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Abstract
Autonomous Unmanned Aerial Vehicles (UAVs)
are in increasing demand thanks to their applica-
bility in a wide range of domains. However, to
fully exploit such potential, UAVs should be ca-
pable of intelligently planning their collision-free
paths as that impacts greatly the execution quality
of their applications. While being a problem well-
addressed in literature, most presented solutions
are either computationally complex centralised ap-
proaches or ones not suitable for the multiobjec-
tive requirements of most UAV use-cases. This ex-
tended abstract introduces ongoing research on a
novel distributed Pareto path planning algorithm in-
corporating a dynamic multi-criteria decision ma-
trix allowing each UAV to plan its collision-free
path relying on local knowledge gained via digital
stigmergy. The article presents some initial sim-
ulations results of a distributed UAV Traffic Man-
agement system (UTM) on a weighted multilayer
network.

1 Introduction
With the miniaturisation of low energy consumption sensors,
the recent introduction of 5G and the wide adoption of Inter-
net of Things (IoT), the autonomous mobile robotics industry
and specifically the UAV industry is set to register some of
its highest Compound Annual Growth Rates (CAGR) for the
coming decade. The demand for autonomous UAVs is in-
creasing enormously, owing to their flexible operational po-
tential in a wide array of applications that were previously
deemed infeasible. Some predominant examples in litera-
ture include logistics [Fernández-Caramés et al., 2019], mon-
itoring, surveillance and disaster management [Feng et al.,
2015]. Nevertheless, to fully exploit such potential let alone
safely manage UAV traffic, autonomous UAVs should be ca-
pable of intelligently and safely navigating their dynamic en-
vironments since in majority of scenarios, how well they plan
their paths impacts greatly the execution quality their appli-
cation.

∗This article is an extended abstract of an on going work enti-
tled A Distributed Pareto Path Planning Algorithm for Autonomous
Mobile Robots.

Mobile robot path planning is an optimisation problem
that has been well-addressed in the literature over the past
years. However, most of the approaches have mainly focused
on 2-dimensional (2D) and 2.5-dimensional (2.5D) methods
[Yang et al., 2016] which are suitable for ground or water
surface mobile robots, while approaches for UAVs and other
highly mobile autonomous robots requiring 3-dimensional
(3D) path planning, remain less explored. As mobile robot
path planning is proven to be NP-hard, 3D path planning is
also NP-hard with an additional dimension, altitude [Yang et
al., 2016]. In the recent years, several methods were proposed
in the literature to address this challenging problem. Yang et
al. in [Yang et al., 2014] analyse and categorise some of the
main 3D path planning algorithms. Some predominant ex-
amples building on classical approaches include the anytime
heuristic search algorithm [Likhachev et al., 2004], an Any-
time Dynamic A* [Likhachev et al., 2005] and Lazy Theta*
[Nash et al., 2010]. While the aforementioned algorithms can
find optimal paths through decomposing networks, they typ-
ically optimise the path efficiency for one objective which
makes them less suitable for applications in complex envi-
ronments [Jun and Qingbao, 2010].

To address this, research turns to multiobjective optimisa-
tion approaches which call for solutions that account for mul-
tiple cost criteria, where optimising one criterion may be at
the cost of another. The complexity of such problems sig-
nificantly increases with the number of objectives to be opti-
mised, hence researchers’ often shift to approximate methods
to obtain good quality solutions in reasonable time. Broadly,
approximate methods can be classified under four main cate-
gories namely, scalar approaches, criterion-based approaches,
indicator-based approaches and dominance-based approaches
[Talbi, 2009].
Such methods have been investigated in the literature for
decades with predominant examples of bio-inspired search
paradigms like the non-dominated sorting genetic algorithm
(NSGA)[Srinivas and Deb, 1994] and variations of NSGA-II
[Deb et al., 2000] and NSGA-III [Deb and Jain, 2014] for
different environmental models, robot types and applications.
The main drawback, however, of using evolutionary algo-
rithms for path planning is computational complexity mak-
ing them more fit for offline centralised approaches than dis-
tributed online path planning in autonomous mobile robots.

In the context of UAV dynamic online path planning, the



majority of presented solutions either address a single optimi-
sation objective or the multiobjective optimisation problem
with centralised approaches. Such approaches will eventu-
ally face the inherent limitations of centralised systems when
it comes to scalability and resilience of UAV applications and
UAV Traffic Management. To this end, this article presents
our work in progress and outlines a novel distributed Pareto-
based path planning algorithm for autonomous UAVs. The
proposed algorithm incorporates an initial path planner com-
plemented by a dynamic online multiobjective path planner
extending the Local Pheromone Guided (LPG) A* heuristic
presented in [S. Labib et al., 2019] allowing individual UAVs
to compute a non-dominated set of paths at every individual
search step, i.e. when facing traffic congestion, and rely on
dynamically updated multi-criteria decision matrix to select a
solution autonomously.

The remainder of this article is as follows. Section 2
outlines an operational example of a distributed UAV Traf-
fic Management system relying on the proposed multilayer
model of the Class G airspace initially presented in [S. Labib
et al., 2019] followed by an initial optimisation problem for-
mulation. Section 3 outlines the proposed technical approach
followed by initial validation results in Section 4. Finally
Section 5 concludes and presents the next steps and future
work.

2 Use Case: UAV Traffic Management
To validate the path planning algorithm, this section narrates
an operational example of a distributed UAV Traffic Man-
agement (UTM) system relying on the proposed multilayer
model of the Class G airspace initially presented in [S. Labib
et al., 2019] (see Figure 1).
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Figure 1: Multilayer model of the low-altitude airspace.

The use case illustrates an operational scenario where a
group of multi-rotor autonomous UAVs are deployed on a
collective monitoring mission similar to that presented in
[Feng et al., 2015]. UAVs are considered to have different
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Figure 2: Illustrative scenario. Case A: UAV remains at lower layer
path 1 to conserve battery; Case B: UAV opts to higher layer path 2
to avoid congestion.

individual roles in the mission, hence having priorities and
incentives to get to their destination. The UAVs enter the
airspace through different nodes and traverse from origin to
destination along paths at different layers. Each altitude seg-
ment, referred to as layer, allows different velocity ranges that
increase at higher altitude layers. We assume that higher al-
titudes offer shorter travel times at the cost of higher energy
consumption. This assumption is supported by the work pre-
sented in [Cho and Yoon, 2018] where higher altitude layers
are less cluttered with static obstacles in comparison to lower
ones. This will in turn allow UAVs to fly at higher lateral ve-
locities and consume more energy as explained in [Hwang et
al., 2018]. As each UAV traverses the network, and precisely
at network nodes, it communicates and exchanges informa-
tion (awareness messages) with other UAVs within its com-
munication range as explained in our previous work [Labib et
al., 2019]. Based on the exchanged rules and traffic informa-
tion such as traffic density and flight velocities, UAVs make
local path planning decisions. In turn, switch between air-
ways, airspace layers and flight modes, namely, lateral, ver-
tical and hover, according to their current battery status and
percentage of mission completion (see Figure 2) while trying
to minimise both their time of flight and energy consumption.

2.1 UAV Traffic Optimisation and Deconfliction
In alignment with the aforementioned use case, this sub-
section presents the corresponding formulation of the bi-
objective optimisation problem of minimising the total travel
time and energy consumption of UAV traffic in the network.
Based on our weighted multilayer network description [Labib
et al., 2019], the bi-objective function F we aim to optimise



can be expressed as:

min F = (f1, f2) (1)

f1 = T =

I∑
i=1

L∑
l=1

ail ∗ tl (2)

f2 = E =

I∑
i=1

L∑
l=1

ail ∗ el (3)

s.t.
I∑

i=1

ail = cl, l = 1, . . . , L, (4)

cl ≤ cmax
l , l = 1, . . . , L, (5)

ail ∈ {0, 1}, i = 1, . . . , I, l = 1, . . . , L, (6)
E, T ∈ N, (7)
el, tl, cl ∈ N, l = 1, . . . , L, (8)

where:
F – bi-objective function (f1, f2),

T – objective function (time elapsed),

E – objective function (energy consumed),

I – number of UAVs,

i – index for UAVs,

L – number of airways,

l – index for airways,

a – selection indicator for airways / UAVs (∈ 0, 1),

e – energy consumption component for airways,

t – time elapse component for airways,

c – traffic capacity for airways,

cmax – maximum traffic capacity for airways.
In the proposed model, each airway in a path has a criti-

cal traffic capacity of UAVs that it can traverse; in addition to
an allowable maximum velocity which is expressed in terms
of time t and energy e. Therefore, for a number of UAVs I
over a complete path our first utility function (1) addresses
our first objective, minimising the total energy consumption
while (2) addresses our second objective which is minimis-
ing the total travel time. Complementing this approach, is the
deconfliction process. Conflict management is the process of
ensuring that UAVs do not collide, we achieve this by fol-
lowing a strategic then tactical approach (c.f. Table 1). The
process is divided into three levels where the aim of each is to
reduce the need to apply the proceeding level. Starting with
strategic traffic density management in the mission planning
phase, signified in equation 5, following through with the dy-
namic tactical level of maintaining separation and finally eva-
sive manoeuvres.

3 Multilayer Multiobjective Path Planning
This section outlines the two stages of the approach followed
through the work. The first stage, completed and detailed
in [Labib et al., 2019], presented three devised heuristics,

Table 1: Different deconfliction levels.

Conflict Management

Strategic I. Mission Planning - Traffic density management

Tactical II. Remaining Clear - Maintaining separation
III. Collision Avoidance - Evasive manoeuvres

namely Global Offline Static heuristic (GOS), Global Prob-
abilistic Dynamic heuristic (GPD) and the Local Pheromone
Guided heuristic (LPG). The aim of the first stage was to as-
sess the performance of a completely distributed traffic man-
agement system in comparison to a centralised one. The
ongoing second stage builds on the first stage’s LPG with
the main goal of extending the proposed approach to con-
sider multiple optimisation objectives and rely a dynamic
multi-criteria decision making approach to allow UAVs to au-
tonomously select a solution based on their current status and
local knowledge.
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Figure 3: Simplified algorithm flowchart.

The distributed Pareto-based path planning algorithm
(D3P), presented in this study builds on the multiobjective
A* search algorithm proposed in [Mandow et al., 2005] and
detailed in [Mandow and De La Cruz, 2008]. The algorithm
is effectively the classical search algorithm with the key mod-
ification of computing the Pareto front of the cost criteria in-



stead of summing them, hence the name Pareto A*.
Figure 3 illustrates a simplified flowchart of the proposed

algorithm divided into a higher proactive layer, a responsive
dynamic intermediate layer and a reactive lower layer.

Heuristic 1 : Distributed Pareto-based Path Planning (D3P)
Data: network, weights (t, e, c), start, destination (dest), traf-

fic threshold (Tlim), criteria matrix
1 while UAV not at dest do
2 compute set of solution paths . using Pareto A*

select best path . using criteria matrix
take next move from best path
if cl ≤ Tlim then

3 set current to next move . UAV move
update tl, el, cl

4 else
5 compute solution paths to dest . using Pareto A*

update criteria matrix . dAHP
select best path . using criteria matrix
set current to next move . UAV move
update tl, el, cl
update pheromone τ

6 end
7 end

Knowing their destination, UAVs generate a set of so-
lutions/paths using Pareto A* then relying on their multi-
criteria decision matrix, each UAV selects one of the gen-
erated paths to follow. UAVs start following the selected
shortest path until the traffic on the next airway is superior
to a predefined threshold defined by Tlim, that is, when cl =
Tlim where Tlim ¡ cmax

l (cf. lines 1–4 in Heuristic 1). In
reality, Tlim would correspond to the critical traffic density
explained in traffic theory as the capacity after which traffic
flow becomes congested. At that stage each UAV lays down
a pheromone trail τ , where τl = 1/cmax

l of airway l. The de-
posited trail of pheromone acts as a repellent to other UAVs,
hence making the airway less desirable to take. In the devised
model, intersecting nodes act as decision points at which the
following UAVs receive the updated pheromone level and use
it to estimate an update of corresponding airways’ weights in
order to locally compute new alternative paths to their desti-
nation (cf. lines 4–6 in Heuristic 1). At this stage, in place
of the probabilistic state transition rule used in [Labib et al.,
2019], here UAVs rely on a dynamic analytical hierarchy pro-
cess (dAHP) to make their selection between the generated
set of solution from the Pareto-based approach. While dAHP
applies the same methodology of the classical Analytical Hi-
erarchy Process (AHP) [Saaty, 1988], it considers the AHP
criteria and alternatives as temporary variables instead of and
therefore provides autonomous UAVs a logical framework to
determine the cost of each alternative at a given step. In other
words, as UAVs traverse the network, alternatives present the
different solutions/paths at every decision step where the cri-
teria at that step vary with the state of each UAV. As an initial
stage, we consider the energy criterion weight to vary with
the level of consumption as guided by cpi = cp0 · ek·pi where

cpi is the energy criterion weight at step i, cp0 is the initial
weight of the criterion, k a growth constant and pi represents
the battery consumption level. Hence, the more energy UAVs
consume the greater the impact of energy conservation would
be on their decision between alternatives.

4 Simulations and Initial Results
This section outlines our experimental setup and presents a
snapshot of the first stage of simulation results, detailed in
[Labib et al., 2019], corresponding to the first stage in the
optimisation approach presented in section 3.

Table 2: Experiment parameters.

Parameter Value

Number of UAVs (hundreds) 0.1, 0.5, 1, 2, 5, 10, 15
Number of nodes 100 per layer
Number of layers 3
Edge creation probability 20%
Interlayer energy weight interval [15,20]
Intralayer energy weight intervals [5,10],[15,20],[25,30]
Interlayer time weight interval [1,5]
Intralayer time weight intervals [25,30],[15,20],[5,10]
Interlayer capacity weight interval 50
Intralayer capacity weight interval [1,5]
GPD decision probability (preroute) 100%
LPG Tlim percentage of cmax

l 50%

For the first stage, experiments are conducted on a three
layer network based on the Erdős – Rényi model using
Python’s NetworkX library and the multiNetX package. Each
layer contains the same number of nodes and each airway (in-
tra and inter network) is assigned three weights, t, e and c,
uniformly at random in predefined intervals. A single net-
work with a total of 300 nodes and 3 layers (100 nodes per
layer) has been used. Between every pair of nodes, there is
a 20% probability an edge is created. Table 2 describes the
parameters used at this stage of experiments. As a first stage
of validation, the experiment is run with the aim of studying
the performance of the three heuristics GOS, GPD, LPG with
a single optimisation objective in a more realistic scenario to
address some of the assumptions made in the previous work
in the literature [S. Labib et al., 2019]. Here each UAV has a
different origin and destination pair as well as one of the two
minimisation objectives.

Figures 4(a) and 4(b) as well as Table 3 present the ob-
tained results when comparing the impact the three heuristics
(GOS, GPD, LPG) have on traffic performance in a more re-
alistic scenario.
Figures 4(a)–4(b) present the impact in traffic performance
by indicating the median, 25th and 75th percentile, while Ta-
ble 3 presents the mean and standard deviation in the results
after 30 runs of the probabilistic heuristics for every varied
parameter over all traffic samples: for every Tlim in LPG and
for every prerouting in GPD. It can be observed that, with the
exception for traffic sample 10, LPG results show improve-
ment in total UAVs’ travel time for all traffic samples.

On the other hand, it is worth to mention that due to the se-
lected parameters and the nature of GPD, encouraging UAVs
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Figure 4: (a) Comparison of total UAVs’ travel time. (b) Comparison of total UAVs’ energy consumption.

Table 3: Comparison of traffic performance using GOS, GPD and LPG.

Traffic Heuristic Time Energy Path Changes Layer Changes Queue Counts
Mean SD Mean SD Mean SD Mean SD Mean SD

10
GOS 36.624.8 33.222.8 00 160 00

GPD 37.027.3 37.525.5 00 17.97.0 00

LPG 41.528.8 34.624.9 00 15.55.1 00

50
GOS 42.524.7 36.125.3 00 800 00

GPD 40.127.1 38.126.8 0.20.6 84.612.8 00

LPG 38.626.8 39.727.1 1.31.4 9212.4 00

100
GOS 38.925.9 42.827.8 00 1960 00

GPD 40.626.0 40.928.4 2.11.7 175.713.8 0.20.5

LPG 36.124.3 47.829.9 13.64.9 228.78.9 00

200
GOS 46.831.4 52.435.3 00 3600 170

GPD 41.525.6 51.032.7 27.84.5 420.615.5 4.82.5

LPG 34.821.4 59.731.6 63.26.8 585.116.4 00

500
GOS 80.453.4 109.673.9 00 8640 3000

GPD 54.532.6 82.059.5 258.320.2 127538.1 101.410.9

LPG 45.725.4 84.841.1 33124.9 1895.549.8 1.11.2

1000
GOS 123.084.9 189.1131.8 00 16680 13720

GPD 76.150.3 111.649101.3 982.440.8 2425.954.9 441.525.9

LPG 49.927.2 82.842.8 670.533.1 3592.357.9 10.44.3

1500
GOS 162.3114.5 264.7193.2 00 25840 30970

GPD 93.469.1 137.7142.2 2267.981.1 3400.975.7 1059.066.9

LPG 59.934.9 100.853.3 1220.552.8 6051.596.5 11.84.5

to be more inclined to reduce layer changes, these led to a
significant difference in reduction of energy consumption in
comparison to LPG for traffic samples 50-200. However,
what is of greater interest are the results obtained for the
larger traffic samples, which are more decisive in the devised
scenario, LPG outperforms GPD with significant difference
across 4 of the 5 main parameters of comparison, with the
exception of the total number of layer changes, which can be
explained by the nature of the heuristic LPG which encour-
ages UAVs to explore vertical airways between layers as they
offer a higher cmax

l . Statistical confidence in our compar-
isons is assessed by performing the Wilcoxon test [Wilcoxon,

1992]. The overall best result per comparison parameter is
shown in bold. Additionally, the dark grey background em-
phasises the best results that showed statistically significant
difference with a 95% confidence.

5 Conclusion and future work
The recent developments in technologies has surged the de-
mand for autonomous mobile robots and specifically UAVs.
Nevertheless, for such autonomous UAV systems to be
utilised to their fullest potential, UAVs have to be capable
of safely and intelligently planning their paths.



In this extended abstract, we presented our work in
progress and outlined a novel distributed Pareto-based path
planning algorithm for autonomous UAVs. The proposed
algorithm incorporates an online dynamic multiobjective
path planner extending the LPG A* heuristic presented in
[S. Labib et al., 2019] allowing individual UAVs to compute
a non-dominated set of paths at every search step and rely on
a dynamically updated multi-criteria decision matrix to select
a solution autonomously.

Whilst the first stage of simulations was run to validate the
model by only considering a single optimisation objective,
the second stage of simulations to evaluate the Pareto-based
approach are currently ongoing. Additionally, a more realis-
tic instance of the airspace is being used for traffic manage-
ment testing. Moreover, our future work will build on the
second stage by incorporating a more realistic communica-
tion scenario and investigate the impact of coverage and dif-
ferent protocols on traffic behaviour as well as explore more
realistic communication metrics, given the challenging nature
of UAV networks.

Acknowledgments
This work is partially funded by the joint research programme
UL/SnT–ILNAS on Digital Trust for Smart–ICT.

References
[Cho and Yoon, 2018] Jungwoo Cho and Yoonjin Yoon. As-

sessing the airspace availability for suav operations in ur-
ban environments: A topological approach using keep-in
and keep-out geofence. In 2018 International Conference
on Research in Air Transportation (ICRAT). ICRAT, 2018.

[Deb and Jain, 2014] K. Deb and H. Jain. An evolutionary
many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part i: Solv-
ing problems with box constraints. IEEE Transactions on
Evolutionary Computation, 18(4):577–601, Aug 2014.

[Deb et al., 2000] Kalyanmoy Deb, Samir Agrawal, Am-
rit Pratap, and Tanaka Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective
optimization: Nsga-ii. In International conference on
parallel problem solving from nature, pages 849–858.
Springer, 2000.

[Feng et al., 2015] Quanlong Feng, Jiantao Liu, and Jianhua
Gong. Uav remote sensing for urban vegetation mapping
using random forest and texture analysis. Remote sensing,
7(1):1074–1094, 2015.

[Fernández-Caramés et al., 2019] Tiago M. Fernández-
Caramés, Oscar Blanco-Novoa, Iván Froiz-Mı́guez, and
Paula Fraga-Lamas. Towards an autonomous industry
4.0 warehouse: A uav and blockchain-based system for
inventory and traceability applications in big data-driven
supply chain management. Sensors, 19(10), 2019.

[Hwang et al., 2018] Myeong-hwan Hwang, Hyun-Rok
Cha, and Sung Jung. Practical endurance estimation for
minimizing energy consumption of multirotor unmanned
aerial vehicles. Energies, 11(9):2221, 2018.

[Jun and Qingbao, 2010] H. Jun and Z. Qingbao. Multi-
objective mobile robot path planning based on improved
genetic algorithm. In 2010 International Conference on
Intelligent Computation Technology and Automation, vol-
ume 2, pages 752–756, May 2010.

[Labib et al., 2019] Nader S. Labib, Grégoire Danoy, Jedrzej
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Cruz, et al. A new approach to multiobjective aˆ* search.
In IJCAI, volume 8. Citeseer, 2005.

[Nash et al., 2010] Alex Nash, Sven Koenig, and Craig
Tovey. Lazy theta*: Any-angle path planning and path
length analysis in 3d. In Twenty-Fourth AAAI Conference
on Artificial Intelligence, 2010.

[S. Labib et al., 2019] N. S. Labib, G. Danoy, J. Musial,
M. R. Brust, and P. Bouvry. A Multilayer Low-Altitude
Airspace Model for UAV Traffic Management. In In Pro-
ceedings of the 9th ACM Symposium on Design and Analy-
sis of Intelligent Vehicular Networks and Applications DI-
VANet’19. ACM, Nov 2019.

[Saaty, 1988] Thomas L Saaty. What is the analytic hierar-
chy process? In Mathematical models for decision sup-
port, pages 109–121. Springer, 1988.

[Srinivas and Deb, 1994] Nidamarthi Srinivas and Kalyan-
moy Deb. Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms. Evolutionary compu-
tation, 2(3):221–248, 1994.

[Talbi, 2009] El-Ghazali Talbi. Metaheuristics: from design
to implementation, volume 74. John Wiley & Sons, 2009.

[Wilcoxon, 1992] Frank Wilcoxon. Individual comparisons
by ranking methods. In Breakthroughs in statistics, pages
196–202. Springer, 1992.

[Yang et al., 2014] Liang Yang, Juntong Qi, Jizhong Xiao,
and Xia Yong. A literature review of uav 3d path planning.
In Proceeding of the 11th World Congress on Intelligent
Control and Automation, pages 2376–2381. IEEE, 2014.

[Yang et al., 2016] Liang Yang, Juntong Qi, Dalei Song,
Jizhong Xiao, Jianda Han, and Yong Xia. Survey of robot
3d path planning algorithms. Journal of Control Science
and Engineering, 2016:5, 2016.


	Introduction
	Use Case: UAV Traffic Management
	UAV Traffic Optimisation and Deconfliction

	Multilayer Multiobjective Path Planning
	Simulations and Initial Results
	Conclusion and future work

