Communication orale non publiée/Abstract (Colloques, congrès, conférences scientifiques et actes)
A Distributed Pareto-based Path Planning Algorithm for Autonomous Unmanned Aerial Vehicles (Extended Abstract)
SAMIR LABIB, Nader; DANOY, Grégoire; BRUST, Matthias R. et al.
202129th International Joint Conference on Artificial Intelligence IJCAI 2020 Multi-Agent Path Finding Workshop (MAPF)
 

Documents


Texte intégral
WoMAPF20_paper_9_NaderLabib.pdf
Preprint Auteur (3.39 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Unmanned Aerial Vehicles; Multi-Agent; Path Planning; Traffic Management
Résumé :
[en] Autonomous Unmanned Aerial Vehicles (UAVs) are in increasing demand thanks to their applicability in a wide range of domains. However, to fully exploit such potential, UAVs should be capable of intelligently planning their collision-free paths as that impacts greatly the execution quality of their applications. While being a problem well addressed in literature, most presented solutions are either computationally complex centralised approaches or ones not suitable for the multiobjective requirements of most UAV use-cases. This extended abstract introduces ongoing research on a novel distributed Pareto path planning algorithm incorporating a dynamic multi-criteria decision matrix allowing each UAV to plan its collision-free path relying on local knowledge gained via digital stigmergy. The article presents some initial simulations results of a distributed UAV Traffic Management system (UTM) on a weighted multilayer network.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAMIR LABIB, Nader ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BRUST, Matthias R. ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Distributed Pareto-based Path Planning Algorithm for Autonomous Unmanned Aerial Vehicles (Extended Abstract)
Date de publication/diffusion :
07 janvier 2021
Nom de la manifestation :
29th International Joint Conference on Artificial Intelligence IJCAI 2020 Multi-Agent Path Finding Workshop (MAPF)
Lieu de la manifestation :
Yokohoma, Japon
Date de la manifestation :
from 07-01-2021 to 15-01-2021
Manifestation à portée :
International
Disponible sur ORBilu :
depuis le 11 février 2021

Statistiques


Nombre de vues
472 (dont 107 Unilu)
Nombre de téléchargements
190 (dont 12 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu