Monclair, D., SCHLENKER, J.-M., & Tholozan, N. (2023). Gromov-Thurston manifolds and anti-de Sitter geometry. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/57174. |
Bonsante, F., Mondello, G., & SCHLENKER, J.-M. (2023). Minimizing immersions of a hyperbolic surface in a hyperbolic 3-manifold. American Journal of Mathematics, 145 (4), 995-1049. doi:10.1353/ajm.2023.a902953 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2023). À la recherche d’une « hiérarchie » des sous-disciplines en mathématiques. In P.-M. Menger & P. Verschueren, Le Monde des mathématiques. Paris, France: Seuil. Peer reviewed |
chen, Q., & SCHLENKER, J.-M. (2022). The geometric data on the boundary of convex subsets of hyperbolic manifolds. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52542. |
CHEN, Q., & SCHLENKER, J.-M. (2022). Hyperideal polyhedra in the 3-dimensional anti-de Sitter space. Advances in Mathematics, 404 (Paper No. 108441, 61 pp). doi:10.1016/j.aim.2022.108441 Peer Reviewed verified by ORBi |
chen, H., & SCHLENKER, J.-M. (2022). Weakly Inscribed Polyhedra. Transactions of the American Mathematical Society. Series B, 9, 415–449. Peer Reviewed verified by ORBi |
SCHLENKER, J.-M., & Witten, E. (2022). No Ensemble Averaging Below the Black Hole Threshold. Journal of High Energy Physics, 7, 143. doi:10.1007/JHEP07(2022)143 Peer Reviewed verified by ORBi |
bonsante, F., danciger, J., maloni, S., & SCHLENKER, J.-M. (April 2021). Quasicircles and width of Jordan curves in CP1. Bulletin of the London Mathematical Society, 53 (2), 507--523. doi:10.1112/blms.12438 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2021). The Weyl problem for unbounded convex domains in $\HH^3$. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/47427. |
acosta, M., & SCHLENKER, J.-M. (2021). A hyperbolic proof of Pascal's Theorem. Mathematical Intelligencer, 43 (2), 130--133. doi:10.1007/s00283-021-10074-w Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2021). On the Weyl problem for complete surfaces in the hyperbolic and anti-de Sitter spaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/45289. |
Bonsante, F., Danciger, J., Maloni, S., & SCHLENKER, J.-M. (2021). The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti de Sitter geometry. Geometry and Topology, 25-6, 2827--2911. doi:10.2140/gt.2021.25.2827 Peer Reviewed verified by ORBi |
merlin, L., & SCHLENKER, J.-M. (2021). Bending laminations on convex hulls of anti-de Sitter quasicircles. Proceedings of the London Mathematical Society, 123 (4), 410-432. doi:10.1112/plms.12401 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2020). The prestige and status of research fields within mathematics. (v1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/44149. |
Danciger, J., Maloni, S., & SCHLENKER, J.-M. (May 2020). Polyhedra inscribed in a quadric. Inventiones Mathematicae, 221 (1), 237-300. doi:10.1007/s00222-020-00948-9 Peer Reviewed verified by ORBi |
chen, Q., & SCHLENKER, J.-M. (2020). Constant Gauss curvature foliations of AdS spacetimes with particles. Transactions of the American Mathematical Society, 373 (6), 4013--4049. doi:10.1090/tran/8018 Peer Reviewed verified by ORBi |
Despré, V., SCHLENKER, J.-M., & Teillaud, M. (2020). Flipping Geometric Triangulations on Hyperbolic Surfaces. In symposium on computational geometry (SoCG) (pp. 35:1--35:16). Peer reviewed |
SCHLENKER, J.-M. (2020). Volumes of quasifuchsian manifolds. Surveys in Differential Geometry, 25 (1), 319-353. Peer reviewed |
chen, Q., & SCHLENKER, J.-M. (January 2019). Hyperbolic ends with particles and grafting on singular surfaces. Annales de L'Institut Henri Poincaré. Analyse Non Linéaire, 36 (1), 181-216. doi:10.1016/j.anihpc.2018.05.001 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M., & YARMOLA, A. (2018). Properness for circle packings and Delaunay circle patterns on complex projective structures. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35935. |
despré, V., devillers, O., PARLIER, H., & SCHLENKER, J.-M. (2018). Delaunay Triangulations of Points on Circles. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35413. |
Guillarmou, C., Moroianu, S., & SCHLENKER, J.-M. (2018). The renormalized volume and uniformisation of conformal structures. Journal de l'institut de mathématiques de Jussieu, 17 (4), 853-912. doi:10.1017/S1474748016000244 Peer reviewed |
SCHLENKER, J.-M. (2017). Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/33902. |
Danciger, J., Maloni, S., & SCHLENKER, J.-M. (2016). Higher signature Delaunay decompositions. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/24619. |
Hiranandani, G., & SCHLENKER, J.-M. (2016). Small circulant complex Hadamard matrices of Butson type. European Journal of Combinatorics, 51, 306–314. doi:10.1016/j.ejc.2015.05.010 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2016). Polyhedra inscribed in a quadric and anti-de Sitter geometry. Oberwolfach Reports. |
SCHLENKER, J.-M. (2016). Variétés lorentziennes plates vues comme limites de variétés anti-de Sitter, d'après Danciger, Guéritaud et Kassel. Astérisque, 380, 475–497. |
SCHLENKER, J.-M. (June 2015). Anti-de Sitter space: from physics to geometry. CMS Notes, 47 (3), 14-15. |
SCHLENKER, J.-M. (2015). Polyhedra inscribed in a hyperboloid and anti-de Sitter geometry [Paper presentation]. Discrete Differential Geometry. |
SCHLENKER, J.-M. (2015). Three applications of anti-de Sitter geometry [Paper presentation]. Math dept colloquium. |
SCHLENKER, J.-M. (2015). The renormalized volume of quasifuchsian manifolds [Paper presentation]. Geometry and dynamics seminar. |
SCHLENKER, J.-M. (2015). Polyèdres inscrits dans des quadriques [Paper presentation]. Differential geometry seminar, Nancy, France. |
Bonsante, F., Mondello, G., & SCHLENKER, J.-M. (2015). A cyclic extension of the earthquake flow II. Annales Scientifiques de l'École Normale Supérieure, 48 (4), 811–859. doi:10.24033/asens.2259 Peer Reviewed verified by ORBi |
Dubois, P., Rochet, J.-C., & SCHLENKER, J.-M. (March 2014). Productivity and Mobility in Academic Research: Evidence from Mathematicians. Scientometrics, 98 (3), 1669-1701. doi:10.1007/s11192-013-1112-7 Peer reviewed |
Barbot, T., Bonsante, F., & SCHLENKER, J.-M. (2014). Collisions of particles in locally AdS spacetimes II. Moduli of globally hyperbolic spaces. Communications in Mathematical Physics, 327 (3), 691-735. doi:10.1007/s00220-014-2020-2 Peer reviewed |
Banica, T., Nechita, I., & SCHLENKER, J.-M. (2014). Analytic aspects of the circulant Hadamard conjecture. Annales mathématiques Blaise Pascal, 21, 25-59. Peer reviewed |
Bonsante, F., Meusburger, C., & SCHLENKER, J.-M. (2014). Recovering the geometry of a flat spacetime from a background radiation. Annales Henri Poincare, 15 (9), 1733-1799. doi:10.1007/s00023-013-0300-6 Peer reviewed |
Lecuire, C., & SCHLENKER, J.-M. (2014). The convex core of quasifuchsian manifolds with particles. Geometry and Topology, 18 (4), 2309--2373. doi:10.2140/gt.2014.18.2309 Peer reviewed |
Banica, T., Nechita, I., & SCHLENKER, J.-M. (01 January 2014). Submatrices of Hadamard matrices: complementation results. Electronic Journal of Linear Algebra, 27, 197-212. doi:10.13001/1081-3810.1613 Peer Reviewed verified by ORBi |
scarinci, C., & SCHLENKER, J.-M. (2014). Symplectic Wick rotations between moduli spaces of 3-manifolds. Annali della Scuola Normale Superiore di Pisa: Classe di Scienze. Peer reviewed |
SCHLENKER, J.-M. (2013). The renormalized volume and the volume of the convex core of quasifuchsian manifolds. Mathematical Research Letters, 20 (4), 773-786. doi:10.4310/MRL.2013.v20.n4.a12 Peer reviewed |
Bonsante, F., Mondello, G., & SCHLENKER, J.-M. (2013). A cyclic extension of the earthquake flow I. Geometry and Topology, 17 (1), 157--234. doi:10.2140/gt.2013.17.157 Peer reviewed |
Fillastre, F., & SCHLENKER, J.-M. (2012). Flippable tilings of constant curvature surfaces. Illinois Journal of Mathematics, 56 (2), 1213-1256. doi:10.1215/ijm/1399395829 Peer Reviewed verified by ORBi |
Luo, F., & SCHLENKER, J.-M. (2012). Volume maximization and the extended hyperbolic space. Proceedings of the American Mathematical Society, 140 (3), 1053--1068. doi:10.1090/S0002-9939-2011-10941-9 Peer reviewed |
Krasnov, K., & SCHLENKER, J.-M. (2012). The Weil-Petersson metric and the renormalized volume of hyperbolic 3-manifolds. In Handbook of Teichmüller theory. Volume III (pp. 779--819). Eur. Math. Soc., Zürich. doi:10.4171/103-1/15 Peer reviewed |
Bonsante, F., & SCHLENKER, J.-M. (2012). Fixed points of compositions of earthquakes. Duke Mathematical Journal, 161 (6), 1011--1054. doi:10.1215/00127094-1548434 Peer reviewed |
Ma, J., & SCHLENKER, J.-M. (2012). Non-rigidity of spherical inversive distance circle packings. Discrete and Computational Geometry, 47 (3), 610--617. doi:10.1007/s00454-012-9399-3 Peer reviewed |
Banica, T., & SCHLENKER, J.-M. (2011). Combinatorial aspects of orthogonal group integrals. International Journal of Mathematics, 22 (11), 1611--1646. doi:10.1142/S0129167X11007343 Peer Reviewed verified by ORBi |
Bonsante, F., Krasnov, K., & SCHLENKER, J.-M. (2011). Multi-black holes and earthquakes on Riemann surfaces with boundaries. International Mathematics Research Notices, (3), 487--552. doi:10.1093/imrn/rnq070 Peer reviewed |
Barbot, T., Bonsante, F., & SCHLENKER, J.-M. (2011). Collisions of particles in locally AdS spacetimes I. Local description and global examples. Communications in Mathematical Physics, 308 (1), 147--200. doi:10.1007/s00220-011-1318-6 Peer reviewed |
Banica, T., Collins, B., & SCHLENKER, J.-M. (2011). On polynomial integrals over the orthogonal group. Journal of Combinatorial Theory. Series A, 118 (3), 778--795. doi:10.1016/j.jcta.2010.11.015 Peer Reviewed verified by ORBi |
Banica, T., Collins, B., & SCHLENKER, J.-M. (2010). On orthogonal matrices maximizing the 1-norm. Indiana University Mathematics Journal, 59 (3), 839--856. doi:10.1512/iumj.2010.59.3926 Peer reviewed |
Connelly, R., & SCHLENKER, J.-M. (2010). On the infinitesimal rigidity of weakly convex polyhedra. European Journal of Combinatorics, 31 (4), 1080--1090. doi:10.1016/j.ejc.2009.09.006 Peer reviewed |
Pak, I., & SCHLENKER, J.-M. (2010). Profiles of inflated surfaces. Journal of Nonlinear Mathematical Physics, 17 (2), 145--157. doi:10.1142/S140292511000057X Peer Reviewed verified by ORBi |
Bonsante, F., & SCHLENKER, J.-M. (2010). Maximal surfaces and the universal Teichmüller space. Inventiones Mathematicae, 182 (2), 279--333. doi:10.1007/s00222-010-0263-x Peer reviewed |
Izmestiev, I., & SCHLENKER, J.-M. (2010). Infinitesimal rigidity of polyhedra with vertices in convex position. Pacific Journal of Mathematics, 248 (1), 171--190. doi:10.2140/pjm.2010.248.171 Peer reviewed |
SCHLENKER, J.-M., Banica, T., & Bichon, J. (2009). Representations of quantum permutation algebras. Journal of Functional Analysis, 257 (9), 2864-2910. doi:10.1016/j.jfa.2009.04.013 Peer Reviewed verified by ORBi |
Moroianu, S., & SCHLENKER, J.-M. (2009). Quasi-Fuchsian manifolds with particles. Journal of Differential Geometry, 83 (1), 75-129. doi:10.4310/jdg/1253804352 Peer Reviewed verified by ORBi |
SCHLENKER, J.-M. (2009). On weakly convex star-shaped polyhedra. Discrete Mathematics, 309 (20), 6139--6145. doi:10.1016/j.disc.2009.04.018 Peer Reviewed verified by ORBi |
Krasnov, K., & SCHLENKER, J.-M. (2009). A symplectic map between hyperbolic and complex Teichmüller theory. Duke Mathematical Journal, 150 (2), 331--356. doi:10.1215/00127094-2009-054 Peer reviewed |
Bonsante, F., & SCHLENKER, J.-M. (2009). AdS manifolds with particles and earthquakes on singular surfaces. Geometric and Functional Analysis, 19 (1), 41--82. doi:10.1007/s00039-009-0716-9 Peer reviewed |
Krasnov, K., & SCHLENKER, J.-M. (2008). On the renormalized volume of hyperbolic 3-manifolds. Communications in Mathematical Physics, 279 (3), 637--668. doi:10.1007/s00220-008-0423-7 Peer reviewed |
SCHLENKER, J.-M., & Souam, R. (2008). Higher Schläfli formulas and applications. II. Vector-valued differential relations. International Mathematics Research Notices, 068, 44. doi:10.1093/imrn/rnn068 Peer reviewed |
SCHLENKER, J.-M. (2008). Circle patterns on singular surfaces. Discrete and Computational Geometry, 40 (1), 47--102. doi:10.1007/s00454-007-9045-7 Peer reviewed |
SCHLENKER, J.-M. (2007). Small deformations of polygons and polyhedra. Trans. Amer. Math. Soc, 359 (5), 2155--2189. doi:10.1090/S0002-9947-06-04172-9 Peer reviewed |
Krasnov, K., & SCHLENKER, J.-M. (2007). Minimal surfaces and particles in 3-manifolds. Geometriae Dedicata, 126, 187--254. doi:10.1007/s10711-007-9132-1 Peer reviewed |
Andersson, L., Barbot, T., Benedetti, R., Bonsante, F., Goldman, W. M., Labourie, F., Scannell, K. P., & SCHLENKER, J.-M. (2007). Notes on: ``Lorentz spacetimes of constant curvature'' [Geom. Dedicata 126 (2007), 3--45; MR2328921] by G. Mess. Geometriae Dedicata, 126, 47--70. doi:10.1007/s10711-007-9164-6 Peer reviewed |
SCHLENKER, J.-M. (2006). Hyperbolic manifolds with convex boundary. Inventiones Mathematicae, 163 (1), 109--169. doi:10.1007/s00222-005-0456-x Peer reviewed |
Kenyon, R., & SCHLENKER, J.-M. (2005). Rhombic embeddings of planar quad-graphs. Trans. Amer. Math. Soc, 357 (9), 3443--3458. doi:10.1090/S0002-9947-04-03545-7 Peer reviewed |
SCHLENKER, J.-M. (2005). A rigidity criterion for non-convex polyhedra. Discrete and Computational Geometry, 33 (2), 207--221. doi:10.1007/s00454-004-1102-x Peer reviewed |
SCHLENKER, J.-M. (2005). Hyperideal circle patterns. Mathematical Research Letters, 12 (1), 85--102. doi:10.4310/MRL.2005.v12.n1.a9 Peer reviewed |