[en] In this paper we present the competitive optimisation of a swarm of Unmanned Aerial Vehicles (UAV) protecting a restricted area from a number of intruders following a Predator–Prey approach. We propose a Competitive Coevolutionary Genetic Algorithm (CompCGA) which optimises the parameters of the UAVs (i.e. predators) to maximise the detection of intruders, while the parameters of the intruders (i.e. preys) are optimised to maximise their intrusion success rate. Having chosen the CACOC (Chaotic Ant Colony Optimisation for Coverage) as the base mobility model for the UAVs, we propose an improved new version, where its behaviour is modified by identifying and optimising new parameters to improve the overall success rate when detecting intruders. Six case studies have been optimised using simulations by performing 30 independent runs (180 in total) of our CompCGA. Finally, we conducted a series of master tournaments (1,800,000 evaluations) using the best specimens obtained from each run and case study to test the robustness of our proposed approach against unexpected intruders. Our surveillance system improved the average percentage of intruders detected with respect to CACOC by a maximum of 126%. More than 90% of intruders were detected on average when using a swarm of 16 UAVs while CACOC’s detection rates are always under 80% in all cases.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
STOLFI ROSSO, Daniel ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
BRUST, Matthias R. ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A competitive Predator–Prey approach to enhance surveillance by UAV swarms
O'Brien, B.J., Baran, D., Luu, B., Ad hoc networking for unmanned ground vehicles: Design and evaluation at command, control, communications, computers, intelligence, surveillance and reconnaissance on-the-move. 2006 Publication Title: Arl.Army.Mil Issue: November.
Bouvry, P., Chaumette, S., Danoy, G., Guerrini, G., Jurquet, G., Kuwertz, A., Muller, W., Rosalie, M., Sander, J., Using heterogeneous multilevel swarms of UAVs and high-level data fusion to support situation management in surveillance scenarios. 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2016, IEEE, 424–429, 10.1109/MFI.2016.7849525.
Hu, C., Zhang, Z., Yang, N., Shin, H.-S., Tsourdos, A., Fuzzy multiobjective cooperative surveillance of multiple UAVs based on distributed predictive control for unknown ground moving target in urban environment. Aerosp. Sci. Technol. 84 (2019), 329–338, 10.1016/j.ast.2018.10.017.
Lin, Z., Liu, H.H.T., Wotton, M., Kalman filter-based large-scale wildfire monitoring with a system of UAVs. IEEE Trans. Ind. Electron. 66:1 (2019), 606–615, 10.1109/TIE.2018.2823658.
Kimchi, G., Buchmueller, D., Green, S.A., Beckman, B.C., Isaacs, S., Navot, A., Hensel, F., Bar-Zeev, A., Rault, S.S.J.-M., Unmanned aerial vehicle delivery system. 2017 Publisher: Google Patents.
Freeman, P.K., Freeland, R.S., Agricultural UAVs in the U.S.: potential, policy, and hype. Remote Sens. Appl.: Soc. Environ. 2 (2015), 35–43, 10.1016/j.rsase.2015.10.002.
Nex, F., Duarte, D., Steenbeek, A., Kerle, N., Towards real-time building damage mapping with low-cost UAV solutions. Remote Sens., 11(3), 2019, 287, 10.3390/rs11030287.
Altan, A., Aslan, Ö., Hacıoğlu, R., Real-time control based on NARX neural network of hexarotor UAV with load transporting system for path tracking. 2018 6th International Conference on Control Engineering Information Technology (CEIT), 2018, 1–6, 10.1109/CEIT.2018.8751829.
Altan, A., Hacıoğlu, R., Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mech. Syst. Signal Process., 138, 2020, 106548, 10.1016/j.ymssp.2019.106548.
Vermesan, O., Friess, P., Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems. 2013, River Publishers.
Labib, N.S., Danoy, G., Musial, J., Brust, M.R., Bouvry, P., Internet of unmanned aerial vehicles—A multilayer low-altitude airspace model for distributed UAV traffic management. Sensors, 19(21), 2019, 4779, 10.3390/s19214779.
Winsberg, E., Computer Simulations in Science. 2015, Stanford Encyclopedia of Philosophy.
Gray, G.A., Fowler, K.R., Traditional and hybrid derivative-free optimization approaches for black box functions. Koziel, S., Yang, X.-S., (eds.) Computational Optimization, Methods and Algorithms, 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 125–151, 10.1007/978-3-642-20859-1_7.
Altan, A., Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, 1–6, 10.1109/ISMSIT50672.2020.9255181.
Bäck, T., Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. 1996, Oxford University Press, Oxford, UK.
Bronstein, J.L., Mutualism. 2015, Oxford University Press, USA.
Potter, M.A., De Jong, K.A., A cooperative coevolutionary approach to function optimization. Davidor, Y., Schwefel, H.-P., Männer, R., (eds.) Parallel Problem Solving from Nature — PPSN III, 1994, Springer Berlin Heidelberg, Berlin, Heidelberg, 249–257, 10.1007/3-540-58484-6_269.
Stolfi, D.H., Brust, M.R., Danoy, G., Bouvry, P., Optimizing the performance of an unpredictable UAV swarm for intruder detection. Dorronsoro, B., Ruiz, P., de la Torre, J.C., Urda, D., Talbi, E.-G., (eds.) Optimization and Learning, 2020, Springer International Publishing, Cham, 37–48, 10.1007/978-3-030-41913-4_4.
Sims, K., Evolving 3D morphology and behavior by competition. Artif. Life 1:4 (1994), 353–372, 10.1162/artl.1994.1.4.353.
Weibull, J.W., Evolutionary Game Theory. 1997, MIT press, Cambridge, MA, USA.
Floreano, D., Nolfi, S., Adaptive behavior in competing co-evolving species. Proceeding of the Fourth European Conference on Artificial Life, 1997, 378–387.
Brabazon, A., McGarraghy, S., et al. Foraging-Inspired Optimisation Algorithms. 2018, Springer.
Stolfi, D.H., Brust, M.R., Danoy, G., Bouvry, P., Competitive evolution of a UAV swarm for improving intruder detection rates. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2020, IEEE, 528–535, 10.1109/IPDPSW50202.2020.00094.
Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H.T., Plosila, J., Swarms of unmanned aerial vehicles — A survey. J. Ind. Inf. Integr., 16, 2019, 100106, 10.1016/j.jii.2019.100106.
Ma, X., Li, X., Zhang, Q., Tang, K., Liang, Z., Xie, W., Zhu, Z., A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 23:3 (2019), 421–441, 10.1109/TEVC.2018.2868770.
Li, Y., Du, W., Yang, P., Wu, T., Zhang, J., Wu, D., Perc, M., A satisficing conflict resolution approach for multiple UAVs. IEEE Internet Things J. 6:2 (2019), 1866–1878, 10.1109/JIOT.2018.2885147.
Hu, M., Liu, W., Peng, K., Ma, X., Cheng, W., Liu, J., Li, B., Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Internet Things J. 6:2 (2019), 1781–1790, 10.1109/JIOT.2018.2878602.
Batista da Silva, L.C., Bernardo, R.M., de Oliveira, H.A., Rosa, P.F.F., Multi-UAV agent-based coordination for persistent surveillance with dynamic priorities. 2017 International Conference on Military Technologies (ICMT), 2017, IEEE, 765–771, 10.1109/MILTECHS.2017.7988859.
Liu, Y., Liu, H., Tian, Y., Sun, C., Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerosp. Sci. Technol., 98, 2020, 105671, 10.1016/j.ast.2019.105671.
Geng, L., Zhang, Y.F., Wang, J.J., Fuh, J.Y.H., Teo, S.H., Mission planning of autonomous UAVs for urban surveillance with evolutionary algorithms. 2013 10th IEEE International Conference on Control and Automation (ICCA), 2013, IEEE, 828–833, 10.1109/ICCA.2013.6564992.
Sun, L., Lyu, C., Shi, Y., Cooperative coevolution of real predator robots and virtual robots in the pursuit domain. Appl. Soft Comput., 89, 2020, 106098, 10.1016/j.asoc.2020.106098.
Rahul, K., Robot mission planning using co-evolutionary optimization. Robotica 38:3 (2019), 512–530, 10.1017/s026357471900081x.
Olsen, M.M., Fraczkowski, R., Co-evolution in predator prey through reinforcement learning. J. Comput. Sci. 9 (2015), 118–124, 10.1016/j.jocs.2015.04.011.
Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P., Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm Evol. Comput. 41:November 2017 (2018), 36–48, 10.1016/j.swevo.2018.01.002.
Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P., From random process to chaotic behavior in swarms of UAVs. Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications - DIVANet ’16, 2016, ACM Press, New York, New York, USA, 9–15, 10.1145/2989275.2989281.
Stolfi, D.H., Brust, M.R., Danoy, G., Bouvry, P., A cooperative coevolutionary approach to maximise surveillance coverage of UAV swarms. 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, 2020, IEEE, 1–6, 10.1109/CCNC46108.2020.9045643.
Potter, M.A., De Jong, K.A., Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evol. Comput. 8:1 (2000), 1–29, 10.1162/106365600568086.
Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning. first ed., 1989, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Holland, J.H., Adaptation in Natural and Artificial Systems. 1992, The MIT Press, 228, 10.7551/mitpress/1090.001.0001.
Goldberg, D.E., Deb, K., A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1 (1991), 69–93, 10.1016/B978-0-08-050684-5.50008-2.
Chelouah, R., Siarry, P., Continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 6:2 (2000), 191–213, 10.1023/A:1009626110229.
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T., The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3 (2016), 43–58, 10.1016/j.orp.2016.09.002.
Sheskin, D.J., Handbook of Parametric and Nonparametric Statistical Procedures. 2003, crc Press.
Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F., Management of an academic HPC cluster: The UL experience. 2014 International Conference on High Performance Computing & Simulation (HPCS), 2014, IEEE, Bologna, Italy, 959–967, 10.1109/HPCSim.2014.6903792.