such that

Fτ (T )(λ, k) = T (eτλ,k)
(2.57)
= lim

ε→0
Tε(e

τ
λ,k) = lim

ε→0
Fτ (fε)(λ, k) = lim

ε→0
τF τ (ηε)(λ)ψ(λ, k)

= ψ(λ, k).

(c) Let us check that for r ≥ 0, Fτ (T ) ∈ PWSτ,r(a
∗
C × K/M). This means that

we need to verify that the Fourier transform of T ∈ C−∞r (X,Eτ ) satisfies the
conditions (2.i)− (2.iii) of Def. 2.30.
The condition (2.i) is immediate. By Prop. 2.16, we know that eτλ,k is an entire
function with respect to λ ∈ a∗C and since T ∈ C−∞r (X,Eτ ), this implies that
Fτ (T ) = T (eτλ,k) is smooth in (λ, k) ∈ a∗C ×K and holomorphic in λ ∈ a∗C.
Concerning the intertwining condition (2.iii), in order to show that for each
intertwining datum (ξ,W ) and t ∈ Dτ

W , we have

t ◦ (Fτ (T ))ξ ∈ W ⊆ Hξ,

we will use a similar convolution argument as above, except that now we are
interested to the convolution on the left instead on the right. For each ε > 0, let
δε ∈ C∞r (G) be a delta-sequence such that limε→0 δε = δ0.Hence, limε→0 δε∗T = T ,
for T ∈ C−∞r (X,Eτ ). Moreover, for all representations (πτ,λ, H) with Fréchet
space H and v ∈ H, we have πτ,λ(δε)v

ε→0−→ v. By taking the Fourier transform
on δε ∗ T ∈ C∞r (X,Eτ ), it is sufficient to prove that for each intertwining datum
(ξ,W ) and t ∈ Dτ

W :
lim
ε→0

(t ◦ Fτ (δε ∗ T )ξ) ∈ W.

In fact, we have

t ◦ Fτ (δε ∗ T )ξ
Remark 2.22

= t ◦ (πτ,·(δε)Fτ (T ))ξ
= (. . . , ti ◦ (πτ,λi(δε)Fτ (T )(λi, ·))(mi), . . . )

= (. . . , ti ◦ πξi(δε)Fτ (T )ξi , . . . )

= (. . . , πξi(δε)(ti ◦ Fτ (T )ξi), . . . )

= πξ(δε)(t ◦ Fτ (T )ξ) ∈ W,

where (π
(m1)
σ1,λ1

(δε), . . . , π
(ms)
σs,λs

(δε)) = πξ(δε) ∈ W ⊂ Hξ. Hence, by taking ε→ 0 and
since W is closed, we obtain that t ◦ (Fτ (T ))ξ ∈ W .
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It remains to check that Fτ (T ) statisfies the slow growth condition (2.iis)r. Fix
r ≥ 0. We need to show that for each multi-indices α, there exist N ∈ N0 and a
constant Cr,N,α > 0 such that

|lYαFτ (T )(λ, k)| ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|.

Note that lYαFτ (T ) = Fτ (lYαT ). Let T ∈ C−∞r (X,Eτ ) be a distribution of order
m ∈ N0 and h ∈ C∞(X,Eτ̃ ). WriteXβ ∈ U(n) andHγ ∈ U(a) for all multi-indices
β, γ. Since G/K ∼= NA and U(n ⊕ a) ∼= U(n)U(a), then, for all multi-indices β
and γ, there exist a constant C > 0 and m ∈ N0 such that

|T (h)| ≤ C
∑

|β|+|γ|≤m

sup
g∈Br(o)

|(lXβ(lHγh))(g)|. (2.58)

Next, we want to apply it to h = eτλ,1. We observe that

lYαFτ (T )(λ, k) = Fτ (lYαT )(λ, k) = lYαT (eτλ,k)
(2.22)
= T (lklYαe

τ
λ,1) = (lklYαT )(h),

where lklYα is a distribution of order m+ |α|.
Moreover, h is annihilated by each lXβ without constant terms and it is an eigen-
function of each lHγ with eigenvalue a polynomial in λ ∈ a∗C of most degree
m ∈ N0, i.e.

|lYαFτ (T )(λ, k)| = |(lklYαT )(eτλ,1)| ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|,

where we setN := [m
2

]. SinceK is compact and operates constantly on C−∞r (X,Eτ ),
the constant Cr,N,α is independent of K.

Consequently, by (2.57), the inverse Fourier transform of ψ ∈ PWSτ (a
∗
C ×K/M)

for a test function h ∈ C∞c (X,Eτ̃ ) is given by

〈F−1
τ (ψ), h〉 :=

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k), µQν (λ)ψ(ν + λ, k)〉 dk dλ.

Finally, we discuss the topology on the image space by which the Fourier transform
becomes a topological isomorphism.

Lemma 2.43. (a) The Fourier transform Fτ : C−∞c (X,Eτ ) −→ PWSτ (a
∗
C ×K/M)

is continuous with respect to the strong dual topology of C−∞c (X,Eτ ).

(b) Its inverse Fourier transform

F−1
τ : PWSτ (a

∗
C ×K/M) −→ C−∞(X,Eτ ) (2.59)

is continuous with respect to the strong dual topology of C−∞(X,Eτ ).

Proof. (a) We will show that for each bounded B′ ⊂ C−∞c (X,Eτ ), there exist r ≥ 0
and N ∈ N0 such that Fτ (B′) is contained as a bounded set in PWSτ,r,N . Since
PWSτ,r,N ↪→ PWSτ (a

∗
C ×K/M) is continuous, by definition of inductive limit,

then Fτ (B′) is also bounded in PWSτ (a
∗
C ×K/M). By Lem. 2.37, we will have

that Fτ is continuous.



CHAPTER 2. FOURIER TRANSFORMS & PALEY-WIENER THEOREMS 49

Now let B′ ⊂ C−∞c (X,Eτ ) be bounded. Since B′ is equicontinuous and because
of (2.52), there exist r ≥ 0,m ∈ N0 and a constant C > 0 such that (2.58) holds
uniformly for all T ∈ B′:

sup
T∈B′

pB(T ) = sup
T∈B′, ϕ∈B

|T (ϕ)| ≤ C
∑
|α|≤m

sup
g∈Br(o)

|lYαϕ(g)|.

Now by arguing as in the proof of Prop. 2.42 (c), we obtain, for N = [m
2

] that

||Fτ (T )||r,N,α ≤ ∞, ∀T ∈ B′

i.e., Fτ (B′) ⊂ PWSτ,r,N is bounded. Hence the Fourier transform is continuous.

(b) Concerning the last assertation. If, for all r ≥ 0 and N ∈ N0

F−1
τ : PWSτ,r,N(a∗C ×K/M) −→ C−∞(X,Eτ ) (2.60)

is continuous, then by constructing of the inductive limit topology, we have that
(2.59) is continuous.
Fix r ≥ 0 and N ∈ N0. We want to show that (2.60) is continuous. For that, it
suffices to show that for every bounded B̃ ⊂ C∞c (X,Eτ̃ ), we have

pB̃(F−1
τ (ψ)) ≤ C||ψ||r,N,0(<∞), ψ ∈ PWSτ,r,N ,

where pB̃(·) is the seminorm as in (2.50) and C is a positive constant. Since B̃
is bounded subset in C∞c (X,Eτ̃ ), there exsits R ≥ 0 so that the support of all
ϕ ∈ B̃ are in BR(o). Thus, for ψ ∈ PWSτ,r,N , we have that

pB̃(F−1
τ (ψ))

(2.50)
= sup

ϕ∈B̃
|〈F−1

τ (ψ), ϕ〉|

(2.45)
= sup

ϕ∈B̃

∣∣∣∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉 dkdλ
∣∣∣

≤ sup
ϕ∈B̃

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

∣∣∣〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉
∣∣∣ dkdλ.

Fix now Q ∈ Q and ν ∈ AτQ. Set

dQ,ν := sup
ϕ∈B̃

∫
ia∗Q

∫
K

∣∣∣〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉
∣∣∣ dkdλ.

It suffices to show that dQ,ν ≤ C||ψ||r,N,0. We have

dQ,ν ≤ sup
ϕ∈B̃

∫
ia∗Q

∫
K

(1 + |ν+λ|2)−dQ(1 + |ν+λ|2)dQ|Fτ̃ (ϕ)(−ν − λ, k)|

|µQν (λ)ψ(ν + λ, k)| dkdλ
≤ C sup

ϕ∈B̃
k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ |Fτ̃ (ϕ)(−ν − λ, k)| |µQν (λ)ψ(ν + λ, k)|,
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where C :=
∫
ia∗Q

(1+|ν+λ|2)−dQ dλ <∞ and (1+|ν+λ|2)dQ is a weight factor with
some dQ ∈ N0 depending on the dimension of ia∗Q. For some positive constant N
and growth constant m ∈ N0, we get

dQ,ν ≤ C sup
ϕ∈B̃

k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗Q

(1 + |ν+λ|2)−(N+m)|µQν (λ)ψ(ν + λ, k)|

≤ C ′ sup
ϕ∈B̃

k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗C

(1 + |ν + λ|2)−N |ψ(ν + λ, k)|,

where ||µQν (λ)||op ≤ C ′(1 + |ν+λ|2)m is of at most polynomial growth of m ∈ N0.
Thus

dQ,ν ≤ C ′′ sup
ϕ∈B̃

k∈K,λ∈ia∗Q

eR|ν|(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗Q

er|ν|(1 + |ν+λ|2)−N |ψ(ν + λ, k)|

= C ′′ sup
ϕ∈B̃
||Fτ̃ (ϕ)||R,dQ+N+m||ψ||r,N,0,

where we set ξ := ν+λ ∈ a∗C. By the Paley-Wiener Thm. 2.31, Fτ̃ is continuous,
thus supϕ∈B̃ ||Fτ̃ (ϕ)||R,dQ+N+m < C < ∞. Therefore, dQ,ν ≤ C ′′′|ψ||r,N,0 and
hence the inverse Fourier transform is continuous.

End of the proof of Thm. 2.40. The isomorphism of the Fourier transform map out-
comes from Lem. 2.42 and the continuity and topology statement results from Lem. 2.43,
hence this completes the proof.
Analogously, we obtain the topological Fourier isomorphism in (Level 3) by taking
C−∞c (G, γ, τ) instead of C−∞c (X,Eτ ).

2.4 The impact of invariant differential operators on
the Fourier range

The Paley-Wiener(-Schwartz) Theorems (Thm. 2.31 resp. Thm. 2.40) state a topolog-
ical isomorphism through the Fourier transform on the space of sections C±∞c (X,Eτ )
and the corresponding Paley-Wiener(-Schwartz) space. One can use its impact to com-
pute explicitly all invariant differential operators.

We restrict to the vector space of distributional sections supported at the origin
o = eK ∈ X

C−∞{o} (X,E∗) := {ψ ∈ C−∞c (X,E∗) | supp(ψ) ⊂ {o}}, ∗ = γ, τ.
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Since g ·o 6= o, G does not act on C−∞{o} (X,E∗), but K as well as g do, thus C−∞{o} (X,E∗)
is a (g, K)-module ([Wal88], 3.3.1). Moreover, it is generated by the so-called vector-
valued Dirac delta-distributions δv at v ∈ Eτ :

δv(f) = 〈v, f(e)〉τ , with test function f ∈ C∞(c)(X,Eτ̃ ),

where 〈·, ·〉∗ denotes the pairing in E∗. The following result follows directly from the
corresponding theorem for Rn ([Rud91], Thm. 6.25.). It states that each distribution
on a point is the mapping of a δ-distribution.

Lemma 2.44. In the previous notation, one has the following isomorphism of (g, K)-
modules

U(g)⊗U(k) E∗
β∼= C−∞{o} (X,E∗)

given by β(Z⊗v)(f) := 〈rZf(e), v〉∗, for Z ∈ U(g), v ∈ E∗, f ∈ C∞(X,E∗̃), with actions
Y (Z ⊗ v) = Y Z ⊗ v, and k(Z ⊗ v) = Ad(k)Z ⊗ ∗(k)v, for Y ∈ k (or U(k)), k ∈ K.

In particular, a linear invariant differential operator D may be viewed as a linear
map

D : C−∞{o} (X,Eγ) −→ C−∞{o} (X,Eτ ).

In addition, every invariant differential operator D ∈ DG(Eγ,Eτ ) can be seen as an
element

HD ∈ HomK(Eγ, C
−∞
{o} (X,Eτ ))

(1.8)∼= [C−∞{o} (X,Eτ )⊗ Eγ̃]K

given by
HD(v) := D(δv) ∈ C−∞{o} (X,Eτ ), v ∈ Eγ, δv ∈ C−∞{o} (X,Eγ). (2.61)

In other words
〈HD(v), f〉τ

(2.61)
= 〈δv, Dt(f)〉γ = 〈v,Dt(f)(1)〉γ, (2.62)

where Dt ∈ DG(Eτ̃ ,Eγ̃) is the adjoint invariant differential operator of D defined in
(1.11). Now by using Lem. 2.44 and (1.9), we deduce the following isomorphism.

Lemma 2.45. Let DG(Eγ,Eτ ) be the vector space of all invariant differential operators.
Then, we have an isomorphism

DG(Eγ,Eτ ) −̃→ HomK(Eγ, C
−∞
{o} (X,Eτ ))

D 7→ HD

between the spaces DG(Eγ,Eτ ) and HomK(Eγ, C
−∞
{o} (X,Eτ )).

Proof. The injectivity can be shown directly. For v ∈ Eγ and f ∈ C∞(c)(X,Eτ̃ ), we
have, by (2.62), that HD = 0 implies 〈v,Dt(f)(1)〉γ = 0. Thus Dt(f)(1) = 0. Due the
G-invariance in g ∈ G, we then have

Dt(f)(g) = lg−1Dt(f)(1) = Dt(lg−1f)(1) = 0,

which implies that Dt = 0. Therefore by taking again the transpose of it, this leads us
to (Dt)t = D = 0.

To prove the surjectivity, it is sufficient to show that the corresponding graded
spaces coincide. In fact, from Chap. 1.1, more precisely (1.3), we know that DG(Eγ,Eτ )
is a filtered space by degree, with graded space

Gr(DG(Eγ,Eτ )) ∼= [S(p)⊗ Hom(Eγ, Eτ )]
K .
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On the other side, the space HomK(Eγ, C
−∞
{o} (X,Eτ )) is filtered by the order of the

distribution. Since C−∞{o} (X,Eτ ) is generated by the δv-distributions, v ∈ Eτ , we thus
obtain that Gr(C−∞{o} (X,Eτ )) ∼= S(p)⊗ Eτ , and hence

Gr(HomK(Eγ, C
−∞
{o} (X,Eτ ))) ∼= HomK(Eγ, S(p)⊗ Eτ )

(1.8)∼= [S(p)⊗ Hom(Eγ, Eτ )]
K .

Fuhtermore, since the mapping D 7→ HD preserves the filtration, this induces also a
mapping on the graded spaces. One can check themselves that this induced map is
the identity. By a general and simple inductive fact, we can conclude that a filtration
perserving map is injective or surjective, if its induced graded map is so.

Consequently, we have

DG(Eγ,Eτ ) ∼= HomK(Eγ, C
−∞
{0} (X,Eτ )) ∼= C−∞{0} (G, γ, τ).

Hence, by applying the Fourier transform in (Level 3) and the Paley-Wiener-Schwartz
Thm. 2.40 (b), we have

γF τ (DG(Eγ,Eτ )) ∼= γPWSτ,0(a∗C)

:= {P ∈ Pol(a∗C,HomM(Eγ, Eτ )) | P satisfies (3.iii) of Def. 2.30}.

In particular, we have the following result.

Theorem 2.46. Let D ∈ DG(Eγ,Eτ ) be an invariant linear differential operator. For
f ∈ C±∞c (X,Eγ), we then have that

Fτ (Df)(λ, k) = γF τ (HD)(λ)Fγ(f)(λ, k), λ ∈ a∗C, k ∈ K, (2.63)

where γF τ (HD) ∈ Pol(a∗C,HomM(Eγ, Eτ )) is a polynomial in λ ∈ a∗C with values in
HomM(Eγ, Eτ ).

By combining now this Thm. 2.46 together with Paley-Wiener(-Schwartz) theo-
rem for sections (Thm. 2.31 resp. Thm. 2.40), one can find explicitly the set of all
polynomials, which occur under the Fourier image of invariant differential operators,
for irreducible K-types γ and τ . Roughly speaking, we will use the knowledge and
the ’power ’ of Delorme’s Paley-Wiener(-Schwartz) theorem for sections in (Level 3)
to compute through the corresponding Fourier transform all the inviariant differential
operators D ∈ DG(Eγ,Eτ ) without knowing them explicitly before.
Remark 2.47. (a) Consider an additional, not necessary, irreducibleK-representation

(δ, Eδ). Then, for D1 ∈ DG(Eτ ,Eδ) and D2 ∈ DG(Eγ,Eτ ), Thm. 2.46 implies the
mapping

D1 ◦D2 7→ γF δ(HD1 ◦HD2) = τF δ(HD1) ◦ γF τ (HD2).

(b) By bringing into play the Hecke algebra (2.53), in combination with van den
Ban’s and Souaifi’s Lem. 5.3 and Cor. 5.4 in [vdBS14], one can prove the con-
verse of the above comment, where we fused Thm. 2.46 and Thm. 2.31.
This (γ, τ̃)-isotypic component of the Hecke algebra H(G,K)(γ⊗ τ̃) is essentially
the invariant differential operators DG(Eγ,Eτ ) ⊗ HomK(Eτ , Eγ) between vector
bundles. The Fourier transform then becomes the Harish-Chandra homomor-
phism (see Def. 1.10). In other words, given all invariant differential operators
D ∈ DG(Eγ,Eτ ) satisfying some relations, one can find the corresponding Paley-
Wiener space with their corresponding polynomials.
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Proof of Thm. 2.46. We know that the Fourier transform of a distribution HD ∈
HomK(Eγ, C

−∞
{o} (X,Eτ )) is defined by γF τ (HD)(λ)(v) = 〈HD(v), eτλ,1〉, for v ∈ Eγ and

where eτλ,1 ∈ C∞(G, τ, τ̃). Hence by (2.62), we obtain

γF τ (HD)(λ)(v) = 〈HD(v), eτλ,1〉τ
(2.62)
= 〈v,Dt(eτλ,1)(1)〉γ = (Dt(eτλ,1)(1))v, λ ∈ a∗C.

(2.64)
Now, by considering a function f ∈ C∞c (X,Eγ), we conclude, via ’partial integration’,
that (2.63) holds. In fact

Fτ (Df)(λ, k) =

∫
G

eτλ,k(g)D(f(g)) dg
def. of Dt

=

∫
G

Dt(eτλ,k(g))f(g) dg

(2.24)
=

∫
G

Dt(eτλ,1(1)) ◦ eγλ,k(g)f(g) dg

= Dt(eτλ,1(1)) ◦ Fγ(f)(λ, k)

(2.64)
= γF τ (HD)(λ) ◦ Fγ(f)(λ, k).

The same computation remains true for f ∈ C−∞c (X,Eγ), by using the pairing 〈·, ·〉
instead of the integration.



Chapter 3

Examples for Delorme’s intertwining
conditions

In the previous chapter, we have formulated Delorme’s intertwining conditions (Def. 2.30,
(2.iii) resp. (3.iii)) for our purposes. However, these intertwining conditions are very
difficult to check, in practise, even for special K-types.
The most important source of such conditions are the Knapp-Stein and Želobenko in-
tertwining operators, as well as the embedding of discrete series into principal series
Hσ,λ
∞ , for (σ, λ) ∈ M̂ ×a∗C. Therefore, in this part, we rewrite them in a more accessible

way involving such intertwining operators and the Harish-Chandra c-functions.
Moreover, we show that only a part of them is already sufficient for semi-simple Lie
groups of real rank one. This will be illustrated on three special examples, namley in
SL(2,R), SL(2,R)× SL(2,R) and in SL(2,C).

The first Section 3.1 introduces the two well-known intertwining operators, the Knapp-
Stein and Želobenko ones. We adopt the same notation as in [Olb95].

In Section 3.2, we present the Harish-Chandra c-functions and their relations with
the intertwining operators.

Then, in Section 3.3 we prove in Thm 3.13, that for some special cases an ap-
proachable subset of these conditions is sufficient to define the Paley-Wiener space for
rkR(G) = 1. This is already implicitly contained in Delorme’s proof ([Del05], Thm. 2).
For our proof, we essentially use Delorme’s results and its induction procedure on the
length of minimal K-types of a generalized principal series representation, similar as
Delorme’s proposition ([Del05], Prop. 2).

Finally, the last three Sections 3.4, 3.5 and 3.6 give a nice interpretation and un-
derstanding of Delorme’s intertwining conditions for the three examples. The choice of
these three particular examples lies in the fact that they are semi-simple Lie groups of
real rank one (respectively two) and their structure of principal series representations
are well known.
In fact, for G = SL(2,R), in Section 3.4, by drawing its principal series representations
H±,λ∞ by ’box-pictures ’ (Fig. 3.1), we can see in which closed G-submodule of H±,λ∞ there
is an intertwining condition in (Level 2) (Thm. 3.18). Afterwards we can deduce the
corresponding results also for the other levels (Thms. 3.20 & 3.17).
In addition, in Section 3.5, we show that the intertwining condition of the semi-simple
Lie group of rank two, G = SL(2,R) × SL(2,R) are the ’same’ as for G = SL(2,R)
(Thm. 3.25).

54
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As last example, in Section 3.6, we consider G = SL(2,C). The description of its in-
tertwining conditions (Thms. 3.28, 3.29 & 3.35) are more difficult then for the previous
examples.

3.1 Knapp-Stein and Želobenko intertwining opera-
tors

Let (π,H1) and (π2, H2) be two representations of G on the topological vector spaces.
From the representation theory, we know that a linear map L : H1 −→ H2 is an
intertwining operator between (π1, H1) and (π2, H2), if

L ◦ π1(g) = π2(g) ◦ L, for every g ∈ G.

It turns out that every intertwining operator between principal series representations
of G provides key information about the compatibility or intertwining condition for
Delorme’s Paley-Wiener space. In this part, we will present two familiar intertwining
operators. Namely the Knapp-Stein intertwining operators, which were introduced by
Knapp and Stein in 1971 ([KSt71] & [KSt80]), and the Želobenko operators [Zelo76],
which are also known as the Bernstein, Gel’fand and Gel’fand (short BGG) resolutions
([BGG71], [BGG75] & [BGG76]). The construction of the last one, is based on the
theory of Verma modules and their duals. We refer for example to ([Kna02], Chap. V)
for more details and to ([Olb95], Sect. 2.3.2) for the definition of Želobenko operators.

Knapp-Stein intertwining operators

Note that the analytic Weyl group WA = NK(a)/M acts on a∗C as also on M̂ . Let
w ∈ WA be represented by mw ∈M ′ := NK(a) and σ ∈ M̂ . We realise σ on the vector
space Eσ. We define a new representation wσ ∈ M̂ of M acting on the vector space Eσ

wσ : M −→ GL(Eσ), wσ(m) := σ(m−1
w mmw), m ∈M.

This equivalence class only depends on WA and not on the choice of mw.

Definition 3.1 (Knapp-Stein intertwining operator, [KSt71] & [KSt80]). Let ∆−a :=
−∆+

a and N be the unipotent subgroup coming from the associated Iwasawa decomposi-
tion of ∆−a . Write Nw := N ∩wNw−1. For (σ, λ) ∈ M̂×a∗C with (Re(λ), α) > 0, for all
α ∈ ∆+

a ∩ w−1∆−a and for a fixed representation mw ∈ M ′, we define the intertwining
operator

Jw,σ,λ : Hσ,λ
∞ −→ Hwσ,wλ

∞

by the convergent integral

Jw,σ,λ((ϕ)(g)) :=

∫
Nw

ϕ(gnmw) dn, g ∈ G,ϕ ∈ Hσ,λ
∞ ,

which depends holomorphically on λ ∈ a∗C. This operator has a meromorphic continu-
ation on the whole a∗C.

Remark 3.2. (i) Whenever Jw,σ,λ is defined, it intertwines Hσ,λ
∞ and Hwσ,wλ

∞ . Note
that Jw,σ,λ depends on the choice of the repesentative mw ∈ M ′ and not of
w ∈ WA.
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(ii) Jw,σ,λ is invertible, if λ is an element of the complenent set of all zeros of a
meromorphic function which is not identically zero ([KSt80], Prop. 7.3-7.5 and
Thm. 7.6).

For τ ∈ K̂, we consider a convergent integral

jw,τ,λ :=

∫
Nw

a(n)λ−ρτ(κ(n)−1) dn ∈ EndM(Eτ ).

The scalar function jw,τ,λ is a meromorphic function on the whole a∗C, non identically
zero. Notice, that in contrary to the intertwining operators Jw,σ,λ, the j-functions jw,τ,λ
are defined without the choice of the representatives mw of w ∈ WA.
However, one can express the Knapp-Stein intertwining operator Jw,σ,λ in terms of the
j-functions.

Lemma 3.3 (e.g. [Olb95], Lem. 3.12). Let w ∈ WA and mw ∈ M ′ the representation
of w. Consider for t ∈ HomM(Eτ , Eσ) and v ∈ Eτ , the function φv(t) ∈ Hσ,λ

∞ , for any
λ, given by

φv(t)(k) := tτ(k−1)v, k ∈ K. (3.1)

Then, we have that
Jw,σ,λ(φv(t)) = φv(t ◦ jw,τ,λ ◦ τ(m−1

w )). (3.2)

Proof. In the following, all the computation will be done in the convergent part of the
defined integral:

Jw,σ,λ(φv(t))(k) =

∫
Nw

φv(t)(kmwκ(n))a(n)λ−ρ dn

(3.1)
=

∫
Nw

tτ(κ(n)−1)τ(m−1
w )τ(k−1)a(n)λ−ρv dn

= t
(∫

Nw

a(n)λ−ρτ(κ(n)−1) dn
)
τ(m−1

w )τ(k−1)v

= t ◦ jw,τ,λ ◦ τ(m−1
w ) ◦ τ(k−1)v

(3.1)
= φv(t ◦ jw,τ,λ)(mwk)

= φv(t ◦ jw,τ,λ ◦ τ(m−1
w ))(k),

where in the first equation, we used the Iwasawa decomposition n = κ(n)a(n)n(n) and
k = kmwκ(n).

Želobenko intertwining opertators

Now, let us choose a Cartan subalgebra t on the Lie algebra m of M . Hence h := t⊕ a
is a Cartan-subalgebra of g. Fix a positive root system ∆+

hC
of (gC, hC) so that

{α|a | α ∈ ∆+
hC
} =: ∆+

a

and consider by W the Weyl group of this root system.
For some values of (σ, λ) ∈ M̂×a∗C, the intertwining operators are not only induced

for the analytic Weyl groupWA = W (g, a) but also for the Weyl groupW = W (gC, hC)
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of ∆+
hC
. MoreoverW is generated by the reflections sα, α ∈ ∆+

hC
at the root hyperplanes.

For each of these reflections, we assign an intertwining operator. Set

δm :=
1

2

∑
α∈∆+

hC

α, and ρm := δm − ρ, (3.3)

where ρ ∈ a∗ is extened by 0 on h. We denote by u (resp. u) the sum of all positive
(resp. negative) root subspace of h on gC. Consider g = b ⊕ u, with b := hC ⊕ u ⊂ g
and an one-dimensional representation of b given by

Hz = (Λ− δ)(H)z, for H ∈ h, z ∈ C
Uz = 0, for U ∈ u, (trivial action).

Then, C can be viewed as a left U(b) module CΛ−δ. For Λ ∈ h∗C, the Verma module
([Kna02], p.285) is given by

M(Λ) := U(g)⊗U(b) CΛ−δ.

Let α ∈ ∆+
hC

and n = 2 〈Λ,α〉〈α,α〉 ∈ N, then there exist an element θα,n ∈ U(u) and a
non-trivial g-equivariant embedding

Sα : M(Λ− nα) −→M(Λ)

defined by Sα(u ⊗ z) := uθα,n ⊗ z for u ∈ U(g) and z ∈ C. Notice that Sα as well as
θα,n are unique up to the scalar factor.
Let µσ̃ ∈ it∗ ⊂ h∗C be the highest weight of the representation σ̃ of M . To relate the
above terminology with the principal series representations, consider for Λ = µσ̃+ρm+λ,
the g-mapping

φΛ : M(Λ) −→ (Hσ,λ
∞ )∗

given by φΛ(u ⊗ z) := z〈vσ̃, (ruf)(e)〉, for u ∈ U(g), z ∈ C, f ∈ Hσ,λ
∞ and where the

vector of highest weight vσ̃ is in Eσ̃. Here, 〈·, ·〉 is a W-invariant scalar-product on h∗C.
Roughly speaking, for Sα there exists an ’adjoint’ operator Lα,σ,λ, which can be viewed
as a G-equivariant operator between principal series representations.

Definition 3.4 (Želobenko intertwining opertators, e.g. [Olb95], Def. 2.21). Let α ∈
∆+

hC
and set Λ := µσ̃ + ρm + λ ∈ h∗C. Consider

Σα,n :=
{

(σ, λ) ∈ M̂×a∗C | 2
〈Λ, α〉
〈α, α〉

= n ∈ N and µσ̃−nα|t is a highest weight of a rep. of M
}
.

For (σ, λ) ∈ Σα,n, we define (σα, λα) ∈ M̂ × a∗C by

• λα := λ− nα|a,

• σα|M0 is the dual of the M0-representation with highest weight µσ̃ − nα|t. More-
over, due to M = Z(M)M0, σα is well-defined. Here, M0 is the identity compo-
nent of M , and Z(M) the center of M , which acts through the same character
as σ.
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The Želobenko intertwining opertator is a G-mapping

Lα,σ,λ : Hσ,λ
∞ −→ Hσα,λα

∞

defined by
〈vσ̃α , (Lα,σ,λf)(g)〉 := 〈vσ̃, (rθα,nf)(g)〉, f ∈ Hσ,λ

∞ , g ∈ G.
Here, vσ̃α and vσ̃ are again the highest weight-vector of the correspondingM-representations
and θα,n ∈ U(u) is as above.

Furthermore, Lα,σ,λ is a differential operator and if α|a = 0, then Lα,σ,λ = 0, this
means that we only consider Weyl-reflections, which are not coming from M .

At the hand of these examples, we can see that the intertwining condition (D.a) in
Def. 2.4 can be simplified in some cases.

Example 3.5. (a) For w ∈ WA and fixed (σ, λ) ∈ M̂ × a∗C, we consider the Knapp-
Stein intertwining operator Jw,σ,λ as in Def. 3.1 and let φ ∈

∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)).
Then, the condition

Jw,σ,λ ◦ φ(σ, λ) = φ(wσ,wλ) ◦ Jw,σ,λ (3.4)

is a special intertwining condition of (D.a) in Def. 2.4 with s = 2 and m1 = 0 =
m2, for each intertwining datum (ξ,W ) with ξ = ((σ, λ, 0), (wσ,wλ, 0)) and with
closed G-submodule

W = graph(Jw,σ,λ) ⊂ Hσ,λ
∞ ⊕Hwσ,wλ

∞ .

Similarly, by considering the Želobenko intertwining opertator Lα,σ,λ, for α ∈ ∆+
hC

and (σ, λ) ∈ Σα,n, defined in Def. 3.4, we have the special condition

Lα,σ,λ ◦ φ(σ, λ) = φ(σα, λα) ◦ Lα,σ,λ (3.5)

for each intertwining datum (ξ,W ) with W = graph(Lα,σ,λ) ⊂ Hσ,λ
∞ ⊕Hσα,λα

∞ .

(b) An irreducible unitary representation (π,Eπ) of G is called a representation of the
discrete series if there is a G-invariant embedding Eπ ↪→ L2(G). Here, L2(G) de-
note the space of all square integrable functions with respect to invariant measure
dg on G. Write Ĝd the set of equivalence classes of discrete series representations
of G. LetHπ be any Hilbert space , where the representations π ∈ Ĝd are realized.
For every representation of discrete series π ∈ Ĝd, we choose an embedding

iπ : Hπ ↪→ Hσπ ,λπ
∞

into some principal series representation (Casselman’s representation embedding
result, [Wal88], Thm. 3.8.3. & Casselman’s and Wallach’s globalization Thm.
[Wal92], Chap. 12) and set

Wπ := iπ(Hπ) ⊂ Hσπ ,λπ
∞ .

It is a closed G-invariant subspace. Hence, the condition

φ(σπ, λπ)(Wπ) ⊂ Wπ, π ∈ Ĝd (3.6)

is also of the form (D.a), with s = 1 and m = 0, and it permits us to define that

φ(π) := φ(σπ, λπ)|Wπ ∈ End(Wπ). (3.7)

However, one can rewrite the intertwining operators, defined above, by involving
the so-called Harish-Chandra c-functions, which will be introduced in the next section
of this chapter.
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3.2 Harish-Chandra c-functions and functional equa-
tions

In this part, we want to study the relationship between the (Knapp-Stein) intertwining
operators and the Harish-Chandra c-function.

Definition 3.6 (Harish-Chandra c-function, e.g. [Olb95], Def. 3.8). Let τ ∈ K̂, w ∈
WA, Nw as in Def. 3.1, and λ ∈ a∗C with (Re(λ), α) > 0, for all α ∈ ∆+

a ∩w−1∆−a . The
c-function is defined by

cw,τ (λ) :=

∫
Nw

a(n)−(λ+ρ)τ(κ(n)) dn ∈ EndM(Eτ ),

which can be extended to a meromorphic function on a∗C.
Furthermore, we have cw,τ (σ, λ) := prσ ◦ cw,τ (λ) ◦ prσ ∈ EndM(Eτ (σ)), where
prσ : Eτ −→ Eτ (σ) is the projection on the σ-isotypic compenent.
Consider now w ∈ WA as a Weyl element with maximal length, then, we set

cτ (λ) := cw,τ (λ) and cτ (σ, λ) := cw,τ (σ, λ).

The definition of the c-function does not differ much from the definition of the
j-function (Def. 3.1, (b)). In fact, Olbrich showed that there is a relationship between
them. The following statement should be read as meromorphic functions identity.

Proposition 3.7 ([Olb95], Satz 3.13). For τ ∈ K̂, λ ∈ a∗C, w ∈ WA and mw ∈ NK(a),
we have

jw,τ,λ = τ(m−1
w )cw−1,τ (wλ)τ(mw).� (3.8)

By combining, the above relation (3.8) in (3.2), we get

Jw,σ,λ(φv(t)) = φv(t ◦ τ(m−1
w )cw−1,τ (wλ)) (3.9)

for φv(t) ∈ Hσ,λ
∞ as in (3.1).

Now, by using the identification (3.9), we can prove the following statement.

Proposition 3.8 (Knapp-Stein intertwining condition in (Level 2)). With the pre-
vious notations, consider the intertwining operator Jw,σ,λ as in Def. 3.1 and ψ ∈
Hol(a∗C, H

τ |M
∞ ). Then, for all t ∈ HomM(Eτ , Eσ), we have

Jw,σ,λ(t ◦ ψ(λ, ·)) = t ◦ τ(m−1
w )cw−1,τ (wλ)ψ(wλ, ·), λ ∈ a∗C, w ∈ WA. (3.10)

Proof. We have, for every intertwining datum ((σ, λ, 0), (wσ,wλ, 0),W = graph(Jw,σ,λ))
and t ∈ HomM(Eτ , Eσ), the intertwining condition (2.41). Now, by using (3.9), we ob-
tain

Jw,σ,λ(t ◦ ψ(λ, ·)) = Jw,σ,λ(t ◦ τ(·)−1v)(1) ◦ ψ(wλ, ·)
= φv(t ◦ τ(m−1

w )cw−1,τ (wλ)) ◦ ψ(wλ, ·)
(3.1)
= t ◦ τ(m−1

w )cw−1,τ (wλ)v ◦ ψ(wλ, ·)

for ψ(λ, ·) ∈ Hol(a∗C, H
τ |M
∞ ) and v ∈ Eτ .
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Example 3.9. Let τ be a trivial K-representation. Consider a smooth function β in
K/M and holomorphic on a∗C, which satisfies some growth condition. Helgason showed
in ([Hel89], Thm. 5.1.) that the intertwining condition in (Level 2)∫

K/M

eτwλ,k(g)β(wλ, k)dk =

∫
K/M

eτλ,k(g)β(λ, k)dk, w ∈ WA (3.11)

is sufficient and enough. One can even show that Helgason’s intertwining condition is
equivalent to (3.4). In fact, for λ ∈ a∗C, consider the Poisson transform (e.g. [Olb95],
Def. 3.2) Pτ,λ : H

τ |M ,λ
∞ −→ C∞(X,Eτ ) given by

Pτ,λ(f)(g) :=

∫
K

τ(k)tf(gk) dk =

∫
K

eτλ,k(g)tf(k) dk, g ∈ G, t ∈ HomK(Eτ , Eτ |M ).

Then, Helgason’s condition (3.11) can be expressed in terms of Poisson transform

Pτ,λ ◦ βλ = Pτ,wλ ◦ βwλ, w ∈ WA, λ ∈ a∗C,

where βλ := β(λ, ·).

Now, if we consider an additional K-type (γ,Eγ), we obtain a similar relation as
above. Note that the Knapp-Stein intertwining operator will completely disappear.

Lemma 3.10 (Knapp-Stein intertwining operator in (Level 3)). With the previous
notations, let ϕ ∈ Hol(a∗C,HomM(Eγ, Eτ )) as in Def. 2.30. For λ ∈ a∗C and w ∈ WA,
we then have

t ◦ ϕ(λ)γ(m−1
w )cw−1,γ(wλ) = tτ(m−1

w )cw−1,τ (wλ) ◦ ϕ(wλ),∀t ∈ Hom(Eτ , Eσ), σ ⊂ γ.
(3.12)

Proof. Let Jw,σ,λ be the Knapp-Stein intertwining operator as in Def. 3.1. For every
intertwining datum ((σ, λ, 0), (wσ,wλ, 0),W ) and t ∈ HomM(Eτ , Eσ) we have (2.42).
By using (3.9) on both side, we obtain the desired equation (3.12).

Example 3.11. Consider a function β ∈ Hol(a∗C) which satisfies some growth condi-
tion. Helgason and Gangolli ([Gan71] & [Hel20], Thm. 7.1) proved that the intertwin-
ing condition:

β is WA-invariant, if β(λ) = β(wλ), for λ ∈ a∗C, w ∈ WA

for trivial left and right K-representations in (Level 3), is sufficient and enough.

3.3 Adequateness of Delorme’s intertwining conditions
for rank 1

In this part, we want to reduce the amount of condition (D.a) of Def. 2.4 to a minimum.
Let G with real rank one. In this situation a further simplification can be made, the
set of ∆+

a of positive restricted roots consists of at most two elements, namely α and
possibly 2α. Moreover, the element H of a satisfies α(H) = 1 and its choice together
with α and the exponential map allow us to identify a with R. The Weyl group is
reduced to {−1, 1} acting on R by multiplication.
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We have already observed two ’special’ intertwining conditions in Example 3.5 (a)
and (b). Thus, for r > 0, we define the ’special’ Paley-Wiener space PW+

r (G) by re-
placing Delorme’s intertwining condition (D.a) by the conditions (3.4) and (3.6) only.

Let w ∈ WA be the non-trivial element. For λ ∈ a∗C with (Re(λ), α) > 0, let m ∈ N0

be the maximal order of the zeros of Jw,σ,µ(fµ) at µ = λ, where µ 7→ fµ ∈ Hσ,µ
∞ runs

over all germs of holomorphic functions at λ with fλ 6= 0.
We consider the induced operator

J
(m−1)
w,σ,λ : Hσ,λ

∞,(m−1) −→ Hwσ,−λ
∞,(m−1) (3.13)

and the corresponding kernel

Ker(J (m−1)
w,σ,λ ) ⊂ Hσ,λ

∞,(m−1).

By convention, we set Hσ,λ
∞,(−1) = {0}, for m = 0. Notice that due condition (3.4), we

have for φ(m−1)(σ, λ) ∈ End(Hσ,λ
∞,(m−1))

φ(m−1)(σ, λ)(Ker(J (m−1)
w,σ,λ )) ⊂ Ker(J (m−1)

w,σ,λ ) ⊂ Hσ,λ
∞,(m−1), (σ, λ) ∈ M̂ × a∗C.

Each K-type has a highest weight µ ∈ it∗, where t ⊂ k is a Cartan subalgebra of
maximal torus T ⊂ K. We define

2ρc :=
∑

α∈∆+(k,t)

α ∈ it∗

the sum of all positive roots of complex subspace tC in kC.
For σ ∈ M̂ (resp. π ∈ Ĝd), we let |σ| ∈ [0,∞) (resp. |π| ∈ [0,∞)) be the length, i.e.

|σ| := min
{τ}∈Hσ

∞(τ)6={0}
||µτ + 2ρc|| (resp. |π| := min

{τ}∈Hπ(τ) 6={0}
||µτ + 2ρc||)

of ’the’ minimal K-type τ of Hσ
∞ (resp. Hπ), ([Del05], Sect. 1.3). Denote by B(σ) ⊂ K̂

the finite set of all minimal K-types.

Example 3.12. Let G = SL(2,R) and K = SO(2) its maximal compact subgroup.
With the notations introduced in Sect. 3.4, we have that K̂ ∼= Z and ρc = 0.

(i) Let M = {±1}, thus

- if σ is trivial, then B(σ) = {0} ⊂ Z, (trivial K-type) and |σ| = 0,

- if σ is non-trivial, then B(σ) = {+1,−1} ⊂ Z and |σ| = 1.

(ii) Let π = Dk, k ∈ Z\{0} be the discrete series representation of M = G, then

B(Dk) =

{
{k + 1}, k > 0,

{k − 1}, k < 0

and |π| = k + 1.

We can prove the following result, which tells us that the intertwining conditions
(3.4) and (3.6) with an additional ’vanishing’ condition are sufficient for semi-simple
Lie group G of real rank one.
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Theorem 3.13. With the previous notations, let rkR(G) = 1. For r > 0, let A be a
linear closed and K ×K invariant subspace of PW+

r (G) satisfying Fσ,λ(C∞r (G)) ⊂ A
and

(D.b) let φ ∈ A such that for all σ ∈ M̂

(i) φ(σ′, λ) = 0, for all σ′ ∈ M̂ with |σ′| > |σ| and λ ∈ a∗C,

(ii) φ(π) = 0, for all π ∈ Ĝd with |π| > |σ|.

Then, for all λ ∈ a∗C with (Re(λ), α) > 0, φ induces the zero-operator φ(m−1)(σ, λ)

on Ker(J (m−1)
w,σ,λ ):

φ(m−1)(σ, λ)
∣∣∣
Ker(J(m−1)

w,σ,λ )
= 0.

Here, (m − 1) depends on (σ, λ) as defined above (3.13) and φ(π) is defined in
(3.7).

Then,
A = PWr(G) ∼= Fσ,λ(C∞r (G)).

Proof of Thm. 3.13. By Delorme’s Paley-Wiener Thm. 2.7, we already know that PWr(G) ∼=
Fσ,λ(C∞r (G)) is a closed and K ×K invariant subspace of PW+

r (G)

PWr(G) ∼= Fσ,λ(C∞r (G)) ⊂ PW+
r (G).

Therefore, it suffices to show that Fσ,λ(C∞r (G)) ⊂ A is dense. Thus for every K ×K-
finite element φ ∈ A, we need to find a function f ∈ C∞r (G)K×K such that

πσ,λ(f) = φ(σ, λ), ∀(σ, λ) ∈ M̂ × a∗C.

Let φ ∈ AK×K . It is given by a collection (φσ), σ ∈ M̂ . By K × K-finiteness, only
finitely many φσ are non-zero. Similar, by K × K-finiteness, φ(π) = 0, for all but
finitely many π ∈ Ĝd. Indeed, for any given K-type τ , there are only finitely many
π ∈ Ĝd, with Hπ(τ) 6= 0 (e.g. [Wal88], Cor. 7.7.3).
We define l(φ) ∈ [0,∞) by

l(φ) := max{|σ|, |π| | σ ∈ M̂, φσ 6= 0;π ∈ Ĝd, φ(π) 6= 0}.

We can now imitate the inductive proof of Prop. 2 in Delorme’s paper [Del05].
Assume, as induction hypothesis, that for all ψ ∈ A with l(ψ) < l(φ), there are
f ∈ C∞r (G) with F(f) = ψ. We enumerate

{σ ∈ M̂ | |σ| = l(φ)} = {σ1, . . . , σn} ∪ {wσ1, . . . , wσn}

and
{π ∈ Ĝd | |π| = l(φ)} = {π1, . . . , πs}.

Condition (ii) together with (3.4) says, in particular, that φσi belongs to a space that
Delorme denotes by Kσi ([Del05], Def. 1). Strictly speaking Delorme has a condition
for (Re(λ), α) > 0. But if rkR(G) = 1, only (Re(λ), α) > 0 matters. Note, that
φ(πj) belongs automatically to Kπj . We can apply Prop. 1 together with Eq. (1.38)
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of Delorme’s paper [Del05], to deduce the existence of f1, f2, . . . , fn ∈ C∞r (G) and
g1, g2, . . . , gs ∈ C∞r (G) with

πσi,λ(fi) = φ(σi, λ), i ∈ {1, 2, . . . , n},
πj(gj) = φ(πj), j ∈ {1, 2, . . . , s},

for λ ∈ a∗C. Moreover, the discussion after Eq. (3.9) in ([Del05], p.1018), makes clear
that we can choose the fi and gj such that

(i) l(F(fi)) = l(F(gj)) = l(φ),∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , s} and

(ii) πσk,λ(fi) = 0,∀k 6= i,

(iii) πσi,λ(gj) = 0, ∀i, j,

(iv) πj(fi) = 0,∀i, j,

(v) πk(gj) = 0,∀k 6= j.

Now, we set

ψ := φ−
n∑
i=1

F(fi)−
s∑
j=1

F(gj).

Then, by (i)-(v) we have l(ψ) < l(φ). Thus, by induction hypothesis ψ = F(f0). We
conclude that φ = F(f) with f = f0 + f1 + · · ·+ fn + g1 + g2 + · · ·+ gs.

Remark 3.14. The result above can be extended to higher (real) rank. It induces
representations for all cuspidal parabolic subgroups P as well as the Knapp-Stein in-
tertwining operator for them.

3.4 The case G = SL(2,R)

We consider G = SL(2,R) =
{
g :=

(
a b
c d

)
∈ GL(2,R)

∣∣∣ det(g) = 1
}

the special

linear group of dimension 3 with Iwasawa decomposition G = KAN , where

K = SO(2) =

{
kθ :=

(
cos θ sin θ
− sin θ cos θ

) ∣∣∣ θ ∈ R

}
, A =

{
at :=

(
et 0
0 e−t

) ∣∣∣ t ∈ R

}
,

N =

{
nx :=

(
1 x
0 1

) ∣∣∣ x ∈ R

}
.

It is a connected and simple Lie group with maximal compact subgroupK of dimension
one. Clearly, K is isomorphic to the unit circle S1. Hence

K̂ := {δn | n ∈ Z} ∼= Z, δn(kθ) := einθ ∈ GL(1,C) ∼= C\{0}

is the set of all irreducible one-dimensional representations of K. Its representation
space Eδn is one-dimensional equal to C.

Moreover, we denote by g = sl(2,R) the Lie algebra of G and by a the Lie algebra of

A. If H =

(
t 0
0 −t

)
∈ a, then the positive root α is given by α(H) = 2t and ρ(H) = t,
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for all t ∈ R. We identify a∗C isometric to C with respect to the norm of the invariant
twice trace form on g, i.e., zα 7→ z and ρ 7→ 1

2
.

Let M = {±Id} and M̂ = {±} ∼= Z/2Z. For σ = ± ∈ M̂ and λ ∈ C ∼= a∗C, we write
(π±,λ, H

±,λ
∞ ) the principal series representations of G, where

H±,λ∞ = {f ∈ C∞(G,C) | f(gmatnx) = e−(2λ+1)tσ(m)−1(f(g)), g ∈ G}.

Its restriction to K is the set of finite Fourier series on S1 with only non-zero even or
odd Fourier coefficients

H±∞ = {f ∈ C∞(K/M,C) | f even or odd }
K∼=

⊕
n even or odd

δn.

Note that the irreducible K-representations δn, contained in the G-representation of
H±∞, are the K-types. In order to classify the irreducible G-representations, this means
that if all K-types occur with finite multiplicities, we will from now on denote, for
convenience, for an exact, not splitting, module sequence

0 −→ A −→ B −→ C −→ 0,

shortly by drawing a ’boxes-picture’

B =
A
C .

A proof of the following classical result can be found for example in ([Wal88], 5.6) or
in ([La75], Ch. VI). Note that the referenced proof is also valid for G-representations
of smooth vectors instead of (g, K)-modules, if we apply Casselman’s and Wallach’s
globalization theorem.

Theorem 3.15 (Structure of principal series representations of SL(2,R)). The prin-
cipal series representations H±,λ∞ of SL(2,R) is exactly reducible, if

λ ∈ I± :=

{
1
2

+ Z, σ = +,

Z, σ = −.

For λ = k
2
∈ I±, k ∈ N, we have

H
±,− k

2∞ = Fk

D−k ⊕Dk

H
±, k

2∞ = D−k ⊕Dk

Fk

where Fk :=
⊕k−1

l=−(k−1) δ2l are the finite-dimensional SL(2,R)-representation of di-
mension k and Dk resp. D−k are smooth vectors of a representation of the discrete
series, which are characterized by the K-type decomposition D±k =

⊕
j≥0δ±(k+1+2j).

Furthermore, for λ = 0, we have

H−,0∞ = D− ⊕D+

where D± =
⊕

j≥0δ±(1+2j) are the limits of the discrete series. �
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Remark 3.16. Let Wλ be a proper closed invariant G-submodule of H±,λ∞ , for λ ∈ I±,
as in Thm. 3.15. Then, one can observe that

- for λ > 0, Wλ ∈ {D−k, Dk, D−k ⊕Dk},

- for λ < 0, Wλ ∈
{
Fk,

Fk

D−k

, Fk

Dk }
,

- while for λ = 0 and σ = −, Wλ ∈ {D+, D−}.

To describe the intertwining conditions for G = SL(2,R) in the three levels, we first
need some preparation. The Harish-Chandra c-function for G is denoted by cn(λ), for
n ∈ Z. Due Cohn ([Co74], App. 1), it is given explicitly in terms of gamma function
Γ(·), by the formula

cn(λ) = c−n(λ) =
1√
π

Γ(λ)Γ(λ+ 1
2
)

Γ(λ+ 1+n
2

)Γ(λ+ 1−n
2

)
, λ ∈ a∗C. (3.14)

Let n ≡ m ∈ Z, not necessary distinct, then using the gamma function recurrence
formula

Γ(λ+ a) = (λ+ (a− 1))Γ(λ+ (a− 1)), a ∈ Z, λ ∈ a∗C (3.15)

repeatedly, the quotient of the c-functions is given by

cn(λ)

cm(λ)
=

Γ(λ+ 1+m
2

)Γ(λ+ 1−m
2

)

Γ(λ+ 1+n
2

)Γ(λ+ 1−n
2

)
=


1, for |n| = |m|
(λ− |n|−1

2
)(λ− |n|−3

2
)···(λ− |m|+1

2
)

(λ+
|n|−1

2
)(λ+

|n|−3
2

)···(λ+
|m|+1

2
)
, for |n| > |m|

(λ+
|m|−1

2
)(λ+

|m|−3
2

)···(λ+
|n|+1

2
)

(λ− |m|−1
2

)(λ− |m|−3
2

)···(λ− |n|+1
2

)
, for |n| < |m|.

(3.16)
Note that the quotient has zeros λ ∈ { |n|−1

2
, |n|−3

2
, . . . , |m|+1

2
} and poles in

{− |n|−1
2
,− |n|−3

2
, . . . ,− |m|+1

2
}, for |n| > |m|, and inversely for |n| < |m|. Subsequently,

we know that the matrix coefficient of the Knapp-Stein intertwining operator J−,±,λ :
H±,λ∞ −→ H±,−λ∞ corresponds to the Fourier decomposition of H±,λ∞ ∼= C∞(S1).

Theorem 3.17 (Intertwining conditions in (Level 1)). For r > 0, let A be the space
of all φ ∈

∏
σ∈M̂ Hol(a∗C,End(H±∞)) such that φ statisfies the growth condition (1.ii)r

of Def. 2.5 as well as the two intertwining conditions (3.4) and

(D.b’) φ leaves every proper closed G-submodule Wλ of H±∞, listed in Remark 3.16,
invariant.

Then, A satisfies the conditions of Thm. 3.13, this means that A = PWr(G).

Proof. Note first, that the space A is K × K invariant and linear closed, due the
intertwining conditions (3.4) and (D.b′).
We have that (D.b) of Thm. 3.13 gives a condition for each σ ∈ M̂ = {±}. Let us first
consider σ = {+} ∈ M̂. By Example 3.12, we have |+ | = 0 and |π| = k + 1 > 0. Now
let φ ∈ A satisfying the assumption (D.b)(ii), i.e., in particular

φ(0)
(

+,
k

2

)∣∣∣
D−k⊕Dk

= 0, k ∈ 2Z + 1.

Let us check that:
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(a) for Re(λ) > 0, the intertwining operator J−,+,λ has zeros of order at most one

(b) the kernel of J−,+,λ is equal to 0 or D−k ⊕Dk for Re(λ) > 0.

Consider aK-representation n ∈ 2Z and the Harish-Chandra c-function cn as in (3.14).
If n = 0, then c0(λ) = 1√

π
Γ(λ)

Γ(λ+ 1
2

)
and we see that c0(λ), for Re(λ) > 0, has no zeros

and no poles. Thus, we can consider the quotient

cn(λ)

c0(λ)
=

Γ(λ+ 1
2
)2

Γ(λ+ 1+n
2

)Γ(λ+ 1−n
2

)
=

(λ− |n|−1
2

) · · · (λ− 1
2
)

(λ+ |n|−1
2

) · · · (λ+ 1
2
)
.

It has zeros λ ∈ {1
2
, · · · , |n|−1

2
} of first order. Due to (3.9), we know that the intertwining

operator J−,+,λ is in relation with the c-function. If on all K-types, we have zeros of
first order, then J−,+,λ should also have zeros of first order. Hence J−,+,λ has zeros of
at most order one, this proves the first assertation (a) of the claim.

Concerning (b), we need to check for which K-type n, the quotient cn(λ)
c0(λ)

has a zero,
for fixed Re(λ) > 0. It is clear that, if λ /∈ I+, then cn(λ)

c0(λ)
has no zeros, i.e. that

Ker(J−,+,λ) = 0. For fixed λ = k
2
, k ∈ 2Z, the c-quotient cn(λ)

c0(λ)
has zeros if, and only if,

n is a K-type of D−k and Dk, i.e. Ker(J−,+,λ) = D−k ⊕Dk. Thus, this implies (b).

By (b) and the assumption, we have that the operator φ(0)(+, λ) annihiliates
Ker(J−,+,λ) for σ = {+} ∈ M̂ and Re(λ) > 0. By (a), we have that the order m is
equal to the one, thus this condition is sufficient.
By arguing in a similar way as above for σ = {−} ∈ M̂ with |−| = 1, and π = k−1 ∈ Ĝd

with |π| = k − 1, k ∈ Z\{0}, we can conclude that A satisfies the condition (D.b) of
Thm. 3.13.

Now let us move to (Level 2).

Theorem 3.18 (Intertwining conditions in (Level 2)). Let m ∈ Z. Then, ψ ∈
Hol(a∗C, H

τ |M
∞ ) satisfies the intertwining condition (2) of Def. 2.27 if, and only if,

(2.a) J−,±,λψ(λ, ·) = (−1)m/2cm(λ)ψ(−λ, ·), for all λ ∈ a∗C,

(2.b) ψ(λ, ·) ∈ Wλ, whereWλ is the invariant (colored in blue) G-submodule represented
by the boxes-pictures in Fig. 3.1

are satisfied.

Notice that if Wλ is the whole colored blue box, then there are no intertwining
condition and, thus, it is no more a proper invariant G-submodule of H±∞.

Proof of Thm. 3.18. We need to show that the conditions (2.a) and (2.b) correspond
to the condition (D.2) in Thm. 2.28.

In fact, by Prop. 3.8, we have that (2.a) is a special case of (2.41), hence of (D.2)
in Thm. 2.28.

Concerning (2.b), condition (D.2) says that for each W we have an intertwining
condition corresponding to (D.b′) in Thm. 3.17. Now we need to extract in which
of these Wλ, there is an intertwining condition. If the K-type m is in a closed G-
submodule Wλ of H±,λ∞ , then Dm

W is one-dimensional. Hence, by Thm. 2.28 and (2.41),
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ψ has values in this G-submodule Wλ. By (D.b′) in Thm. 3.17, we thus take the
smallest closed proper invariant G-submodule of them. Otherwise, if the K-type is
not in a closed G-submodule Wλ of H±,λ∞ , then Dm

Wλ
= {0} and thus there are no

intertwining conditions. Consequently, we obtain the boxes-pictures in Fig. 3.1.

• for m = 0:

. . .

−3
2

−1
2

1
2

3
2

5
2

. . .

λ

• for m ∈ 2Z:

· m > 0:

. . .

−m+3
2

−m+1
2

−m−1
2

. . .

−1
2

1
2

. . .

m−1
2

m+1
2

m+3
2

. . .

λ

· m < 0:

. . .

−m+3
2

−m+1
2

−m−1
2

. . .

−1
2

1
2

. . .

m−1
2

m+1
2

m+3
2

. . .

λ

• for m ∈ 2Z + 1:

· m > 0:

. . .

−m+3
2

−m+1
2

−m−1
2

. . .

−1 0 1

. . .

m−1
2

m+1
2

m+3
2

. . .

λ

· m < 0:

. . .

−m+3
2

−m+1
2

−m−1
2

. . .

−1 0 1

. . .

m−1
2

m+1
2

m+3
2

. . .

λ

Figure 3.1: Boxes-pictures for G = SL(2,R).
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The final step will be to move in (Level 3).

Definition 3.19. Let n,m ∈ Z be two integers. We define the polynomial qn,m in
λ ∈ a∗C with values in HomM(En, Em) by

qn,m(λ) :=


1, if n = m,

(λ+ |m|+1
2

)(λ+ |m|+3
2

) · · · (λ+ |n|−1
2

), if |n| > |m| and same signs,
(λ− |n|+1

2
)(λ− |n|+3

2
) · · · (λ− |m|−1

2
), if |n| < |m| and same signs,

(λ+ |n|−1
2

)(λ+ |n|−3
2

) · · · (λ− |m|−1
2

), else, with different signs.
(3.17)

Theorem 3.20 (Intertwining conditions in (Level 3)). Let n,m ∈ Z be two, not nec-
essary distinct, K-types. Then, ϕ ∈ Hol(a∗C,HomM(En, Em)) satisfies the intertwining
condition (3) of Def. 2.27 if, and only if, there exists an even holomorphic function
h ∈ Hol(λ2) such that

ϕ(λ) = h(λ) · qn,m(λ), λ ∈ a∗C, (3.18)

where qn,m is the polynomial (3.17).

Proof. By Thm. 2.28 and Thm. 3.18, it is sufficient to prove that the conditions (2.a)
and (2.b) correspond to (3.18).

In particular, we want to show that (2.b) is satisfied if, and only if, ϕ(λ) has zeros
on the zeros of the polynomial qn,m. From Thm. 3.18 (2.b), we know that the invariant
G-submodule Wλ are represented by the boxes-pictures in Fig. 3.1. Thus, we need to
check, where the K-type n is not in the colored blue invariant G-submodule Wλ. We
leave it to the reader to check that this happens exactly at the zeros of qn,m. Thus, we
can deduce that ϕ is of the form (3.18) with h an arbitrary holomorphic function.

Concerning the correspondance between the conditions (2.a) and (3.18), by Lem. 3.10,
we proved that (2.a) is a special case of (2.42) for the Knapp-Stein intertwining oper-
ator:

(−1)(m−n)/2 cn(λ)

cm(λ)
ϕ(λ) = ϕ(−λ), λ ∈ a∗C, n,m ∈ Z. (3.19)

By using Def. 3.19, we observe that qn,m(−λ)

qn,m(λ)
= (−1)(m−n)/2 cn(λ)

cm(λ)
, for λ ∈ a∗C and n,m ∈

Z. Hence, we obtain
ϕ(λ)

qn,m(λ)
=

ϕ(−λ)

qn,m(−λ)
.

This means, (3.19) is satisfied if, and only if, h(λ) = h(−λ), for λ ∈ a∗C.

For both levels, we have completely determined the Paley-Wiener-(Schwartz) the-
orems for G = SL(2,R).
Moreover, by multiplying two polynomials (3.17) together we obtain the following
useful relation.

Lemma 3.21. Let n,m, l ∈ Z be integers, not necessary distinct, and qn,m (resp. ql,n)
be a polynomial in λ ∈ a∗C as in (3.17). If we multiply these two polynomials together,
then we obtain

qn,m · ql,n = rln,m · ql,m, (3.20)
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where rln,m ∈ C[λ2] is a symmetric polynomial. In particular, for different or same
signs of l, n,m, we have

rln,m =


1, if l ≤ n ≤ m or m ≤ n ≤ l,

qn,m · qm,n, if l ≤ m < n or n < m ≤ l,

qn,l · ql,n, if m < l < n or n < l < m.

Remark 3.22. (i) Note that rln,m depends only on the variable l when it lies inside
the open interval (m,n) resp. (n,m) and we have finitely many of them.

(ii) For n,m ∈ Z, not necessary distinct, we observe that

(a) qn,−m = q−n,m,

(b) q0,m = q0,−m and qn,0 = q−n,0,

(c) qn,m(λ) = −qm,n(−λ), for λ ∈ a∗C.

Proof of Lem. 3.21. Consider three integers n,m, l, which are not necessary distinct
under each other. Assume that ql,m 6= 0 and write (3.20) in the following form

rln,m =
qn,m · ql,n
ql,m

.

If l lies outside the different intervals [n,m] (resp. [m,n]) or (n,m] (resp. [m,n)), then
by using Def. 3.19, we easily see that for

(1) n = m = l, we get rln,m = qn,n·qn,n
qn,m

= 1,

(2) n = m and {|l| < |m|, |m| < |l| or different signs}, we have rln,m =
qm,m·ql,m
ql,m

= 1,

(3) l = n and {|n| < |m|, |m| < |n| or different signs}, we obtain
rln,m = qn,m·qn,n

ql,m
= qn,m

qn,m
= 1,

(4) l = m and {|n| < |m|, |m| < |n| or different signs}, we get
rln,m = qn,m·qm,n

qm,m
= qn,m · qm,n.

Now, if l lies between the open interval (m,n) resp. (n,m), then

rln,m =
qn,m · ql,n
ql,m

=
(qn,l · ql,m) · ql,n

ql,m
= qn,l · ql,n,

where we used the relation (3) to decompose qn,m in terms of qn,l and ql,m.

3.5 The case G = SL(2,R)× SL(2,R)
Let

G := G′ ×G′ = SL(2,R)× SL(2,R) = {g = (g1, g2) | g1, g2 ∈ G′}

be the Cartesian product of two copies of semi-simple non-compact connected real Lie
groups G′ = SL(2,R) with finite center. Since K ′ = SO(2) is the maximal compact
subgroup of G′, hence it also applies to K := K ′ ×K ′ for G.
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Consider two reducible one-dimensional K ′-representations (n1, En1) and (n2, En2).
We define the exterior tensor product ([Wal73], Sect. 2.36) by

(n1 � n2)(k1, k2) := n1(k1)⊗ n2(k2), for (k1, k2) ∈ K ′ ×K ′.

Let {vi, i = 1, . . . , dn1} and {wj, j = 1 . . . , dn2} be two orthonormal bases of En1 and
En2 , respectively. Then, we attribute to the vector space En1 ⊗En2 , the Hilbert space
structure that makes the basis {vi ⊗wj} orthonormal. Thus, (n1 � n2, En1 ⊗En2) is a
representation of K and is known as the exterior tensor product representation.
Note that (n1 �n2, En1⊗En2) is unitary, if (n1, En1) and (n2, En2) are, that is, if n1(k)
(resp. n2(k)) is a unitary operator for each k in K.
The following known result tells us that the exterior product tensor of two irreducible
unitary one-dimensional representations of K ′ is a unitary irreducible one-dimensional
K-representation, short

K̂ ′ × K̂ ′ ∼= K̂.

Proposition 3.23 ([Wal73], Prop. 2.3.7). In the previous notations, let (n,En) be a
unitary one-dimensional representation of K.
Then, (n,En) is equivalent to the exterior tensor product (n1�n2, En1⊗En2) of two uni-
tary representations of K ′. This means that there is a continuous linear isomorphism
A of En onto En1⊗En2 so that A◦n(k) = (n1�n2)(k)◦A, for all k = (k1, k2) ∈ K.

Write by tuples of integers

n := (n1, n2) and m := (m1,m2) in Z× Z ∼= Z2 ∼= K̂

the K-types with their corresponding vector space En := En1⊗En2 respectively Em :=
Em1 ⊗ Em2 . Their associated homogeneous line bundles are given by En := En1 ⊗ En2

(resp. Em := Em1 ⊗ Em2) over X := X ′ × X ′. Since the K ′ representations are one-
dimensional, we identify the vector spaces and the associated homogeneous line bundles
with C.

Before we proceed to specify Delorme’s intertwining conditions on the three levels,
we first need to adapt the Fourier transform for our framework.
Fix an additional irreducible K-type l = (l1, l2) ∈ Z2 and let λ ∈ a∗C× a∗C. The Fourier
transform for f ∈ HomK(El, C±∞c (X,En)) ∼= C±∞c (G, l, n) is given by

lFnf(λ) =

∫
G′

(∫
G′
enλ,1(g1, g2)f(g1, g2) dg1

)
dg2

=

∫
X′

(∫
X′
enλ,1(g1, g2)f(g1, g2) dg1

)
dg2, (3.21)

where enλ,k is defined as in (2.20). Note that in the last line, we used the fact that the
integrand is right K ′ × K ′-invariant. Moreover, by using the Iwasawa decomposition
of g = (g1, g2) ∈ G, the ’exponential’ function enλ,k can be rewritten as follows.

Proposition 3.24. For fixed λ = (λ1, λ2) ∈ a∗C×a∗C and k = (k1, k2) ∈ K, the function
enλ,k defined as in (2.20), can be decomposed in terms of en1

λ1,k1
and en2

λ2,k2
:

enλ,k(g1, g2) = en1
λ1,k1

(g1) · en2
λ2,k2

(g2), (g1, g2) ∈ G.
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Proof. Consider the Iwasawa decomposition of

g = (g1, g2) = (n′1a1k
′
1, n

′
2a2k

′
2) = n′ak′ ∈ G

so that n′ = (n′1, n
′
2) ∈ N, a = (a1, a2) ∈ A and k′ = (k′1, k

′
2) ∈ K. One can easily

deduce that for λ = (λ1, λ2) ∈ a∗C × a∗C

e(λ+ρ) log(a) = e(λ1+ρ) log(a1)+(λ2+ρ) log(a2) = aλ1+ρ
1 · aλ2+ρ

2 .

Hence, for g ∈ G, we then have

enλ,k(g) = enλ,k(g1, g2)
(2.25)
= aλ1+ρ

1 aλ2+ρ
2 enλ,1(k1, k2) = aλ1+ρ

1 aλ2+ρ
2 n1(k1)n2(k2)

= aλ1+ρ
1 aλ2+ρ

2 en1
λ1,1

(k1)en2
λ2,1

(k2)

(2.20)
= en1

λ1,k1
(g1) · en2

λ2,k2
(g2).

Aslike in Sect. 3.4, more precisely Thm. 3.20, we want to prove the adequateness
of the intertwining condition in (Level 3) for G. By using Def. 3.19 for l, n ∈ Z2, the
polynomial ql,n is given by

ql,n(λ1, λ2) := ql1,n1(λ1) · ql2,n2(λ2), (λ1, λ2) ∈ a∗C × a∗C, (3.22)

where qli,ni(λi) is the ’intertwining’ polynomial (3.17) for λi ∈ a∗C, i = 1, 2.

Theorem 3.25 (Intertwining condition in (Level 3)). Let l, n ∈ Z2 be two tuples of
integers. Then, ϕ ∈ Hol(a∗C × a∗C,HomM(En, Em)) satisfies the intertwining condition
(3) of Def. 2.27 if, and only if, there exists a symmetric holomorphic function
h ∈ Hol(λ2

1, λ
2
2):

h(λ1, λ2) = h(−λ1, λ2) = h(λ1,−λ2)

such that
ϕ(λ1, λ2) := ql,n(λ1, λ2) · h(λ1, λ2), (3.23)

where ql,n is the polynomial (3.22) in (λ1, λ2) ∈ a∗C × a∗C.

To prove Thm. 3.25, we need first a density argument, which permits us to ap-
proximate the symmetric holomorphic function h in (3.23) by two even holomorphic
functions.

Lemma 3.26. Let s ∈ N and consider

S :=
{ s∑

i=1

fi(λ1)gi(λ2) ∈ Hol(C2) | fi(λ1) = fi(−λ1), gi(λ2) = gi(−λ2),∀i, λ1, λ2 ∈ C
}

a subset of A := {h ∈ Hol(C2) | h(λ1, λ2) = h(−λ1, λ2) = h(λ1,−λ2),∀(λ1, λ2) ∈ C2}.
Then, S ⊂ A is dense in A.

Proof. Let h(λ1, λ2) ∈ A be a holomorphic function. Consider a Taylor series of order
|α| ≤ m ∈ N0 at the point 0 = (0, 0) in two variables (λ1, λ2) ∈ a∗C × a∗C:∑

|α|≤m

aαλ
α =

∑
α1,α2

aα1,α2λ
α1
1 λ

α2
2 ,
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where aα are constants with multi-index α = (α1, α2), αj ∈ N0 and |α| =
∑2

j=1 αj is
the length. The series converges uniformely on each compact ball Br(0), this means
that, for each r ≥ 0 and ε > 0, there exists an integer k such that∣∣∣h(λ1, λ2)−

∑
|α|≤k

aαλ
α
∣∣∣ < ε

for (λ1, λ2) ∈ Br(0). Thus, h can be approximated uniformely on each Br(0) by the
Taylor series, which corresponds to a function in S. This completes the proof.

Proof of Thm. 3.25. It suffices to show that

(a) every function ϕ ∈ lPW n,H(a∗C × a∗C) is of the form (3.23) and

(b) (inversely) if ϕ is of the form (3.23), then it is in lPW n,H(a∗C × a∗C).

Let ϕ ∈ lPW n,H(a∗C × a∗C) and consider f ∈ C∞c (G, l, n) with its Fourier transform
(3.21). By Fubini’s theorem and Prop. 3.24, we have∫

X′
en1
λ1,1

(g1)
(∫

X′
en2
λ2,1

(g2)f(g1, g2) dg2

)
dg1 =

∫
X′
en1
λ1,1

(g1)f̃λ2(g1) dg1

=: l1
Fn1 f̃λ2(λ1), (3.24)

where we set f̃λ2(g1) :=
∫
X′
en2
λ2,1

(g2)f(g1, g2) dg2 ∈ En1 ⊗El̃1 . Similar, if we fix λ1 ∈ a∗C,

l2
Fn2 f̃λ1(λ2) :=

∫
X′
en2
λ2,1

(g2)f̃λ1(g2) dg2, (3.25)

with f̃λ1(g2) :=
∫
X′
en1
λ1,k1

(g1)f(g1, g2) dg1 ∈ En2 ⊗ El̃2 . Note that li
Fni f̃λj(λi) is the

Fourier transform for f̃λj ∈ Hol(a∗C,HomM(Eli , Eni)) in (Level 3), for fixed λj and each
i, j = 1, 2 distinct (Def. 2.19). Thus, by Thm. 3.20, they have the form

l1
Fn1 f̃λ2(λ1) = hλ2(λ1) · ql1,n1(λ1) and l2

Fn2 f̃λ1(λ2) = hλ1(λ2) · ql2,n2(λ2), (3.26)

where hλi is a holomorphic even function in λi ∈ a∗C and qli,ni is the ’intertwining’
polynomial in λi ∈ a∗C, defined in (3.17). By (3.22), we deduce that

lFnf(λ) = h(λ1, λ2) · ql,n(λ1, λ2), λ = (λ1, λ2) ∈ a∗C × a∗C.

Now, by applying the Paley-Wiener Thm. 2.31, we have lFn(f) ∈ lPW n,H(a∗C × a∗C).
Hence, we conclude that ϕ(λ1, λ2) is lFn(f)(λ1, λ2).

Concerning (b), let ϕ of the form (3.23). By (3.22), we have that

ϕ(λ1, λ2) = h(λ1, λ2)ql1,n1(λ1)ql2,n2(λ2)

for (λ1, λ2) ∈ a∗C × a∗C. By Lem. 3.26, we can approximate h(λ1, λ2) by the product of
two holomorphic functions h1(λ1) and h2(λ2). Hence, by Thm. 3.20

hi(λi)qli,ni(λi) =: liFni(fi)(λi) ∈ li
PW ni(a

∗
C)

is the image of the Fourier transform of the function fi ∈ C∞c (G′, li, ni), i = 1, 2.
Consider now the tensor product of these two functions:

f1 ⊗ f2 ∈ C∞c (G, l1 � l2, , n1 � n2) = C∞c (G, l, n).
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By taking the Fourier transform and using the previous computations at the beginning
of the proof together with Fubini’s theorem, we obtain that

lFn(f1 ⊗ f2)(λ1, λ2) = l1
Fn1(f1)(λ1)× l2

Fn2(f2)(λ2).

By using Thm. 2.31, we have lFn(f1⊗f2) ∈ lPW n,H(a∗C×a∗C). Hence, we conclude that
ϕ, which can be approximate by Lem. 3.26, is the Fourier transform image of f1 ⊗ f2

and thus it is in lPW n,H(a∗C × a∗C).

In a similar way, we can obtain the previous results for distributional functions.
By Thm. 3.25, we explicitly determined the Paley-Wiener(-Schwartz) theorem for G =
SL(2,R)× SL(2,R) in (Level 3).
Moreover, all the previous results can be generalized for finite copiesG = SL(2,R)d, d ≥
2.

3.6 The case G = SL(2,C)
Let G = SL(2,C) = {g ∈ GL(2,C) | det(g) = 1} be the special linear group over
complex numbers with maximal compact subgroup

K = SU(2) =
{( α β

−β α

)
∈ GL(2,C)

∣∣∣ |α|2 + |β|2 = 1
}
.

Note that K is homeomorphic with the 3-sphere and it is simply connected. Further-
more, the one-dimensional abelian subgroup A of G is the same as in Sect. 3.4 and the
one-dimensional nilpotent subgroup N as well as its conjugate N of G are given by

N =
{(1 t

0 1

) ∣∣∣ t ∈ C
}
, N =

{(1 0
t 1

) ∣∣∣ t ∈ C
}
.

Here, a∗C ∼= C, by identifying λ with λ(H), for H =

(
1 0
0 −1

)
∈ a with ρ(H) = 2.

For the complex representations of K, we know from ([Wal88], Sect. 5.7) that

K̂ = {δn | n ∈ N0} ∼= N0 with dδn := dim(δn) = n+ 1.

Since the tensor product of two irreducible K-representations is in general not irre-
ducible, we use Clebsch-Gordan rule (e.g. [Wal88], 5.7.1 (1)) to decompose it into
irreducible pieces:

δn ⊗ δm =
⊕

0≤j≤min(n,m)

δn+m−2j, n,m ∈ N0. (3.27)

In addition, we define by A and K, M =
{
mθ :=

(
eiθ 0
0 e−iθ

) ∣∣∣ θ ∈ R
}

which is

abelian and the maximal torus in K. We parametrize M̂ := {σl | l ∈ Z} ∼= Z by the
integers with σl(mθ) = eilθ ∈ Z. Moreover, let χ : M → C denotes the character of a
finite-dimensional irreducible representation (δn, En) of K. Then, the Weyl character
formula for mθ ∈M (e.g. [Kna02], Chap. V.6):

χ(mθ) = Tr(δn(mθ)) =
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

sin((n+ 1)θ)

sin(θ)
= e−inθ+e−i(n−2)θ+· · ·+einθ
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tells us that the weights of (δn, En) have the form −n,−(n− 2), . . . , n− 2, n, each with
multiplicity one, with n ∈ N0 a highest weight.

The following important result clarify the irreducibility of the principal series rep-
resentations in SL(2,C). We refer for example to Wallach’s book ([Wal88], Sect. 5.7)
for a proof. Note that Wallach’s proof is also valid for G-representation of smooth
vectors (see remark before Thm. 3.15).

Theorem 3.27 (Structure of principal series representations of SL(2,C)). The prin-
cipal series representations Hσ,λ

∞ of SL(2,C) is exactly reducible, if λ is real and

|λ| > |σ| & |λ| − |σ| even.

Then, in this case for λ > 0, there is an unique irreducible subrepresentation Rσ,λ of
each Hσ,λ

∞ . Then, we have

H−σ,−λ∞ = Fm,n
Rσ,λ

Hσ,λ
∞ = Rσ,λ

Fm,n

where m = σ+λ
2
− 1, n = λ−σ

2
− 1 and Fm,n is a finite-dimensional G-representation

that has a K-representation isomorphic to δm ⊗ δn. Moreover, there is a Želobenko
intertwining opertator

Lσ,λ : H−λ,−σ∞ −→ Hσ,λ
∞

so that Ker(J−,σ,λ) = Im(Lσ,λ) = Rσ,λ. In particular Rσ,λ is isomorphic to H−λ,−σ∞ .
Here, J−,σ,λ : Hσ,λ −→ H−σ,−λ denotes the Knapp-Stein intertwining operator defined
in Def. 3.1 with w = −1.

More precisely, from the Želobenko intertwining opertator Lσ,λ, we can deduce the
other intertwining operators:

Hλ,σ
∞

H−σ,−λ∞ Hσ,λ
∞

H−λ,−σ∞

L̃σ,λ

Lσ,λ

L′σ,λ

L̃′σ,λ

J−,σ,λ

J−,σ,λ

In Fig. 3.2, we illustrate the principal series representations in a grid, where the
horizontal axis represents the values of λ ∈ a∗C and the vertical one the values of
σ ∈ M̂ . Note that inside the region {±σ > ±λ}, we have the ’special’ principal series
representations H−λ,−σ∞ respectively Hλ,σ

∞ colored in gray and outside the ’normal’ one,
colored in black.

Theorem 3.28 (Intertwining condition in (Level 1)). For r > 0, let A be the space of
all φ ∈

∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)) such that φ statisfies the growth condition (1.ii)r of
Def. 2.5 as well as the two intertwining conditions (3.4) and (3.5). Then, A satisfies
the conditions of Thm. 3.13, this means that A = PWr(G).
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σ

λ

σ = λσ = −λ

H−2,0
∞

H−4,0
∞

H−3,−1
∞ H−3,1

∞

H−4,−2
∞ H−4,2

∞

H2,0
∞

H4,0
∞

H3,1
∞H−3,1

∞

H4,2
∞H4,−2

∞

H0,−2
∞ H0,2

∞H0,−4
∞ H0,4

∞

H1,−3
∞

H−1,3
∞H−1,−3

∞

H1,3
∞

H2,4
∞

H−2,−4
∞ H−2,4

∞

H2,−4
∞

Figure 3.2: Principal series representations in (Level 1), where the colored one indacte
the intertwining relations that occur between each others with the same colors.

Before we proceed with the proof of Thm. 3.28, let us first introduce the Harish-
Chandra c-function ([Co74], App. 2) for G = SL(2,C), which is given by the following
formula, for n ≥ |σ|:

cn,σ(λ) =
Γ(1

2
(λ+ σ))Γ(1

2
(λ− σ))

Γ(1
2
(λ+ n+ 2))Γ(1

2
(λ− n))

, λ ∈ a∗C, n ∈ N0, σ ∈ Z.

Consider an additional, not necessary distinct, K-type m and fix λ ∈ a∗C. Then, by
using repeatly the relation (3.15), we obtain for n ≡ m (mod 2), the following quotient:

cn,σ(λ)

cm,σ(λ)
=

Γ(λ
2

+ m
2

+ 1)Γ(λ
2
− m

2
)

Γ(λ
2

+ n
2

+ 1)Γ(λ
2
− n

2
)

=


1, if n = m

(λ+m)(λ+m−2)(λ+m−4)···(λ+n+2)
(λ−m)(λ−(m+2))(λ−(m+4))···(λ−(n+2))

, if n < m
(λ−n)(λ−(n+2))(λ−(n+4))···(λ−(m+2))

(λ+n)(λ+n−2)(λ+n−4)···(λ+m+2)
, if n > m.

(3.28)
Hence, we can directly see that the quotient has zeros in {−m,−m + 2, . . . ,−n − 2}
and poles in {m,m+ 2, . . . , n+ 2} for n < m and inversely for n > m.

Proof of Thm. 3.28. Note that A is a K×K invariant and linear closed space, due the
intertwining conditions. We proceed similar as in the proof of Thm. 3.17. Consider
φ ∈ A such that for each σ ∈ M̂ , the assumption (D.b)(i) of Thm. 3.13:

φσ′ = 0, for all σ′ ∈ M̂ with |σ′| > |σ|

is satisfied. We want to prove that for λ ∈ a∗C with Re(λ) > 0

φ(0)
σ (λ)

∣∣∣
Rσ,λ

= 0, for |λ| > |σ|, |λ| − |σ| even.

Analogous to the proof of Thm. 3.17, we need to check that:
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(a) for Re(λ) > 0, the intertwining opertator J−,σ,λ has a zero of order at most one.

(b) the kernel of J−,σ,λ is equal to 0 or Rσ,λ, for Re(λ) > 0

The minimal K-type of the principal series representation Hσ,λ
∞ is n = |σ|, hence its

Harish-Chandra c-function (3.6) cσ,σ is regular for Re(λ) > 0. Let n ∈ K̂, then we see
that for n ≥ |σ| and for Re(λ) > 0:

cn,σ(λ)

cσ,σ(λ)
=

(λ− n)(λ− (n+ 2))(λ− (n+ 4)) · · · (λ− (σ + 2))

(λ+ n)(λ+ n− 2)(λ+ n− 4) · · · (λ+ σ + 2)

is also regular and has no poles, but zeros λ ∈ {n, n+2, . . . , σ+2} of first order. Hence
due (3.9), J−,σ,λ has zeros of order one, this proves the first assertation (a) of the claim.

Concerning (b), we need to check for which K-type n, the function cn,σ(λ)

cσ,σ(λ)
has a

zero for fixed Re(λ) > 0. In fact, for fixed Re(λ) > 0, n ≥ |σ| and |λ| − |σ| even, the
function has zeros if, and only if, n is a K-type of Ker(J−,σ,λ). By Thm. 3.27, we have
Ker(J−,σ,λ) = Im(Lσ,λ) = Rσ,λ, thus, this implies (b).

Now, by putting everyting together and using the intertwining condition (3.5), we
have, for each Re(λ) > 0 with |λ| = | − λ| > |σ|, that

φσ(λ) ◦ Lσ,λ = Lσ,λ ◦ φ−σ(−λ)︸ ︷︷ ︸
=0

= 0.

Thus, by (b) and the assumption, we deduce that the operator φ(0)
σ (λ) annihiliates

Ker(J−,σ,λ) = Im(Lσ,λ) = Rσ,λ, for |λ| > |σ| and |λ| − |σ| even. Moreover, by (a), this
condition is sufficient since the order of m is one. This completes the proof.

Now let us move to (Level 2) and state the corresponding intertwining conditions
there. More precisely, we will determine explicitly the Paley-Wiener(-Schwartz) theo-
rem for G = SL(2,C) in (Level 2).

Theorem 3.29 (Intertwining condition in (Level 2)). Let n ∈ N0 be a K-type and
k, l ∈ M̂ ∼= Z so that n ≥ |k|, |l| and k ≡ l ≡ n (mod 2). Consider the operator

ln : HomM(En, E−l) −→ HomM(En, Ek)

defined as in Example 2.29. Then, ψ ∈ Hol(a∗C, H
n|M
∞ ) satisfies the intertwining condi-

tion (2) of Def. 2.27 if, and only if,

(2.a) J−,k,λψk(λ) = (−1)n/2cn,k(−λ)ψ−k(−λ), for all λ ∈ a∗C,

(2.b) Lk,lψ−l(−k) = dnψk(l), for all λ ∈ a∗C and where dn is a constant depending on n
and HomM(En, E−l)

are satisfied.

Proof of Thm. 3.29. By Prop. 3.8, we have that (2.a) corresponds to (2.41), hence it
corresponds to the intertwining condition (D.2) in Thm. 2.28. Similar for (2.b), which
is, by Example 2.29 (2.41), a special intertwining condition of (D.2) in Thm. 2.28.
Hence, we have equivalence between the conditions (2.a) & (2.b) and (D.2) in Thm. 2.28.
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In order to move to the next level, let us first consider the case where the two K-
type (n,En) and (m,Em) are equal and then progress to the general case for distincts
K-types. The idea and motivation behind this, is that in this way we can choose a
(canonical) basis for EndM(Em) on the vector space Em, which is not the case for
distinct K-types. The problem is that for HomM(En, Em), for n 6= m, we can not take
the projection on the M -isotypic components, there will be no natural basis.

Initial case: The K-type m and n are equal

Consider a (canonical) basis on the vector space EndM(Em) given by the projection on
the M -isotypic components of σ ∈ Z.

Definition 3.30. Let (m,Em) be a fixed K-type and k = −m,−(m−2), . . . ,m−2,m.
We define mAm the space of all elements in Hol(a∗C,EndM(Em)), which are given by
holomorphic functions ϕk : a∗C → C, ordered to a (m+ 1)× (m+ 1) matrix

ϕ :=


ϕm(λ) 0 · · · 0

0 ϕm−2(λ) · · · 0
...

... . . . ...
0 0 · · · ϕ−m(λ)

 ∈ Hol(a∗C,EndM(Em))

such that

ϕk(λ) = ϕ−k(−λ), for λ ∈ a∗C
ϕk(l) = ϕl(k), for k ≡ l ≡ m (mod 2) & |k|, |l| ≤ m. (3.29)

Note that mAm ⊂ Hol(a∗C,EndM(Em)) is even an algebra.

Theorem 3.31. With the previous notations, we have that

mAm ∼= mPWSm,H(a∗C).

Proof. We need to check that the intertwining conditions (3.29) of mAm correspond
to the intertwining condition (3.iii) of Def. 2.30 of mPWSm,H(a∗C). More precisely, by
Thm. 2.28 and Example 2.29, it suffices to show that the intertwining condition (2.42)
corresponds to (3.29).

Consider the Knapp-Stein intertwining operator J−,σ,λ as in Thm. 3.27. We know
from Lem. 3.10 with m = γ = τ ∈ N0, that for each intertwining datum
((σ, λ, 0), (−σ,−λ, 0);W ) and t ∈ HomM(Em, Eσ), we have

(−1)ϕ(λ) = ϕ(−λ), λ ∈ a∗C, ϕ ∈ Hol(a∗C,EndM(Em)),

where the c-functions, on both side, are cancelled, since we have commutativity. Note
that the complex hull of a is the sum of a and m, where m is in the maximal torus M .
This means that the Weyl group WA acts on a as well as on m by −1. Thus, also on
im∗ by −1. Let −k,−(k− 2), . . . , k− 2, k be the weights of the representation m ∈ N0.
Then, by the Weyl invariance, every k-component is sent to−k-component. The matrix
diag(ϕm(λ), . . . , ϕ−m(λ)) is reversed, i.e., we get diag(ϕ−m(−λ), . . . , ϕm(−λ)). Hence,
ϕ−k(−λ) = ϕk(λ), for all |k| ≤ m and λ ∈ a∗C.

Now, for convenience, consider the Želobenko intertwining operator L′σ,λ, which is
induced by Lσ,λ by Thm. 3.27. Let |l|, |k| ≤ m and k ≡ l ≡ m (mod 2). We know that
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for every intertwining datum ((k, l, 0), (l, k, 0);W ) and t ∈ HomM(Em, Ek), we have
(2.42) for m = γ = τ ∈ N0:

lm(t ◦ ϕ(l)) = lm(t) ◦ ϕ(k).

However, there is only one t ∈ HomM(Em, Ek), this means that ϕk(l) = t ◦ ϕ(l). Since
the operator lm(t) ∈ HomM(Em, El) is a multiple of the dual, we have that lτ (t) = c · l,
where c ∈ C. Besides, c 6= 0. In fact, by Thm. 3.27, the intertwining operator L′k,l on
the K-type is not zero, this means that L′k,l has no kernel, hence lm too. Consequently,
we have

lm(t ◦ ϕ(l)) = lm(t) ◦ ϕ(k) ⇐⇒ lm(ϕk(l)) = c · ϕl(k) ⇐⇒ c · ϕk(l) = c · ϕl(k)

⇐⇒ ϕk(l) = ϕl(k).

This completes the proof.

We also consider the corresponding situation in polynomial functions:

mPolm := {ϕ ∈ Pol(a∗C,EndM(Em)) | ϕk satisfies (3.29), ∀|k| ≤ m}.

It follows directly that mPolm is isomorphic to the vector space mPWSm,0(a∗C).

Theorem 3.32. With the notations above, let k = −m, . . . ,m and λ ∈ a∗C.
Then, the algebra mAm is a free Hol(C)-module with m + 1 generators (kλ)l, for l =
0, . . . ,m. Furthermore, we have

mAm ∼= Hol(C)⊗Pol(C) mPolm. (3.30)

Analogously for the polynomial functions, mPolm is a free Pol(C)-module with same
generators as mAm.

Here, Hol(C) acts on mAm by

(h · ϕ)k(λ) = h(λ2 + k2)ϕk(λ), h ∈ Hol(C), ϕ ∈ mAm.

Similar for Pol(C) acting on mPolm. In addition, ψ = (kλ)l means ψk(λ) := (kλ)l.
We even have that mPolm is a free finitely generated commutative C-algebra with
generators λ2 +k2−4 and kλ. Consequently, we can show that each generator of mPolm
form a Hol(C)-basis for mAm. More precisely, the generators (kλ)l, for l = 0, 1, . . . ,m,
of mAm under Hol(C) generate all and are free.

Proof. Consider ϕ ∈ mAm. It is sufficient to show the existence and the uniqueness of
holomorphic functions h0, . . . , hm ∈ Hol(C) so that

ϕk(λ) :=
m∑
l=0

hl(λ
2 + k2) · (kλ)l, for k = −m, . . . ,m. (3.31)

Then, mAm is a free Hol(C)-module with generators (kλ)l, l = 0, . . . ,m. We have that
Hol⊗Pol Pol ∼= Hol. Since, we have m+ 1 free generators

mAm ∼= Hol(C)m+1 and mPolm ∼= Pol(C)m+1

we thus have that (3.31) is isomorphic to (3.30).
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We proceed by induction on two steps on m ∈ N0, for the existence of hl ∈ Hol(C),
l = 0, . . . ,m.
Starting with the inital step m = 0, we see immediately that there is exactly one even
holomorphic function ϕ0(λ) = h0(λ2) in

0A0 = {ϕ0 ∈ Hol(a∗C) | ϕ0(λ) = ϕ0(−λ),∀λ ∈ a∗C}.

Thus, ϕ0 is an even polynomial function in 0Pol0, if and only, if h0(λ2) is one.
For m = 1, we have that 1A1 = {ϕ1, ϕ−1 ∈ Hol(a∗C) | ϕ−1(λ) = ϕ1(−λ), ∀λ ∈ a∗C} and
ϕ1(λ) can be decomposed into an even and odd part as follows:

ϕ1(λ) = ϕeven
1 (λ) + ϕodd

1 (λ) = h0(λ2 + 1) + λh1(λ2 + 1).

Similar for ϕ−1(λ) = ϕ1(−λ) = h0(λ2 +1)−λh1(λ2 +1). Hence, this leads us to desired
relation ϕk(λ) = h0(λ2 + k2) + (kλ)h1(λ2 + k2), for all |k| ≤ 1. Since h0(λ2 + k2) and
h1(λ2 + k2) are polynomials, ϕk(λ) is a polynomial as well.
Assume now that the relation (3.31) holds true for m − 2. Let ϕ ∈ mAm. By induc-
tion hypothesis, we have ϕ := diag(ϕm−2(λ), ϕm−4(λ), . . . , ϕ−(m−4)(λ), ϕ−(m−2)(λ)) ∈
m−2Am−2 so that there exsits hl ∈ Hol(C) with

ϕk(λ) =
m−2∑
l=0

hl(λ
2 + k2)(kλ)l for |k| ≤ m− 2.

Consider ϕ̃ := diag(ϕ̃m(λ), ϕm−2(λ), . . . , ϕ−(m−2)(λ), ϕ̃−m(λ)) ∈ mAm with

ϕ̃±m(λ) :=
m−2∑
l=0

hl(λ
2 +m2)(±mλ)l.

By taking the difference of ϕ and ϕ̃, we get that ϕ−ϕ̃ = diag(ϕ+
m(λ), 0, . . . , 0, ϕ+

−m(λ)) ∈
mAm, where we have set ϕ+

±m(λ) := ϕ±m(λ) − ϕ̃±m(λ). Notice that ϕ+
±m(l) = 0 for

|l| ≤ m− 2. Let us consider a polynomial function, which has zeros, if |k|, |λ| ≤ m− 2:

pm(λ, k) =
∏

|l|≤m−2
l≡m (mod 2)

(k − l)(λ− l) ∈ mPolm.

Moreover, if k = m, then pm(λ,m) = cm
∏

|l|≤m−2
l≡m (mod 2)

(λ − l), where cm is a non-zero

constant depending on the integer m. In addition, (k− l)(λ− l) = (kλ)− l(k+ λ) + l2

and thus pm(λ, k) is of the form with even powers of (kλ) and maximum power m− 1:

pm(λ, k) = (kλ)m−1 +
m−3∑
l=0

l≡m−1 (mod 2)

pml (λ2 + k2)(kλ)l, (3.32)

where pml (λ2 + k2) are some polynomials. We already remarked that for |k| ≤ m − 2,
pm(λ, k) = 0, hence we can write ϕ+

m as

ϕ+
m(λ) = [h+

0 (λ2 +m2) + h+
1 (λ2 +m2)(mλ)]pm(λ,m).
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Thus, for all |k| ≤ m, we define

ϕ+
k (λ) := [h+

0 (λ2 + k2) + h+
1 (λ2 + k2)(kλ)]pm(λ, k)

(3.32)
= h+

0 (λ2 + k2)(kλ)m−1 + h+
0 (λ2 + k2)

m−3∑
l=0

l≡m−1 (mod 2)

pml (λ2 + k2)(kλ)l

+h+
1 (λ2 + k2)(kλ)m + h+

1 (λ2 + k2)
m−3∑
l=0

l≡m−1 (mod 2)

pml (λ2 + k2)(kλ)l+1.

Then, ϕ+
k (λ) = 0, for |k| ≤ m − 2. This means that, for all |k| ≤ m, we have found

h0, . . . , hm ∈ Hol(C) so that ϕk = ϕ+
k + ϕ̃k is of the form (3.31).

Concerning the uniqueness, we need to show that

ϕk(λ) = 0 implies hl(λ2 + k2) = 0 ∀|k| ≤ m, l = 0, . . . ,m, λ ∈ a∗C. (3.33)

We proceed again by induction on two steps on m ∈ N0. For the initial case m = 0,
since we have only one holomorphic and even function ϕ0(λ) = h0(λ2), this directly
implies that h0(λ2) = 0.
Assume that (3.33) holds true for m and let us prove that it holds for m− 2. By using
the polynomial function (3.32), consider, for |k| ≤ m− 2:

ϕk(λ) =
m∑
l=0

l≡m (mod 2)

hl(λ
2 + k2)(kλ)l −hm−1(λ2 + k2)

m−3∑
l=0

l≡m−1 (mod 2)

pml (λ2 + k2)(kλ)l

−hm(λ2 + k2)
m−3∑
l=0

l≡m−1 (mod 2)

pml (λ2 + k2)(kλ)l+1

in m−2Am−2. By induction hypothesis, we have that ϕk(λ) = 0 implies that for |l|, |k| ≤
m− 2 and λ ∈ a∗C:

hl(λ
2 + k2) =

{
hm−1(λ2 + k2)pml−1(λ2 + k2)

hm(λ2 + k2)pml−1(λ2 + k2).

Moreover, for k = m, we have

ϕ±m(λ) = [hm−1(λ2 +m2) + hm(λ2 +m2)(±mλ)]pm(λ,±m) = 0

since pm(λ,±m) is not identical zero on λ ∈ a∗C. This means that hm−1 and hm are
zero and thus this implies that hl = 0 for |l| ≤ m− 2. This completes the proof.

General case: The K-type n and m are distinct

Consider now two distinct K-types (n,En) and (m,Em). In a similar way as in
Def. 3.30, we define

nAm ∼= nPWSm,H(a∗C) ⊂ Hol(a∗C,HomM(En, Em))
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as well as the situation for polynomial functions nPolm ∼= nPWSm,0(a∗C). Note that
after a choice of a basis, we can write the element in this way:

ϕ :=





0 · · · 0
...

...
...

0 · · · 0

ϕn(λ) · · · 0
... . . . ...
0 · · · ϕ−n(λ)

0 · · · 0
...

...
...

0 · · · 0


(m+1)×(n+1)

if n < m,

0 · · · 0 ϕm(λ) · · · 0 0 · · · 0
...

...
...

... . . . ...
...

...
...

0 · · · 0 0 · · · ϕ−m(λ) 0 · · · 0


(m+1)×(n+1)

if n > m.

For instance, consider (m,Em) and (m+ 2, Em+2).

Theorem 3.33. Let m be a non-zero K-type. There exists an unique, up to normaliza-
tion, operator of first order q+

m in mPolm+2 (resp. q−m in m+2Polm by taking the adjoint),
which correspond to

(λ+m+ 2)


0 · · · 0
1 · · · 0
... . . . ...
0 . . . 1
0 · · · 0


(m+2)×m(

resp. (λ− (m+ 2))

0 d(m,m) · · · 0 0
...

... . . . ...
...

0 0 . . . d(m,−m) 0


m×(m+2)

)

under some appropriate basis choice and where d(m, k) = (m+2)2−k2, for all |k| ≤ m.
Moreover, the algebra mPolm+2 (resp. m+2Polm) is a free mPolm-module with generator
q+
m (resp. q−m). Similarly, we have that the algebra mAm+2 (resp. m+2Am ) is a free
mAm-module with same generator q+

m (resp. q−m).

Note that mPolm+2 is isomorphic to DG(Em,Em+2), the set of all invariant differen-
tial operators.

Proof. Let p ∼= R3 be a subset of g and S(p) the symmetric algebra defined as in
Sect. 1.2. From (1.3) we deduceGr(mPolm+2) ∼= [S(p)⊗HomM(Em, Em+2)]K .Moreover,
by Helgason’s result ([Hel20], III.1), S(p) is a free S(p)K-module with generator H(p):

S(p) = S(p)K ⊗H(p), (3.34)
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where H(p)
K∼=
⊕∞

l=0E2l is the set of all K-harmonic polynomials in S(p) and each E2l

has degree l ∈ N0. Hence, by using Clebsch-Gordan rule (3.27), we have

[S≤1(p)⊗ Hom(Em, Em+2)]K
(3.34)∼= [(S0(p)⊕ S1(p))⊗ (E2 ⊕ E4 ⊕ · · · ⊕ E2m+2)]K

∼= [S1(p)⊗ E2]K ,

where [S1(p)⊗E2]K is one-dimensional. This means that mPolm+2 contains exactly one
element q+

m of filter degree 1. By choosing an appriopate basis for HomM(Em, Em+2),
we can embeed Em

M
↪→ Em+2 and thus

HomM(Em, Em) ↪→ HomM(Em, Em+2).

Since q+
m,k(λ) is of first order (but the individual components could be constants), this

means that all elements, under normalization, are of the form

q+
m,k(λ) =

{
c(m, k), |k| ≤ m

(λ+ c(m, k)), |k| ≤ m,λ ∈ a∗C,

and there are independent. Here, c(m, k) is a non-zero constant depending on k and m.
Consider ϕk(λ) ∈ mAm+2, for |k| ≤ m. By Lem. 3.10 and Harish-Chandra c-functions
(3.28), we have that

ϕ−k(−λ) = (−1)(m+2−m)/2cm+2,σ(λ)

cm,σ(λ)
ϕk(λ) = (−1)

Γ(λ
2

+ m
2

+ 1)Γ(λ
2
− m

2
)

Γ(λ
2

+ m
2

+ 2)Γ(λ
2
− m

2
− 1)

ϕk(λ)

= (−1)
(λ− (m+ 2))

(λ+ (m+ 2))
ϕk(λ)

=
(−λ+ (m+ 2))

(λ+ (m+ 2))
ϕk(λ).

Moreover, let ϕ̃k(λ) ∈ mAm, for |k| ≤ m, we know that

ϕk(λ) = q+
m,k(λ)ϕ̃k(λ) (3.35)

and that q+
m,k(λ) is not zero. Thus

ϕ−k(−λ) = q+
m,−k(−λ)ϕ̃−k(−λ)

(3.29)
= q+

m,−k(−λ)ϕ̃k(λ)
(3.35)
=

q+
m,−k(−λ)

q+
m,k(λ)

ϕk(λ).

Hence,
q+m,−k(−λ)

q+m,k(λ)
= −λ+(m+2)

λ+(m+2)
and it has a zero m+ 2. This means that q+

m,k(λ) is not a

constant, thus we conclude that c(m, k) = m+ 2, for all |k| ≤ m.
Concerning q−m, one can check with the same arguments as for q+

m that

q−m(λ, k) = (λ− c(m, k))d(m, k),∀|k| ≥ m,λ ∈ a∗C

with c(m, k) = m+ 2 and d(m, k) = C((m+ 2)2 − k2), where C is a constant. In fact,
observe that

q−m(λ, k)q+
m(λ, k) = d(m, k)(λ2 − c(m, k)2) = d(m, k)(λ2 − (m+ 2)2) ∈ mPolm.

By taking λ = 0 and considering k = 0, we get

d(m, k)(−(m+ 2)2) = d(m, 0)(k2− (m+ 2)2) ⇐⇒ d(m, k) =
d(m, 0)

(m+ 2)2
((m+ 2)2−k2).

By setting C := d(m,0)
(m+2)2

, we conclude that d(m, k) = C((m+2)2−k2), for all |k| ≤ m.
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Observe that

q+
mq
−
m ∈ mPolm+2 m+2Polm = m+2Polm+2

q−mq
+
m ∈ m+2Polm mPolm+2 = mPolm.

Consequently, by combining the previous observations and results (Thm. 3.32 and
Thm. 3.33) together, this leads us to the following generalization for distinct integers
n and m.

Definition 3.34. Let n,m ∈ N. Consider q+
m and q−n as in Thm. 3.33. We define the

polynomial qn,m ∈ nPolm in λ ∈ a∗C by

qn,m =


q+
m−2 · q+

m−4 · · · q+
n+2 · q+

n , if n < m

q−m · q−m+2 · · · q−n−4 · q−n−2, if n > m

Id, if n = m.

(3.36)

The following theorem, gives explicitly the Paley-Wiener(-Schwartz) theorem in
(Level 3) for G = SL(2,C).

Theorem 3.35 (Intertwining condition in (Level 3)). Let n,m ∈ N0 be two K-types,
which are not necessary distinct, and let l := min(n,m). Then, the algebra nPolm
(resp. nAm) is a free lPoll (resp. lAl)-module with generator qn,m. This means that
there exists an unique function h ∈ lAl such that

nAm 3 ϕ(λ) =

{
h(λ)qn,m(λ), if m < n,

qn,m(λ)h(λ), if m > n,
for λ ∈ a∗C. (3.37)

Moreover, if L = max(n,m), then nPolm (resp. nAm) is a LPolL (resp. LAL)-module
with generator qn,m.

Proof. Consider the case m < n, it suffices to prove that

(a) there exists a unique h ∈ mAm such that ϕ = h · qn,m ∈ nAm,

(b) there exists a h̃ ∈ nAn such that ϕ = qn,m · h̃ ∈ nAm.

Consider
qm,n nAm ⊂ {g ∈ nAn | gk = 0, ∀|k| > m} ⊂ nAn.

We also have zeros between the lines −m and m, this means gl(k) = 0,∀|k| > m.
Let ϕ ∈ nAm. We identify qm,n and qm,n with corresponding scalar polynomials. The
polyniomal qm,n has zeros on the left side and qn,m has zeros on the other side:

g = qm,n · ϕ ⇐⇒
g

qm,n
=
qm,nϕ

qm,n
⇐⇒ g

qm,nqn,m
=

qm,nϕ

qm,nqn,m
⇐⇒ g

qm,nqn,m
=

ϕ

qn,m
.

Hence, there exists a unique h := g
qm,nqn,m

∈ mAm so that

ϕ = h · qn,m.

In fact, since g satisfies the intertwining condition gk(l) = gl(k) as well as the symmetry
one gk(λ) = g−k(−λ), and

qm,n(k, λ)qn,m(k, λ) = qm,n(−k,−λ)qn,m(−k,−λ)

qm,n(k, l)qn,m(k, l) = qm,n(l, k)qn,m(l, k)
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we then have that hl(k) = hl(k) and hk(λ) = h−k(−λ) for k ≡ l ≡ m (mod 2), |k| ≤ m
and λ ∈ a∗C. This proves (a).

For (b), we know from (a) that h ∈ mAm is in the small space, thus we need to find

h̃ = diag(h̃n, . . . , h̃m+2, hm, . . . , h−m, h̃−(m−2), . . . , h̃−n) ∈ nAn

so that h̃k(l) = h̃l(k) and h̃k(λ) = h̃−k(−λ) for |l|, |k| > m and λ ∈ a∗C. By using the
interpolation polynomial for each |k| > m, we define recursively for λ ∈ a∗C:

hm+2(λ) =
m∑

i=−m
i≡m (mod 2)

hi(m)
m∏

l=−m
l 6=i

(λ− l
i− l

)

hm+4(λ) =
m+2∑

i=−(m+2)
i≡m+2 (mod 2)

hi(m+ 2)
m+2∏

l=−(m+2)
l 6=i

(λ− l
i− l

)

...

hn−2(λ) =
n−4∑

i=−(n−4)
i≡n−4 (mod 2)

hi(n− 4)
n−4∏

l=−(n−4)
l 6=i

(λ− l
i− l

)

hn(λ) =
n−2∑

i=−(n−2)
i≡n−2 (mod 2)

hi(n− 2)
n−2∏

l=−(n−2)
l 6=i

(λ− l
i− l

)
.

The intertwining relations are also satisfies for |l|, |k| > m due h ∈ mAm. Concerning
the case n < m, the proof is analogous.

Note that Thm. 3.32, in particular relation (3.30), is also true in general for distinct
K-type n and m.

Corollary 3.36. With the notations above, nAm ∼= Hol(C)⊗Pol(C) nPolm.

Proof. We can use the same arguments as in the beginning of the proof of Thm. 3.32,
except that, here, we havem+1 generators (λl) times qn,m, i.e., nAm ∼= Hol(C)m+1·qn,m.
Hence, nAm is a free Hol(C)-module with

nAm = qn,m · nAn = mAm · qn,m
(3.30)∼= Hol(C)⊗Pol(C) mPolm · qn,m
∼= Hol(C)⊗Pol(C) nPolm.

Observe that, if n 6≡ m (mod 2), then nPolm = 0.
By multiplying two polynomials (3.36) together, we obtain the similar relation as

in Lem. 3.21.

Lemma 3.37. Let n,m, l ∈ N0 be integers, no necessary distinct. Then, we obtain the
relation

qn,m · ql,n =

{
rln,m · ql,m, if m ≤ l

ql,m · rln,m, if l < m,
(3.38)
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where rln,m is a polynomial of the form:

rln,m =


Id, if l ≤ n ≤ m or m ≤ n ≤ l

qn,m · qm,n ∈ mPolm, if l ≤ m < n or n < m ≤ l

qn,l · ql,n ∈ lPoll, if m < l < n or n < l < m.

Proof. The proof is similar as for Lem. 3.21 except that, here, we use (3.36).



Chapter 4

On solvability and general strategy

We now converge to the end of our preparations for the proof of Conjecture 1. In this
chapter, we merge all the obtained dominant results, namely the topological Paley-
Wiener(-Schwartz) theorems (Thm. 2.31 & Thm. 2.40) with Delorme’s intertwining
conditions (Thm. 2.28) for sections in (Level 2) and (Level 3), as well as their ade-
quateness for Lie group of real rank one (Thm. 3.13). Furthermore, the consequence
of the Paley-Wiener-Schwartz theorem to the invariant differential operators in the
Fourier image (Thm. 2.46) takes also a major place in our strategy.
In addition, we explain and expose a possible strategy on how to attack the conjecture.
A key role is to play with the two levels (Level 2) and (Level 3). More precisely, the
plan is to solve the conjecture in (Level 3) and then go up to the desired (Level 2). The
idea of this ’level playing’ came up by making use of Hörmander’s estimates results
([Hör73], Thm. 7.6.11. & Cor. 7.6.12.) in (Level 3).

The relations of these Hörmander’s estimates are covered in the first Section 4.1 of
this chapter. Here, we first present the relevant results in (Level 3) (Hyp. 1, Hyp. 2 &
Hyp. 3) before moving to (Level 2) (Hyp. 4 & Thm. 4.1). However, a general proof for
these results is not provided, since Delorme’s intertwining conditions (3.iii) in Def. 2.30
are very difficult to control and maniplutate, even for general Lie group of real rank
one. Although, in the next Chapter 5, we picked three examples, where a complete
(respectively partial) proof of these results is furnished.

In the last Section 4.2, we complete the proof of the conjecture (Thm. 4.10 &
Cor. 4.11) by employing abstract function analytic criteria for closedness and density
of images of operators (Prop. 4.7 & Thm. 4.9).

4.1 Estimates theorems for systems of polynomials
equations

Let us remind that the initial goal is to show the exactness in the middle of the sequence
(1.12). By taking the toplogical dual of (1.12), we are behaving with compact supported
distributional sections C−∞c (X,E∗̃), for ∗ ∈ {δ, τ, γ}, with strong topology. The strat-
egy consits to apply the Fourier transform and the topological Paley-Wiener-Schwartz
Thm. 2.40 for sections over homogeneous vector bundles to prove the exactness of the
dual sequence in the middle, as well as, the closed range of our transposed invariant

86
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differential operators Dt ∈ DG(Eτ̃ ,Eγ̃). In other words,

C∞(X,Eγ) C∞(X,Eτ )
exact

C∞(X,Eδ)

C−∞c (X,Eδ̃) C−∞c (X,Eτ̃ )
exact

C−∞c (X,Eγ̃)
closed range

PWSδ̃(a
∗
C ×K/M) PWSτ̃ (a

∗
C ×K/M)

exact
PWSγ̃(a

∗
C ×K/M)

closed range
.

D D̃

Fδ̃

D̃t

Fτ̃

Dt

Fγ̃

Q P

(4.1)

Moreover, in Sect. 2.4, we have seen that the Fourier transform of an invariant differ-
ential operator, which we denote by Q respectively P , is a matrix of polynomials in
λ ∈ a∗C with values in the corresponding homomorphism of the homogeneous vector
bundles. Therefore, we can reformulate the initial Conj. 1 in terms of action of Q on
PWSτ̃ (a

∗
C ×K/M) and action of P on PWSγ̃(a

∗
C ×K/M), respectively.

However, the problem remains still difficult. The idea is to relate Hörmander’s
results and estimates ([Hör73], Thm. 7.6.11. and Cor. 7.6.12.) on the ’a’-part under
some conditions on the K-type. More precisely, we fix an additional irreducible K-type
(µ,Eµ) on the left while on the right, it is the bundle E∗̃ → X, ∗ ∈ {δ, γ, τ}. In terms
of our framework, introduced in Chap. 2, we moved from (Level 2) to (Level 3). Thus,
the plan is to first solve the main problem in (Level 3), as illustrated in the following
diagram:

PWSδ̃(a
∗
C ×K/M) PWSτ̃ (a

∗
C ×K/M)

exact
PWSγ̃(a

∗
C ×K/M)

closed range
(Level 2)

µPWS δ̃(a
∗
C) µPWS τ̃ (a

∗
C)

exact
µPWS γ̃(a

∗
C)

closed range
(Level 3)

Q P

Q P

Consider the Paley-Wiener-Schwartz space µPWS ∗̃,H(a∗C) without the slow growth
condition (3.iis)r in Def. 2.38. The analog of Hörmander’s result ([Hör73], Lem. 7.6.5),
is given by the following hypothesis.

Hypothesis 1. With the notations above, let P ∈ τ̃PWS γ̃,0(a∗C) be the Fourier trans-
form of the invariant differential operator Dt ∈ D(Eτ̃ ,Eγ̃) and Q ∈

δ̃
PWS τ̃ ,0(a∗C) of

D̃t ∈ D(Eδ̃,Eτ̃ ) as in Sect. 1.3.
Then, there exists g ∈ µPWS δ̃,H(a∗C) such that f = Qg, if and only, if Pf = 0, for
given f ∈ µPWS τ̃ ,H(a∗C). In other words, we have

Im(Q) = Ker(P ) in µPWS τ̃ ,H(a∗C).

Now we want to construct a holomorphic function v in µPWS τ̃ (a
∗
C) in such a way

that it verifies the intertwining conditions (3.iii) of Def. 2.30 for τ̃ and fixed µ in K̂ as
well as provides us with some ’nice’ properties.
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Hypothesis 2. With the notations above, fix r ≥ 0 and N ∈ N0.
Then, there exist constants M ∈ N0 and Cr,N ∈ N0 so that for each function µu ∈
µPWS τ̃ ,H(a∗C) such that ||P µu||r,N < ∞, one can find a function µv ∈ µPWS τ̃ (a

∗
C)

with

(i) P µu = P µv and

(ii) || µv||r,N+M ≤ Cr,N ||P µu||r,N .

Here, || · ||r,N := supλ∈a∗C

{
(1 + |λ|2)−Ne−r|Re(λ)||| · ||op

}
denotes the semi-norm.

Ideally, we would like to have constants which are independent on the K-type µ.

Hypothesis 3. With the notations in Hyp. 2, the constant M is independent of the
K-type µ as well as N ∈ N0 and Cr,N is of at most of polynomial growth in |µ| ∈ [0,∞),
the length of µ.

The final step would be to move back to our ’initial’ statement in (Level 2) by using
some convergence arguments. Thus, Hyp. 2 and Hyp. 3 can be converted in (Level 2)
as follows.

Hypothesis 4. With the notations above, let P as in Hyp. 1.
Then, for all multi-index β ∈ N0, there exist a multi-index α ∈ N0, M ∈ N0, for
every r ≥ 0, N ∈ N0, and a constant Cr,N+M,α+β ∈ N0 so that for each function
u ∈ PWSτ̃ ,H(a∗C × K/M) such that ||Pu||r,N,α < ∞, one can find a function v ∈
PWSτ̃ (a

∗
C ×K/M) with

(i) Pu = Pv and

(ii) ||v||r,N+M,α+β ≤ Cr,N+M,α+β||Pu||r,N,α.

Theorem 4.1. Assume that Hyp. 2 and Hyp. 3 are satisfied. Then, Hyp. 4 holds true.

Before being able to prove Thm. 4, we need some preparations. Consider, for
instance, the L2-space V := L2(K/M,Eτ |M ) and for k ∈ K, let χµ(k) = χµ(k−1)

be the character of µ ∈ K̂. Write by {ei, i = 1, . . . , dµ} the basis of Eµ and by
{ẽi, i = 1, . . . , dµ} its dual. Then, by Peter-Weyl’s theorem, we have, for f ∈ V and
x ∈ K:

f(x) =
∑
µ∈K̂

dµ

dµ∑
i=1

∫
K

〈µ(k−1)ei, ẽi〉f(k−1x) dk =
∑
µ∈K̂

dµ

dµ∑
i=1

∫
K

〈µ(kx−1)ei, ẽi〉f(k−1) dk

=
∑
µ∈K̂

dµ

dµ∑
i=1

∫
K

f(k)µ̃(k−1)ẽi dk µ(x−1)ei.

Since µ̃(k−1) is a functional Eµ → C, we have that µf i :=
∫
K
f(k)µ̃(k−1)ẽi dk is

in HomM(Eµ, Eτ ). Now, take k = x and consider w ∈ PWS∗̃(a
∗
C × K/M), for each

∗ ∈ {δ, γ, τ}. Then, its Fourier decomposition is given by

w(λ, k) =
∑
µ∈K̂

dµ

dµ∑
i=1

µwi(λ)µ(k−1)ei, (λ, k) ∈ a∗C ×K/M, (4.2)
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where

µwi =

∫
K

w(k)µ̃(k−1)ẽi dk ∈ µPWS ∗̃(a
∗
C), ∀i = 1, . . . , dµ (4.3)

are the Fourier coefficients. Now, we let converge the obtained estimates in (Level 3)
so that a global estimate for the Fourier series is attained.

Lemma 4.2. Fix r ≥ 0 and N ∈ N0. For each µ ∈ K̂ and i = 1, . . . , dµ, let
µwi ∈ µPWS ∗̃(a

∗
C) be the Fourier coefficients of w ∈ PWS∗̃(a

∗
C ×K/M), ∗ ∈ {γ, τ, δ}.

Consider the Casimir operator of k ∈ K([Kna02], (5.23)):

Ck = −
∑
i

X2
i ,

where {Xi} is an orthonormal basis corresponding to the K-invariants. Then, for each
integer p we have

|| µwi||r,N+p ≤ (1 + ||µ||2)−p||w||r,N,Yp , ∀i (4.4)

where Yp := (1−Ck)
p ∈ U(k).

Proof. We know that for all µ ∈ K̂, the Fourier coefficients µw of w ∈ PWS∗,H(a∗C ×
K/M) can be estimated, in general, by the supremum or operator norm as follows:

|| µw||op

(4.3)

≤
∫
K

||w(k)µ̃(k−1)ẽi||op dk =

∫
K

||w(k)||op dk ≤ sup
k∈K
||w(k)||∞ =: ||w(k)||K,∞.

Note that the operator norm of µ̃(k−1) is one.
Concerning the Casimir operators, by ([Kna02], Prop. 5.28 (b)), we know that

µCk = ||µ+ ρk||2 − ||ρk||2,

where µ is the highest weight and ρk stands for the half sum of the positive roots
∆+(k, t), t ⊂ k Lie algebra of maximal torus. Since ||µ+ρk||2−||ρk||2 = ||µ||2+2〈µ, ρk〉 ≥
||µ||2, we then have that

C2(1 + ||µ||2) ≤ µ(1 + Ck) ≤ C1(1 + ||µ||2),

where C1 and C2 are positive constants. Without loss of generality, take C1 = C2 = 1.
Hence, for each p ∈ N0:

||(1 + Ck)
pw||∞ ≥ || µ((1 + Ck)

pwi)||op = µ(1 + Ck)
p|| µwi||op ≥ (1 + ||µ||2)p|| µwi||op.

Therefore, by considering the dependence of λ ∈ a∗C and setting Yp := (1 + Ck)
p, we

obtain
sup
λ∈a∗C
|| µwi(λ)||op ≤ (1 + ||µ||2)−p sup

λ∈a∗C
||Ypw(λ, k)||K,∞.

Now by multiplying the last inequality, with a weight factor (1 + |λ|2)−(N+p)e−r|Re(λ)|

on both side, we finally get (4.4).

Proof of Thm. 4.1. Consider w ∈ PWSγ̃(a
∗
C×K/M) with Fourier decomposition (4.2),

where µwi ∈ µPWS γ̃(a
∗
C) are the Fourier coefficients, for all i = 1, . . . , dµ.

Set µwi := P µui, then by Hyp. 2 and Hyp. 3, there exists µvi ∈ µPWS τ̃ (a
∗
C) such that

P µvi = µwi and with estimate condition:

|| µvi||r,N+M ≤ Cµ|| µwi||r,N (4.5)
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for some constants M ∈ N0 independent of N ∈ N0 and Cµ is of maximal growth in
µ, i.e., Cµ ≤ C(1 + ||µ||2)d, with C ∈ N0. Note that d ∈ N0 is independent of N . Now
choose p ∈ N0 so that

∑
µ∈K̂ d

2
µ(1 + ||µ||2)d−p <∞. Thus, we have

||v||r,N+M+p,1

(4.2)

≤
∑
µ∈K̂

dµ

dµ∑
i=1

|| µvi||r,N+M+p

Hyps. 2 & 3
≤

∑
µ∈K̂

dµ

dµ∑
i=1

C(1 + ||µ||2)d|| µwi||r,N+p

Lem. 4.2

≤
(∑
µ∈K̂

d2
µC(1 + ||µ||2)d−p

)
||w||r,N,Yp

≤ C ′||w||r,N,Yp ,

where C ′ is some positive constant. In fact, since the space is complete, the sum∑
µ∈K̂ d

2
µC(1 + ||µ||2)d−p is summable, this means that the series converges absolutely

on the Fréchet space with corresponding semi-norm || · ||r,N+M+p,1 to a function.
Now for higher derivatives, we obtain an analogously inequality:

||v||r,N+M+p,Yl ≤
∑
µ∈K̂

dµ

dµ∑
i=1

|| µvi||r,N+M+p+l(1 + ||µ||2)l

Hyps. 2 & 3
≤

∑
µ∈K̂

dµ

dµ∑
i=1

C(1 + ||µ||2)d+l|| µwi||r,N+p+l

Lem. 4.2

≤
(∑
µ∈K̂

d2
µC(1 + ||µ||2)−(p+l)(1 + ||µ||2)d+l

)
||w||r,N,Yp+l

≤ C ′||w||r,N,Yp+l .

For the last inequality, we used the same arguments as above. Note that the constants
C and C ′ depend on l. In conclusion, we obtained the desired estimate (ii) in (Level 2).
Moreover, the existence of v is assured by µv. Thus, it is holomorphic in λ ∈ a∗C and
satisfies the intertwining condition as well.

4.2 On closed range and density

It remains to show that D has a closed and dense range in Ker(D̃). More precisely,
in terms of dual, we need to prove that Dt is injective modulo Ker(D̃) with closed
range on the strong dual topology C−∞c (X,Eγ̃). For comfort, we prove the density and
closedness separately. First of all, let us recall some notions and important results of
functional analysis theory.

We consider a continuous linear operator A : V1 −→ V2 between locally convex
Hausdorff vector spaces and its adjoint At : V ′2 → V ′1 . For linear subspaces W ⊂ V ,
where V is a locally convex Hausdorff vector space, we consider its annihiliator W⊥ ⊂
V ′ given by

W⊥ := {ṽ ∈ V ′ | 〈ṽ, w〉 = 0, ∀w ∈ W}.
Similarly, for W̃ ⊂ V a linear subspace W̃⊥ := {v ∈ V | 〈w̃, v〉 = 0, ∀w̃ ∈ W̃}.
Let V ′α be V ′ equipped with the weak-* topology, ∀α. It is well-known that (V ′α)′ = V
(as vector spaces) and hence by Hahn-Banach theorem

(W̃⊥)⊥ = W̃ (weak-* dense).
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We can now easily derive the following well-known elementary results.

Lemma 4.3. With the notations above, we have

(1) Im(A)⊥ = Ker(At).

(2) Ker(A)⊥ = Im(At) (weak-* dense). �

Proof. (1) is elementary, indeed

Im(A)⊥ = {ṽ2 ∈ V ′2 | 〈ṽ2, Av1〉 = 0,∀v1 ∈ V1}
= {ṽ2 ∈ V ′2 | 〈Atṽ2, v1〉 = 0,∀v1 ∈ V1}

H.-B.Thm
= {ṽ2 ∈ V ′2 | Atṽ2 = 0} = Ker(At).

Similarly, for (2), we obtain

Im(At)⊥ = {v1 ∈ V1 | 〈Atṽ2, v1〉 = 0,∀ṽ2 ∈ V ′2}
= {v1 ∈ V1 | 〈ṽ2, Av1〉 = 0,∀ṽ2 ∈ V ′2}

H.-B.Thm
= {v1 ∈ V1 | | Atv1 = 0} = Ker(A).

Using the discussion at the beginning, we obtain Ker(A)⊥ = (Im(At)⊥)⊥ = Im(At)
(weak-* dense).

Lemma 4.4. We consider two operators between locally convex Hausdorff vector spaces

V1
A−→ V2

B−→ V3

with B ◦ A = 0, i.e. Im(A) ⊂ Ker(B).
Then, Im(A) ⊂ Ker(B) is dense if, and only if, Im(Bt) ⊂ Ker(At) is weak-* dense.

Proof. By Hahn-Banach theorem, we have that Im(A) ⊂ Ker(B) is dense if, and only
if, Im(A)⊥ = Ker(B)⊥. Hence by applying Lem. 4.3, this is equivalent to Ker(At) =
Im(Bt), i.e. Im(Bt) ⊂ Ker(At) is weak-* dense.

Corollary 4.5. Assume that Im(Bt) ⊂ Ker(At) is dense in the strong dual topology.
Then, Im(A) ⊂ Ker(B) is dense.

Proof. Since strongly density implies weak-* density, by applying Lem. 4.4, we directly
obtain the result.

Remark 4.6. (a) If V2 is (semi-) reflexive, then we even get an equivalence in Cor. 4.5
by the Hahn-Banach theorem.

(b) Setting B = 0 in Lem. 4.4, we obtain the well-known result:

A has dense range in V2 ⇐⇒ At is injective.

Proposition 4.7. Assume that Hyp. 1 and Hyp. 2 are true. Then D ∈ DG(Eγ,Eτ )
has dense range in Ker(D̃) ⊂ C∞(X,Eτ ).
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Proof. Let P and Q as in Hyp. 1. In view of Cor. 4.5 and the Paley-Wiener-Schwartz
Thm. 2.40, it suffices to show that Im(Q) ⊂ Ker(P ) ⊂ PWSτ̃ (a

∗
C × K/M) is dense.

Consider f ∈ Ker(P ) with its Fourier decomposition:

f(λ, k) =
∑
µ∈K̂

dµ

dµ∑
i=1

µf i(λ)µ(k−1)ei, (λ, k) ∈ a∗C ×K/M, ei ∈ Eµ,

where µf i ∈ µPWS τ̃ ,H(a∗C). It can be approximated by finite Fourier series

fn(λ, k) =
∑
|µ|≤n

dµ

dµ∑
i=1

µf i(λ)µ(k−1)ei, (λ, k) ∈ a∗C ×K/M, ei ∈ Eµ,∀n.

By applying Hyp. 1, we have µf i = Q µg̃i, where µg̃i ∈ µPWS δ̃,H(a∗C). By Hyp. 2
we find µgi in the Paley-Wiener-Schwartz space µPWS δ̃(a

∗
C). Thus, µf i ∈ Im(Q) and

hence fn ∈ Im(Q). This implies that Im(Q) is dense, now by summing everything up,
we have that Im(Q) ⊂ Ker(P̃ ) is dense.

Now it remains to show that D has closed range in Ker(D̃), i.e.

Im(D) ⊂ Ker(D̃) ⊂ C∞(X,Eτ ). (4.6)

For this, we will again use some known results from Helgason ([Hel89], Chap. 2) respec-
tively Schaefer [Sch71]. In fact, by the well-known criterion for closed range ([Hel89],
Thm. 2.16 (ii) or [Sch71], Thm. 7.7) we have to show that

Im(Dt) ⊂ C−∞c (X,Eγ̃)

has closed range in the weak-* topology. But first we need a compactness lemma.
Write by V the corresponding Paley-Wiener-Schwartz space PWS∗̃(a

∗
C × K/M),

∗ ∈ {δ, γ, τ} and Vr,N for its subspaces so that

V =
⋃
r≥0

⋃
N∈N0

Vr,N .

Vr,N is a Fréchet space with the generating system of semi-norms || · ||r,N,α, for all
multi-index α, and V carries the corresponding locally convex inductive limit topology.

Lemma 4.8. Let B ⊂ Vr,N be a bounded subset, with respect to the corresponding
Fréchet topology. Then, B is relatively compact in Vr,N+1, i.e. the closure of B in
Vr,N+1 is compact.

Proof. We consider the space

W := C∞(a∗C ×K/M,Eτ |M ) ⊂ C∞(a∗C ×K,Eτ )

with its natural Fréchet topology. As the space of smooth sections of a vector bundle,
it is also a Montel space. We have a continuous injection Vr,N ↪→ W . Thus B, viewed
as a subspace of W , is relatively compact.
Now let (fn) be a sequence in B. We have to show that it has a subsequence (fnl) that
converges in Vr,N+1.
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By the above remarks, (fn) has a subsequence (fnl) that converges in W to some
f ∈ W , i.e. itself and all its derivatives converge uniformely on sets of the form
C × K ⊂ a∗C × K, where C ⊂ a∗C is compact. This implies that f is holomorphic in
λ and satisfies the growth condition as well as Delorme’s intertwining condition, i.e.
f ∈ Vr,N ⊂ Vr,N+1.
However, (fnl) may not converge to f in the (r,N)-topology. Nevertheless, it converges
in the (r,N + 1)-topology. This follows easily from the estimate. Let g ∈ Vr,N . Then
for any R > 0, we have

||g||r,N+1,α ≤ max
(
||lY g||BR(0)×K,∞ ,

1

1 +R2
||g||r,N,α

)
, (4.7)

where BR(0) denotes the closed ball of radius R in a∗C. Indeed, let

C := sup
g∈B
||g||r,N,α <∞.

Then, also ||f ||r,N,α ≤ C and thus ||fnl − f ||r,N,α ≤ 2C.
Let ε > 0. Choose R large enough such that 2C

1+R2 ≤ ε and l0 large enough such that

||fnl − f ||r,N+1,α

(4.7)

≤ ε for l ≥ l0.

This shows that ||fnl − f ||r,N+1,α
l→∞−→ 0 for all multi-index α. Hence, fnl → f in

Vr,N+1.

Theorem 4.9. Assume that Hyp. 4 is true. Then, D ∈ DG(Eγ,Eτ ) has closed range
in Ker(D̃).

Proof. We first show, using Hyp. 4 for P = τ̃F δ̃(Dt), that

Im(P ) ∩ PWSγ̃,r,N

is closed in the (r,N)-topology, for every N ∈ N0 and r ≥ 0.
In fact, consider a sequence wn := Pun in Im(P ) ∩ PWSγ̃,r,N so that wn converges to
w ∈ PWSγ̃,r,N , whenever n tends to ∞. Then (wn) is a Cauchy sequence with respect
to the semi-norm || · ||r,N,α.
By Hyp. 4, there exists a sequence vn ∈ PWSτ̃ ,r,N so that Pvn = wn and with estimate
(ii) in Hyp. 4. This implies that (Pvn) is a Cauchy-sequence in PWSγ̃,r,N . Since,
PWSγ̃,r,N is complete, there exists Pv ∈ Im(P ) such that Pvn

n→∞−→ Pv.
Hence, we have that Pv = w, i.e., w ∈ Im(P ) ⊂ PWSγ̃,r,N . Therefore, we conclude
that Im(P ) ∩ PWSγ̃,r,N is closed in the (r,N)-topology with respect to the inductive
limit topology.

Secondly, we have to show, by using Helgason’s results ([Hel89], Chap. 2, Thm. 2.17
(i) and Prop. 2.8), that for every B′ ⊂ C−∞c (X,Eγ̃), which is weak-* bounded and
weak-* closed, that

B′ ∩ Im(Dt) is weak-* closed.

In other words, B′ ∩ Im(Dt) is closed in B′α, where B′α is B′ equipped with the weak-*
topology. However, B′ is also strongly bounded (holds in the dual of any Fréchet space,
[Hel20] Thm. 2.17 (ii)) and of course also strongly closed. Since C−∞c (X,Eγ̃) as the
dual of a Montel space, is itself Montel in the strong dual topology, we conclude that
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B′β, i.e. equipped with the strong topology, is compact.
Now, assume, for a moment, that B′β ∩ Im(Dt) is closed, then it is compact. Since the
identity map

B′β −→ B′α

is continuous, we conclude that B′α ∩ Im(Dt) is compact, i.e. B′ ∩ Im(Dt) is compact
in the weak-* topology, in particular it is weak-* closed.
Thus, it suffices to show that B′ ∩ Im(Dt) is closed in the strong dual topology, for
every strongly bounded and closed B′.

Now we fix such a strongly bounded and closed B′ ⊂ C−∞c (X,Eγ̃). We take the
Fourier transforms. Then

F(B′ ∩ Im(Dt)) = F(B′) ∩ Im(P ).

By the continuity of F we have that

F(B′) ⊂ PWSγ̃(a
∗
C ×K/M)

is compact, in particular closed. By the definition of the locally convex inductive limit
topology, we see that F(B′) ⊂ PWSγ̃,r,N is closed in every PWSγ̃,r,N with (r,N)-
topology.
On the other hand, we have seen in the proof of continuity of F (Proof of Lem.2.43),
that there exists N0 ∈ N0 such that F(B′) ⊂ PWSγ̃,r,N0 and that F(B′) is bounded in
the (r,N0)-topology. By Lem. 4.8

F(B′) ⊂ PWSγ̃,r,N0+1

is relatively compact. This means that, F(B′) ⊂ PWSγ̃,r,N0+1 is closed in the (r,N0+ 1)-
topology. Hence, it is compact in the (r,N0 + 1)-topology.
Now let N := N0 + 1. By the beginning of the proof, Im(P ) ∩ PWSγ̃,r,N is closed in
the (r,N)-topology. It follows that

F(B′) ∩ Im(P ) ⊂ Im(P ) ∩ PWSγ̃,r,N

is compact and closed in the (r,N)-topology. Since the injection

PWSγ̃,r,N ↪→ PWSγ̃(a
∗
C ×K/M)

is continuous, we conclude that F(B′) ∩ Im(P ) is compact, in particular closed, in
PWSγ̃(a

∗
C ×K/M). By applying now the inverse Fourier transform, which is a topo-

logical isomorphism by the Paley-Wiener-Schwartz Thm. 2.40, we find that B′∩Im(Dt)
is strongly closed in C−∞c (X,Eγ̃). By (4.6), this implies the desired result.

Thm. 4.9 is remains true if we assume that Hyp. 2 holds true instead of Hyp. 4.

Finally, by combining all the obtained results together, this implies the general solv-
ability in X, i.e. Conjecture 1 is true.

Theorem 4.10. Let X = G/K be a symmetric space of non-compact type and for
r ≥ 0, x ∈ X consider the ball Br(x) ⊂ X. Assume that Hyp. 1 and Hyp. 4 are true.
Then, we have (local and global) solvability in X and in the ball Br(x) ⊂ X.
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Proof. For x ∈ X, consider an open neighbourhood U of x. Let g ∈ C∞(U,Eτ ) with
D̃g = 0, then we need to show that there exist a neighbourhood V ⊂ U in x and
f ∈ C∞(V,Eγ) with Df = g

∣∣
V
.

In fact, let g and U as above, then there exists r ≥ 0 with Br(x) ⊂ U . By the solvability
on Br(x), there exists f ∈ C∞(Br(x),Eγ) with Df = g

∣∣
Br(x)

.
Concerning the solvability on balls. We first translate the ball to its origin, then

we dualize:

(C∞(BR(0),Eτ ))′ := {ϕ ∈ C−∞c (X,Eτ̃ ) | supp(ϕ) ⊂ BR(0)}
=

⋃
0≤r<R

C−∞r (X,Eτ̃ )

Thm. 2.40∼=
⋃

0≤r<R

⋃
N∈N0

PWSτ̃ ,r,N . (4.8)

The solvability in X is achieved in the same way as in Br(0), by applying Prop. 4.7
together with Thm. 4.9 for (4.8), if we assume that Hyp. 1 and Hyp. 4 are true. By
translating back to BR(x), we have also solvability there.

By combining Thm. 4.1 and Thm. 4.10, we obtain directly the following conse-
quence.

Corollary 4.11. Assume that Hyp. 1, Hyp. 2 and Hyp. 3 are satisfied. Then, the
Conj. 1 is true. �

Note that, if Hyp. 1 and Hyp. 2 are true, then by Prop 4.7 and Thm. 4.9, we have
solvability for K-finite elements, thus solvability in (Level 3).

Remark 4.12. Concerning a possible proof of Hyp. 1. If we would have Conj. 2, then
we can argue with the same arguments for the proof of Hyp. 1.

Conjecture 2. Let γ, τ ∈ K̂ and h∗C be a Cartan algebra of gC. Consider the Weyl
group W = W (g, h) as in Sect. 3.1. Then, γPWSτ,H(a∗C) is generated as Hol(h∗C)W by
γPWSτ,0(a∗C). Moreover

Hol(h∗C)W ⊗Pol(h∗C)W γPWSτ,0(a∗C) ∼= γPWSτ,H(a∗C).

Delorme [Del05] proved a similar result for subsets. Note that Hol(h∗C)W ∼= Hol(Cdim(h))
and similar for Pol(h∗C)W ∼= Pol(Cdim(h)). Here γPWSτ,H(a∗C) is not necessary a free
module.



Chapter 5

Three examples

In this part, we demonstrate by three examples how one can solve the main problem
(Conj. 1) of this dissertation with aid of the proposed preparations and techniques
exhibited in the previous chapters. More precisely, we present a complete proof for
the estimate’s hypotheses, Hyp. 1, Hyp. 2 and Hyp. 3 (except for Hyp. 3 in H2 × H2

and Hyp. 2 and Hyp. 3 for H3) by using the nice description of Delorme’s intertwining
conditions in Chap. 3.

We start, in the first Section 5.1, with the classical example, the upper half plane
H2 of C, which is isomorphic to the symmetric space of non-compact type X =
SL(2,R)/SO(2). As we already have seen in Sect. 3.4, the special linear group SL(2,R)
is the semi-simple non-compact Lie group of the smallest possible dimension. The
proofs of the hypotheses (Thm. 5.1 & Thm. 5.2) in this case are simple.

As second example, in Section 5.1, we consider the product of SL(2,R) with itself,
which is an example of real rank two. Even beyond, if we generalize it to SL(2,R)d,
with d ∈ N. Since Delorme’s intertwining condition (Thm. 3.25) remains the ’same’ as
in SL(2,R) (Thm. 3.20), we can use similar arguements as for SL(2,R) (Thm. 5.4 &
Thm. 5.5). However, Hyp. 3 is more difficult to achieve, we are not able to prove it
yet.

Last but not least, we consider, in Section 5.3, the symmetric space of non-compact
type X = SL(2,C)/SU(2), which can be identify with the model of hyperbolic 3-space
H3. We present a complete proof of Hyp. 1 (Thm. 5.7). The proof of Hyp. 2 and Hyp. 3
are work in progress.

5.1 Solvability on the upper half-plane
Under the previous notations introduced in Sect. 3.4, let G = SL(2,R) and K =
SO(2) its maximal compact subgroup. Consider three, not necessary irreducible, K-
representations (δ, Eδ), (τ, Eτ ) and (γ,Eγ) with

Eδ =

dδ⊕
k=1

Esk , Eτ =
dτ⊕
j=1

Enj , Eγ =

dγ⊕
i=1

Emi ,

where sk, nj and mi are integers, ∀k, j, i. Write by E∗ → X their corresponding homo-
geneous line bundles over X = G/K induced by the vector space E∗, for ∗ ∈ {δ, τ, γ}.

96
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Moreover, we can identify X with the upper half-plane of C, also known as the
hyperbolic two-space

H2 = {z ∈ C| Im(z) > 0}
by gK → g(i), where

g · z =

(
a b
c d

)
· z =

az + b

cz + d
, g ∈ SL(2,R), z ∈ H2. (5.1)

This means that G coincides with the group of rigid motions of H2 preserving orien-
tation and the stabilizer of i ∈ H2 concides with K. In particular, G acts transitively
on H2 by this homography (5.1). In other words, each orbit under G is the whole H2.
In addition, one can easily check that it preserves the metric dx2+dy2

y2
and volume form

dxdy
y2

of H2.

Now fix an additional irreducible K-type (l, El) and let us prove, in the following,
the hypotheses of Chap. 4. We first start to show Hyp. 1.

Theorem 5.1. The short sequence

lPWSδ,H(a∗C)
Q−→ lPWSτ,H(a∗C)

P−→ lPWSγ,H(a∗C) (5.2)

is exact in the middle, that means that Im(Q) = Ker(P ).

Proof. From Sect. 1.3, we found a candidate D̃t for Dt so that their composition is 0.
Now by applying the Paley-Wiener-Schwartz Thm. 2.40, we obtain through the Fourier
transform and the l-isotopic component projection, the short sequence

lPWSδ,0(a∗C)
Q−→ lPWSτ,0(a∗C)

exact

P−→ lPWSγ,0(a∗C),

where Q (resp. P ) is the Fourier transform of D̃t (resp. Dt). Note that lPWS∗,0(a∗C)
is a subspace of lPWS∗,H(a∗C), for ∗ ∈ {δ, τ, γ}. Moreover due Thm. 3.20, we have
that each lPWS∗,H(a∗C) is uniquely determined and it is a free finite generated Pol(λ2)-
module with the same generators ql,∗ as lPWS∗,0(a∗C). Thus

lPWS∗,H(a∗C) ∼= Hol(λ2)⊗Pol(λ2) lPWS∗,0(a∗C).

In addition, Hol(λ2) is a torsion free model over the principal ideal domain Pol(λ2).
This means that Hol(λ2) is a flat Pol(λ2)-module. Hence, Hol(λ2) over the ring Pol(λ2)
preserves the exactness of the sequence. This completes the proof.

Consider the Fourier series w ∈ PWSγ(a
∗
C ×K/M)

w(λ, kθ) =
∑
l∈Z

lw(λ)eilθ, λ ∈ a∗C, kθ ∈ SO(2).

Then, its Fourier coefficients lw are also holomorphic on λ ∈ a∗C and statisfy the
intertwining condition for γ ∈ K̂ and fixed l too. Hence, they are of the form:

lw = lb · ql,γ, (5.3)

where lb ∈ Hol(λ2) is a scalar-valued holomorphic even function in λ ∈ a∗C and ql,γ is
the polynomial given in (3.17). Thus, we can prove Hyp. 2 and Hyp. 3 by the following
theorem.
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Theorem 5.2 (Estimate result in (Level 3)). Let P ∈ τPWSγ,0(a∗C) be the Fourier
transform of the transposed invariant differential operator Dt ∈ DG(Eτ ,Eγ).
Then, there exist M ∈ N0, for all r ≥ 0 and N ∈ N0, as well as a constant Cr,N+M > 0
so that for each lu ∈ lPWSτ,H(a∗C) such that ||P lu||r,N < ∞, one can find a lv ∈
lPWSτ (a

∗
C) with

(i) P lu = P lv and

(ii) || lv||r,N+M ≤ Cr,N+M ||P lu||r,N .

The constants Cr,N+M and M can be chosen to be independent of the integer l.

Before proceeding with the proof of this theorem, we need a helpful standard result,
which will allow us to estimate the Fourier coefficients later on.

Lemma 5.3. Consider p(z) :=
∑k

n=0 anz
n a polynomial in one variable such that

the leading coefficient ak is not zero. For r > 1, let f be a holomorphic function in
Br(0) ⊂ a∗C. Then

|f(0)| ≤ |ak|−1 sup
|z|=1

|f(z)p(z)|. (5.4)

Here, Br(0) denotes an open ball of radius r centered at 0 in a∗C.

Note that (5.4) implies that

|f(λ)| ≤ Cp sup
|z|=1

|f(λ+ z)p(λ+ z)|, λ ∈ a∗C, f ∈ Hol(a∗C),

where the constant Cp depends on the polynomial p, but not on λ ∈ a∗C.

Proof of Lem. 5.3. Let q(z) :=
∑k

n=0 ak−nz
n be a polynomial such that the product

q · f is holomorphic on Br(0). Then, by the maximum principle for B1(0), we have

|q(0)f(0)| ≤ sup
|z|=1

|q(z)f(z)|,

where q(0) = ak. If |z| = 1, then we obtain

p(z) =
k∑

n=0

anz
n =

k∑
n=0

anz
−n = z−k

∞∑
n=0

anz
k−n = z−kq(z),

where we used the fact that z = z−1. Therefore, for |z| = 1, we have |p(z)| = |q(z)|
and thus the lemma follows.

For the proof of Thm. 5.2, we used the same approach as the proof of Hörmander’s
proposition ([Hör73], Prop. 7.65.).

Proof of Thm. 5.2. We proceed by induction on the dimension dγ of the vector space
Eγ. For instance, fix l ∈ Z.

Initial case: Let us show that the theorem is true when dγ = 1.
Set

∑dτ
j=1 Pj luj =: lw. The aim is to construct a holomorphic Fourier coefficient lvj of

the form:
lvj(λ) = lhj(λ) · ql,nj(λ), λ ∈ a∗C,∀j = 1, . . . , dτ (5.5)
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such that lw =
∑dτ

j=1 Pj lvj and which can be estimated later on. Whereas ql,nj is the
polynomial in λ ∈ a∗C, defined in (3.17). To do so, assume that we already have (5.5)
and let us instead build a ’new’ even function lh̃j ∈ Hol(λ2). Note that this function
will depend on Pj as well as lw.
Due Thm. 3.20 together with Thm. 2.46, each Pj has the form

Pj := aj · qnj ,m, ∀j (5.6)

where aj ∈ Hol(λ2) is a holomorphic function and qnj ,m is the polynomial (3.17). By
putting the equations (5.6), (5.3) and (5.5) in

∑dτ
j=1 Pj lvj = lw, we obtain, for λ ∈ a∗C:

dτ∑
j=1

Pj(λ) lvj(λ) = lw(λ) ⇐⇒
dτ∑
j=1

aj(λ)qnj ,m(λ)ql,nj(λ) lhj(λ) = lb(λ)ql,m(λ)

Lem. 3.21⇐⇒
dτ∑
j=1

aj(λ)rlnj ,m(λ) lhj(λ) = lb(λ)

⇐⇒
dτ∑
j=1

lãj(λ) lhj(λ) = lb(λ),

where in the last equivalence, we set lãj(λ) := aj(λ)rlnj ,m(λ),∀j.
Next, to find out all the common zeros of all the polynomials lãj, for each j, we take
the greatest common divisor, gcd, in C[λ2] of them

gcdC[λ2](lã1(λ), . . . , lãdτ (λ)) =: lp̃(λ) ∈ C[λ2].

Thus, we have that
lb(λ) := lβ(λ) lp̃(λ), (5.7)

where lβ ∈ Hol(a∗C) with lβ(λ) = lβ(−λ). Since C[λ2] is a principal ideal domain and
lãj(λ) are elements of C[λ2], by Bézout’s identity theorem, we can find, for each j,
polynomials lRj ∈ C[λ2] such that

dτ∑
j=1

lãj(λ) lRj(λ) = lp̃(λ).

Now by taking lb = lp̃, we have found a new lh̃j ∈ Hol(λ2) of the form:

lh̃j(λ) := lβ(λ) lRj(λ), for λ ∈ a∗C,∀j.

Therefore, we conclude that lvj ∈ lPWSnj ,H(a∗C) and

lvj(λ) = lh̃j(λ)ql,nj(λ) = lβ(λ) lRj(λ)ql,nj(λ), for λ ∈ a∗C, ∀j. (5.8)

Concerning the estimate, from the equations (5.3), (5.7), (5.8) and the relation (3.20),
we obtain

rlnj ,m(λ) lRj(λ) lw(λ) = lvj(λ) lp̃(λ)qnj ,m(λ).

Thus, due Lem. 5.3, this leads us to

| lvj(λ)| ≤ C
lp̃,qnj,m

sup
|z|≤1

{
|rlnj ,m(λ+ z) lRj(λ+ z) lw(λ+ z)|

}
,



CHAPTER 5. THREE EXAMPLES 100

where C
lp̃,qnj,m

is a non-zero constant depending on the two polynomials lp̃ and qnj ,m.
Moreover, since we have such polynomials rlnj ,m and lRj, we can choose M ∈ N0 for
each r ≥ 0 and N ∈ N0, so that

|rlnj ,m(λ) lRj(λ)| ≤ Cl(1 + |λ|2)M , λ ∈ a∗C,

where the non-zero constant Cl depends on the integer l. However, by Lem. 3.21, there
are finitely many rlnj ,m, same for lRj and lp̃. Hence, we can take the maximum over all
l ∈ Z, i.e., C = maxl∈ZCl. Coming back to our inequality, we get

|| lv(λ)||op ≤ max{| lvj(λ)| | j = 1, . . . , dτ}

≤ max
j,l
{C ′

lp̃,qnj,m
} sup
|z|≤1

{
(1 + |λ+ z|2)M | lw(λ+ z)|

}
≤ C ′(1 + |λ|2)M || lw(λ)||op,

where C ′ > 0 is a constant independent of l. Here, we used the triangle-inequality, i.e.

|λ+ z| ≤ |λ|+ |z| ≤ |λ|+ 1 ≤ 1 + 2|λ|

since |z| ≤ 1. Now by multiplying both side by a weight factor (1 + |λ|2)−Ne−r|Re(λ)|

and taking (1 + |λ|2)M on the left hand side, we obtain the desired estimate (ii).
Inductive step: It remains to show that the theorem is true for dγ > 1.

By induction hypothesis, assume that the statement is already proved for systems
involving a smaller number dγ of equations. Write P = (P1, Pdγ−1)

T .
In particular, we then can consider the equations P1 lv1 = P1 lu and conclude that it
has a solution lv1 ∈ lPWSn(a∗C) such that

|| lv1||r,N+M ≤ C||P1 lu||r,N . (5.9)

Now, set lv := lv1 + lh, where we have to find lh so that P lh = P (lu− lv1) and lh can
be estimated.
By applying Thm. 5.1 to the systems of equations P1(lu− lv1) = 0, we can write

lu− lv1 = Q lf, (5.10)

where lf ∈ lPWSδ,H(a∗C). In particular, we need to find lh of the form lh = Q lg.
Moreover, the equations P lh = P (lu− lv1), then become

PQ lg = PQ lf.

Of these dγ equations, the first satisfied automatically, in view of the definition of
Q1. Hence, we only have dγ − 1 equations, so by induction hypothesis, there exists
lg ∈ lPWSδ(a

∗
C) so that with some constants M ′ and C ′:

|| lg||r,N+M ′ ≤ C ′r,N+M ′ ||PQ lf ||r,N
(5.10)
= C ′r,N+M ′ ||P (lu− lv1)||r,N
≤ C ′′r,N+M ′ ||P lu||r,N ||P lv1||r,N

(5.9)

≤ C ′′r,N+M ′ ||P lu||r,NC(1 + |λ|2)M+d1||P lu||r,N ,

where d1 stands for the upper bound for the degree of the polynomial P . Hence

|| lg||r,N+M ′+M+d1 ≤ Cr,N+M ′+M ||P lu||r,N . (5.11)
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Therefore, we obtain with lv := lv1 +Q lg

|| lv||r,N+M = || lv1 + lh||r,N+M ≤ || lv1||r,N+M || lh||r,N+M

(5.9)

≤ C||P lu||r,N ||Q lg||r,N+M

(5.11)

≤ C||P lu||r,N Cr,N+M ′+M(1 + |λ|2)M
′+d1+d2 ||P lu||r,N ,

where d2 denotes the upper bound for the degree of the polynomial Q. Thus, by taking
(1 + |λ|2)M

′+d1+d2 on the left hand side, we get the desired estimate

|| lv||r,N+M+M ′+d1+d2 ≤ C ′r,N+M ′+M ||P lu||r,N .

Forbye, P lv = P lv1 +PQ lg = P lv1 +P (lu− lv1) = P lu, hence this finally completes
the proof.

Now by applying Thm. 4.10 and Cor. 4.11, we obtain the (local) solvability in H2.

5.2 Solvability in H2 ×H2

Let G := G′ × G′ = SL(2,R) × SL(2,R) and K := K ′ × K ′ with K ′ = SO(2) the
maximal compact subgroup of G′ as in Sect. 3.5. We consider three, not necessary
irreducible, K ′-representations (δ′, Eδ′), (τ

′, Eτ ′) and (γ′, Eγ′) as in Sect. 5.1 and write

(δ = δ′�δ′, Eδ = Eδ′⊗Eδ′), (τ = τ ′�τ ′, Eτ = Eτ ′⊗Eτ ′), (γ = γ′�γ′, Eγ = Eγ′⊗Eγ′)

the K-representations with their associated homogeneous vector bundles Eδ,Eτ and
Eγ over X. Analogously as in Sect. 5.1, we identify H2×H2 with the symmetric space
of non-compact type X = G′/K ′ ×G′/K ′.

Consider now an additional irreducible K-type (l, El), then, Hyp. 1 is proved by
the following theorem.

Theorem 5.4. With the notations above, the short sequence

lPWSδ,H(a∗C × a∗C)
Q−→ lPWSτ,H(a∗C × a∗C)

P−→ lPWSγ,H(a∗C × a∗C) (5.12)

is exact in the middle, that means that Im(Q) = Ker(P ).

Proof. By applying Thm. 3.25:

lPWS∗,H(a∗C × a∗C) ∼= Hol(λ2
1, λ

2
2)⊗Pol(λ21,λ

2
2) lPWS∗,0(a∗C × a∗C), ∗ = δ, τ, γ

the proof is analogous to the proof of Thm. 5.1, except that here C[λ2
1, λ

2
2] is not a

principal ideal domain, since the ideal 〈λ2
1, λ

2
2〉 is not principal. However, by using

Hörmander’s result ([Hör73], Lem. 7.6.4), Hol(λ2
1, λ

2
2) is a flat module over Pol(λ2

1, λ
2
2).

Hence, we obtain the exactness in the middle of (5.12).

Concerning the estimate result in (Level 3) (Hyp. 2), the proof is given by the
following theorem. Note that, here, M := M ′ ×M ′ = Z/2Z× Z/2Z.
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Theorem 5.5 (Estimate result in (Level 3)). Fix l = (l1, l2) ∈ Z2. Let P ∈ τPWSγ,0(a∗C×
a∗C) be of the form

P (λ1, λ2) := a(λ1, λ2) · qτ,γ(λ1, λ2), (λ1, λ2) ∈ a∗C × a∗C, (5.13)

where the polynomial a ∈ Hol(λ2
1, λ

2
2) is the symmetric function and qτ,γ a polynomial

defined in (3.22).
Then, there exist constants M ∈ N0, for all r ≥ 0, N ∈ N0, and Cr,N+M,l > 0 so that
for each lu ∈ lPWSτ,H(a∗C × a∗C) such that

||P lu||r,N := sup
(λ1,λ2)∈a∗C×a

∗
C

{
(1 + |λ1|2 + |λ2|2)−Ne−r|Re(λ1,λ2)||| l(Pu)(λ1, λ2)||op

}
<∞

one can find lv ∈ lPWSτ (a
∗
C × a∗C) with

(i) P lu = P lv and

(ii) || lv||r,N+M ≤ Cr,N+M,l||P lu||r,N .

The constant Cr,N+M,l depends of l ∈ Z2.

Before we start to show Thm. 5.5, we need to adapt Lem. 5.3 for our situation.
Consider a polynomial p in two variables z = (z1, z2) ∈ a∗C × a∗C, it can be decomposed
into homogeneous components: p = pk + pk−1 + . . . p0 =

∑k
l=0 pk, where pk 6= 0. For all

s ∈ C\{0}, we have
pl(s · z) = slpl(z), ∀l = 0, . . . , k. (5.14)

If pk 6= 0, then there exists ṽ ∈ C2\{0} such that pk(ṽ) 6= 0. Set v := ṽ
|ṽ| with |v| = 1.

Then, pk(v)
(5.14)
= |ṽ|−kpk(ṽ) 6= 0. Fix now λ ∈ a∗C × a∗C and let pλ : C → C be defined

by
pλ(z) := p(λ+ z · v).

Lemma 5.6. With the previous notations, pλ is a polynomial of degree k with largest
coefficients ak = ak,λ 6= 0 and independent of λ ∈ a∗C × a∗C. In fact, ak = pk(v).

Proof. We have

ak = lim
z→∞

z−kpλ(z) = lim
z→∞

z−k
k∑
l=0

pl(λ+ z · v) = lim
z→∞

z−k
k∑
l=0

pl

(
z
(λ
z

+ v
))

(5.14)
= lim

z→∞

k∑
l=0

zl−kpl

(λ
z

+ v
)

= pk(v).

Set fλ(z) := f(λ+ z · v). By Lem. 5.3, we get |fλ(0)| ≤ 1
|ak|

sup|z|=1 |pλ(z)fλ(z)|, i.e.

|f(λ)| ≤ 1

|ak|︸︷︷︸
=:Cp

sup
|z|=1

|p(λ+ z · v)f(λ+ z · v)|, (5.15)

where the constant Cp depends on the highest homogeneous part of p. Back to the
proof of Thm. 5.5.
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Proof of Thm. 5.5. We wish to construct a function lvj ∈ lPWSnj(a
∗
C×a∗C) of the form

lvj(λ1, λ2) = lhj(λ1, λ2) · ql,nj(λ1, λ2), (λ1, λ2) ∈ a∗C × a∗C, ∀j = 1, . . . , dτ (5.16)

such that Pij lvj = lwi and which can be estimate later one. Whereas

lwi(λ1, λ2) = lbi(λ1, λ2) · ql,mi(λ1, λ2), (λ1, λ2) ∈ a∗C × a∗C,∀i = 1, . . . , dγ

is a given function and lhj ∈ Hol(λ2
1, λ

2
2) (resp. lbi) is a symmetric holomorphic function

with ql,nj (resp. ql,mi) a polynomial function defined in (3.17).
This build is done as follows. Assume that we already have found a lvj ∈ lPWSnj(a

∗
C×

a∗C) of the form (5.16), then we obtain

dγ∑
i=1

dτ∑
j=1

Pij(λ1, λ2) lvj(λ1, λ2) = lwi(λ1, λ2)
(3.20)⇐⇒

dγ∑
i=1

dτ∑
j=1

lãij(λ1, λ2) lhj(λ1, λ2) = lbi(λ1, λ2),

where lãij(λ1, λ2) := aij(λ1, λ2)rlnj ,mi(λ1, λ2), ∀i, j, is a polynomial in two variables.
Hörmander’s estimation result ([Hör73], Thm. 7.6.11) tells us that for every lhj ∈
Hol(λ2

1, λ
2
2) with || lãij lhj||r,Ñ < ∞, for some Ñ ∈ N0, r ≥ 0, one can find lh̃j ∈

Hol(λ2
1, λ

2
2) such that

lãij lh̃j = lãij lhj = lbi, ∀i, j
and there exist constants M̃ ∈ N0 and Cr,Ñ+M̃ ∈ N0 such that

|| lh̃j||r,Ñ+M̃ ≤ Cr,Ñ+M̃ || lbi||r,Ñ ,

where the constants Cr,Ñ+M̃ and M̃ are independent of the integer l ∈ Z2. Moreover,
by setting

lh̃
′
j(λ1, λ2) :=

1

4
(lh̃j(λ1, λ2) + lh̃j(−λ1, λ2) + lh̃j(λ1,−λ2) + lh̃j(−λ1,−λ2)),

for (λ1, λ2) ∈ a∗C×a∗C, we have that lh̃′j(λ1, λ2) is a holomorphic and symmetric function
on a∗C × a∗C. Note that lh̃

′
j is still a solution of

∑dγ
i=1

∑dτ
j=1 lãij lh̃

′
j = lbi, since the

coefficients of Pij are even functions. Thus, we have

|| lh̃′j||r,Ñ ′+M̃ ′ ≤ C ′
r,Ñ ′+M̃ ′

|| lbi||r,Ñ .

By using Lem. 5.6, in particular (5.15), we have

|| lh̃′j||r,Ñ ′+M̃ ′ ≤ C ′
r,ql,mi ,Ñ

′+M̃ ′
|| lbiql,mi ||r,Ñ = C ′

r,ql,mi ,Ñ
′+M̃ ′
|| lwi||r,Ñ . (5.17)

Here, the constant M̃ ′ depends on the degree of ql,mi . Therefore, we can deduce the
existence of a new function lṽj ∈ lPWSnj(a

∗
C × a∗C) of the form

lṽj(λ1, λ2) = lh̃
′
j(λ1, λ2) · ql,nj(λ1, λ2), (λ1, λ2) ∈ a∗C × a∗C,∀j

such that Pij lṽj = lwi and with estimate

|| lṽ||r,N+M ≤ max
j=1,...,dτ

|| lṽj||r,N+M

= max
j=1,...,dτ

|| lh̃′jql,nj ||r,N+M

(5.17)

≤ max
i=1,...,dγ

Cr,ql,mi ,N+M(1 + |λ1|2 + |λ2|2)ld2 || lwi||r,N ,
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where in the last inequality, we estimate for each j, the the polynomial ql,nj by

sup
λ∈a∗C×a

∗
C

|ql,nj(λ1, λ2)| ≤ C(1 + |λ1|2 + |λ2|2)ld2 ,

for some integer ld2. Hence || lṽ||r,N+M+ld2
≤ C ′r,ql,m,N+M || lw||r,N , where the constants

C ′r,ql,m,N+M and M depend on the integer l ∈ Z2.

Since we are dealing with functions depending on two variables, it turns out to be
a complicate task to achieve that the constants Cr,N+M,l in (ii) in Thm. 5.5 and M
do not depend too much on the K-types l. Thus, we can not prove the solvability in
H2 × H2 yet, since Hyp. 3 is not fullfilled. However, we can prove the solvability for
K×K-finite elements by adapting the arguments of Chap. 4. In particular, only finite
series are involved. Note that this study can be generalized for

SL(2,R)d = SL(2,R)× · · · × SL(2,R)︸ ︷︷ ︸
d times

, d ≥ 2.

5.3 Solvability on hyperbolic 3-space
With the notations introduced in Sect. 3.6, let G = SL(2,C) and K = SU(2) its
maximal compact subgroup. The quotient X = G/K can be identify as a model of a
hyperbolic 3-space H3. Using Cor. 3.36, we can prove Hyp. 1, by the following theorem.

Theorem 5.7. We consider the three, not necessary irreducible, K-representations
(δ, Eδ), (τ, Eτ ) and (γ,Eγ). Fix an irreducible K-type (l, El) from the left. Then, the
short sequence

lAδ(a∗C)
Q−→ lAτ (a∗C)

P−→ lAγ(a∗C)

is exact in the middle, that means that Im(Q) = Ker(P ).

Proof. We argue with the same arguments as in the proof of Thm. 5.1, except that we
use Cor. 3.36 instead of Thm. 3.20, i.e.

lA∗(a∗C) ∼= Hol(λ2)⊗Pol(λ2) lPol∗(a
∗
C), ∗ = δ, γ, τ.

By Thm. 5.7 and Thm. 3.31, we proved that the equation Qf = g is solvable in
lPWSδ,H(a∗C), for given g ∈ lPWSτ,H(a∗C) if, and only if, Pg = 0 in lPWSτ,H(a∗C).
However, for the complete proof of Conj. 1, we need the proof of Hyp. 2 and Hyp. 3,
which are work in progress.



Bibliography

[Art83] Arthur J., A Paley-Wiener theorem for real reductive groups. Acta Math. 150,
1-89, (1983).

[BGG71] Bernstein I.N., Gel’fand I. M., Gel’fand S. I., Structure of representations
generated by vectors of highest weight. Functional Analysis and Its Applica-
tions volume 5, p. 1–8, (1971).

[BGG75] Bernstein I.N., Gel’fand I. M., Gel’fand S. I., Differential operators on the
base affine space and a study of g -modules. Lie Groups and their represen-
tations (ed. I.M. Gelfand), p. 21-64, (1975).

[BGG76] Bernstein I.N., Gel’fand I. M., Gel’fand S. I., A certain category of g-modules.
Functional Analysis and Its Applications volume 10, p. 87–92, (1976).

[Bo12] Bosch S., Algebraic Geometry and Commutative Algebra. Springer-Verlag,
(2012).

[BoT82] Bott R. and Tu L.W., Differential Forms in Algebraic Topology. Springer-
Verlag, Graduate Texts in Mathematics, (1982).

[Ca97] Camporesi R., The Helgason Fourier transform for homogeneous vector bun-
dles over Riemannian symmetric spaces. Pacific Journal of Mathematics, Vol.
179, No. 2, (1997).

[Ce75] Cèrezo A., Sur les équations invariantes par un groupe. (in french), Séminaire
EDP (Polytechnique), exp. n. 21, p. 1-9, (1975).

[Co74] Cohn L., Analytic Theory of the Harish-Chandra C-Function. Springer-
Verlag, Lect. Notes in Math. 429, (1974).

[Del05] Delorme P., Sur le théorème de Paley-Wiener d’Arthur. (in french), Annals
of Math, (2005).

[DuRa76] Duflo M. and Raïs M., Sur l’analyse harmonique sur les groupes de Lie
résolubles. (in french), Ann. Scient. Ec. Norm. Sup., Vo. 9, p.107-144, (1976).

[Ehr54] Ehrenpreis L., Solution of some problems of division. I. Division by a poly-
nomial of derivation. Amer. J. Math. 76, 883-903. MR 16, 834, (1954).

[Ehr55] Ehrenpreis L. and Mautner F. I., Some properties of the Fourier transform
on semisimple Lie groups. I, Ann. of Math. (2) 61, 406-439. MR 16, 1017,
(1955).

105



BIBLIOGRAPHY 106

[Ehr61] Ehrenpreis L., A fundamental principle for systems of linear differential equa-
tions with constant coefficients and some if its applications. Proc. Intern.
Symp. on Linear Spaces, 161-174, Jerusalem, (1961).

[Ehr70] Ehrenpreis L., Fourier analysis in several complex variables. Pure and applied
Mathematics XVII, Wiley-Interscience Publ., New York, (1970).

[El18] Elstrodt J., Maß-und Integrationstheorie. 8. Auflage, Springer Spektrum,
(2018).

[FrGr02] Fritzsche K. and Grauert H., From Holomorphic Functions to Complex Man-
ifolds. Graduate Texts in Mathematics, Springer-Verlag, (2002).

[Gan71] Gangolli R., On the Plancherel formula and the Paley-Wiener theorem for
spherical functions on semisimplie Lie groups. Ann. of Math. 93, 159-165,
(1971).

[HC58] Harish-Chandra., Spherical functions on a semi-simple Lie group, I, II. Amer.
Journal Math. 80, 241-310, 553-613, (1958).

[HC76] Harish-Chandra., Harmonic analysis on real reductive groups III. The Maass-
Selberg relations and the Plancherel formula. Ann. of Math. 104, 117-201,
(1976).

[Hel66] Helgason S., An analogue of the Paley-Wiener theorem for the Fourier trans-
form on certain symmetric spaces. Math. Ann. 165, 297-308, (1966).

[Hel73] Helgason S., Paley-Wiener theorems and surjectivity of invariant differential
operators on symmetric spaces and Lie groups. Bull. Amer. Math. Soc. 79,
129-132, (1973).

[Hel75] Helgason S., Solvability of Invariant Differential Operators on Homogeneous
Manifolds. In Differential Operators on Manifold, C.I.M.E., Varenna, (1975).

[Hel78] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces. Aca-
demic Press INC., (1978).

[Hel89] Helgason S., Geometric Analysis on Symmetric Spaces. American Mathemat-
ical Soc., (1989).

[Hel20] Helgason S., Groups and Geometric Analysis, Integral Geometry, Invariant
differential operators and spherical functions. Bull. Amer. Math. Soc., (2000).

[Hör73] Hörmander L., An introduction to complex analysis in several variables.
North-Holland Publishing Company, (1973).

[Hör83] Hörmander L., The analysis of linear partial differential operators I. Springer-
Verlag, (1983).

[Jac62] Jacobson N., Lie Algebras. Dover Publications, Inc., (1962).

[KS95] Kashiwara M. and Schmid W., Quasi-equivariant D-modules, equivariant de-
rived category, and representations of reductive Lie groups. Lie Theory and
Geometry. In honor of Bertram Konstant, 457-488, Progr. in Math. 123,
Birkhäuser, (1995).



BIBLIOGRAPHY 107

[Ka08] Kashiwara M., Equivariant Derived Category and Representation of Real
Semisimple Lie Groups. Representation Theory and Complex Analysis,
Springer Verlag, p. 137-234, (2008).

[Kna02] Knapp A.W., Lie Groups Beyond an Introduction. 2nd Edition, Birkhäuser,
(2002).

[Kna86] Knapp A.W., Representation Theory of Semisimple Groups. On Overview
based on examples, Princeton University Press, (1986).

[KSt71] Knapp A.W. and Stein E.M., Interwining Operators for Semisimple Groups.
Annals of Mathematics Second Series, Vol. 93, No. 3, 489-578, (May, 1971).
https://www.jstor.org/stable/1970887

[KSt80] Knapp A.W. and Stein E.M., Intertwining operators for semisimple groups,
II. Invent Math 60, 9–84 (1980). https://doi.org/10.1007/BF01389898

[KoRe00] Koranyi A. and Reimann H. M., Equivariant first order differential opera-
tors on boundaries of symmetric spaces. Inventiones mathematicaer, Springer-
Verlag 139, 371-390, (2000).

[La75] Lang S., SL2(R). Springer-Verlag, Graduate Texts in Math. 105, (1975).

[Mal55] Malgrange B., Existence et approximation des solutions des équations aux
dérivées partielles et des équations de convolution. (in french), Ann. Inst.
Fourier (Grenoble) 6, 271-355, (1955-56).

[Mal61] Malgrange B., Sur les systèmes différentiels à coefficients constants. (in
french), Séminaire Jean Leray, Paris, Exp. Nr.7, p.1-13, (1961-1962).

[Mal64] Malgrange B., Systèmes différentiels à coefficients constants. (in french),
Séminaire N. Bourbaki, Exp. Nr.246, p.79-89, (1964).

[Nog15] Noguchi J., Analytic Function Theory of Several Variables. Elements of Oka’s
Coherence, Springer-Verlag, (2015).

[Olb95] Olbrich M., Die Poisson-Tranformation für homogene Vektorbündel. (Ger-
man), Doctoral Thesis, HU Berlin, (1995).

[OSW88] Oshima T., Saburi Y. and Wakayama M., A Note on Ehrenpreis’ Fundamen-
tal Principle on a Symmetric Space. Algebraic Analysis, Volume II, Academic
Press, INC, p.681-697, (1988).

[OSW91] Oshima T., Saburi Y. and Wakayama M., Paley-Wiener theorems on a sym-
metric space and their application. Elsevier, Differential Geometry and its
Applications, Volume 1, Issue 3, 247-278, (1991).

[Pal63] Palamodov V.P., The general theorems on the systems of linear equations
with constant coefficients. Outlines of the joint Soviet-American symposium
on partial differential equations, p. 206-213, (1963).

[Pal70] Palamodov V.P., Linear differential operators with constant coefficients.
Grundl. d. Math. Wiss. 168, Springer-Verlag, (1970).



BIBLIOGRAPHY 108

[Ra71] Raïs M., Solutions élémentaires des opérateurs différentiels bi-invariants sur
un groupe de Lie nilpotent. (in french), C.R. Acad. Sc. Paris, T. 273, Série A,
p.495-498, (1971).

[Ro76] Rouvière F., Sur la résolubilité locale des opérateurs bi-invariants. (in french),
Ann. Del. Sc. Norm. Sup. di Pisa, Série 4, Tome 3, p.231-244, (1976).

[Rud91] RudinW., Functional Analysis. International series in pure and applied math-
ematics, McGraw-Hill, (1991).

[Sch71] Schaefer H.H., Topological Vector Spaces. Graduate Texts in Mathematics 3,
Springer Verlag, (1971).

[Tre67] Trèves F., Topological Vector Spaces, Distributions and Kernels. Mineola,
N.Y. Dover Publications, (1967).

[vdBS06] van den Ban E. P. and Schlichtkrull H., A Paley-Wiener theorem for distri-
butions on reductive symmetric spaces. Cambridge University Press, Volume
6, Issue 4, p.557-577, (2006).

[vdBS14] van den Ban E. P. and Souaifi S., A comparison of Paley-Wiener theorems.
Journal reine angewandete Math., (2014).

[Wal73] Wallach N.R., Harmonic analysis on homogeneous spaces, Marcel Dekker,
(1973).

[Wal88] Wallach N.R., Real Reductive Groups I, Academic Press, INC, (1988).

[Wal92] Wallach N.R., Real Reductive Groups II, Academic Press, INC, (1992).

[Zelo76] Želobenko D.P., Operators of discrete symmetry for reductive Lie groups. (in
russian), Izvestija AN SSSR, Ser. matem., 40, p.1055-1083, (1976).


	Introduction
	Invariant differential operators on symmetric spaces and statement of the conjecture
	Invariant differential operators on sections of homogeneous vector bundles
	Chevalley restriction and Harish-Chandra type homomorphism
	Integrability conditions and the conjecture

	Fourier transforms and the Paley-Wiener theorems
	Fourier transform and Delorme's Paley-Wiener theorem in three different levels
	On Delorme's Paley-Wiener Theorem
	Application to sections over homogeneous vector bundles over G/K
	Intertwining conditions and Paley-Wiener theorems for sections

	Harish-Chandra inversion and the Plancherel theorem for sections
	Distributional topological Paley-Wiener theorem
	Dual spaces and their corresponding topologies
	Distributional Fourier transform and Paley-Wiener-Schwartz spaces
	On topological Paley-Wiener-Schwartz theorem and its proof

	The impact of invariant differential operators on the Fourier range

	Examples for Delorme's intertwining conditions
	Knapp-Stein and Želobenko intertwining operators
	Harish-Chandra c-functions and functional equations
	Adequateness of Delorme's intertwining conditions for rank 1
	The case G=SL(2,R)
	The case G=SL(2,R)SL(2,R)
	The case G=SL(2,C)

	On solvability and general strategy
	Estimates theorems for systems of polynomials equations
	On closed range and density

	Three examples
	Solvability on the upper half-plane
	Solvability in H2 H2
	Solvability on hyperbolic 3-space

	Bibliography

