Article (Périodiques scientifiques)
A cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing
FARINA, Sofia; Claus, Susanne; HALE, Jack et al.
2021In Advanced Modeling and Simulation in Engineering Sciences, 8, p. 5
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
farina-et-al-2021-s40323-021-00191-8.pdf
Postprint Éditeur (5.76 MB)
CC BY 4.0
Télécharger

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
CutFEM; unfitted methods; FEM; level sets; reaction diffusion system; energy metabolism
Résumé :
[en] A thorough understanding of brain metabolism is essential to tackle neurodegenerative diseases. Astrocytes are glial cells which play an important metabolic role by supplying neurons with energy. In addition, astrocytes provide scaffolding and homeostatic functions to neighboring neurons and contribute to the blood–brain barrier. Recent investigations indicate that the complex morphology of astrocytes impacts upon their function and in particular the efficiency with which these cells metabolize nutrients and provide neurons with energy, but a systematic understanding is still elusive. Modelling and simulation represent an effective framework to address this challenge and to deepen our understanding of brain energy metabolism. This requires solving a set of metabolic partial differential equations on complex domains and remains a challenge. In this paper, we propose, test and verify a simple numerical method to solve a simplified model of metabolic pathways in astrocytes. The method can deal with arbitrarily complex cell morphologies and enables the rapid and simple modification of the model equations by users also without a deep knowledge in the numerical methods involved. The results obtained with the new method (CutFEM) are as accurate as the finite element method (FEM) whilst CutFEM disentangles the cell morphology from its discretisation, enabling us to deal with arbitrarily complex morphologies in two and three dimensions.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FARINA, Sofia ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Claus, Susanne;  Onera
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
SKUPIN, Alexander  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing
Date de publication/diffusion :
22 mars 2021
Titre du périodique :
Advanced Modeling and Simulation in Engineering Sciences
eISSN :
2213-7467
Maison d'édition :
Springer, Allemagne
Titre particulier du numéro :
Recent Developments in Unfitted Finite Element Methods
Volume/Tome :
8
Pagination :
5
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Intitulé du projet de recherche :
DRIVEN
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 14 mars 2021

Statistiques


Nombre de vues
430 (dont 33 Unilu)
Nombre de téléchargements
124 (dont 8 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
13
OpenCitations
 
7
citations OpenAlex
 
14

Bibliographie


Publications similaires



Contacter ORBilu