Thèse de doctorat (Mémoires et thèses)
TOWARDS A MODELLING FRAMEWORK WITH TEMPORAL AND UNCERTAIN DATA FOR ADAPTIVE SYSTEMS
MOULINE, Ludovic
2019
 

Documents


Texte intégral
Final_Lux.pdf
Postprint Auteur (2.83 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
dynamically adaptive systems; knowledge representation; model-driven engineering; uncertainty modelling; time modelling
Résumé :
[en] Self-Adaptive Systems (SAS) optimise their behaviours or configurations at runtime in response to a modification of their environments or their behaviours. These systems therefore need a deep understanding of the ongoing situation which enables reasoning tasks for adaptation operations. Using the model-driven engineering (MDE) methodology, one can abstract this situation. However, information concerning the system is not always known with absolute confidence. Moreover, in such systems, the monitoring frequency may differ from the delay for reconfiguration actions to have measurable effects. These characteristics come with a global challenge for software engineers: how to represent uncertain knowledge that can be efficiently queried and to represent ongoing actions in order to improve adaptation processes? To tackle this challenge, this thesis defends the need for a unified modelling framework which includes, besides all traditional elements, temporal and uncertainty as first-class concepts. Therefore, a developer will be able to abstract information related to the adaptation process, the environment as well as the system itself. Towards this vision, we present two evaluated contributions: a temporal context model and a language for uncertain data. The temporal context model allows abstracting past, ongoing and future actions with their impacts and context. The language, named Ain’tea, integrates data uncertainty as a first-class citizen.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MOULINE, Ludovic ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Langue du document :
Anglais
Titre :
TOWARDS A MODELLING FRAMEWORK WITH TEMPORAL AND UNCERTAIN DATA FOR ADAPTIVE SYSTEMS
Date de soutenance :
29 novembre 2019
Nombre de pages :
200
Institution :
Unilu - University of Luxembourg, Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur de l’Université du Luxembourg en Informatique et Docteur de L’Université de Rennes 1 en Inforatique
Promoteur :
LE TRAON, Yves 
Barais, Olivier
Président du jury :
Membre du jury :
Wimmer, Manuel
Collet, Philippe
Bourcier, Johann
Focus Area :
Security, Reliability and Trust
Organisme subsidiant :
Creos Luxembourg S.A.
Disponible sur ORBilu :
depuis le 11 décembre 2019

Statistiques


Nombre de vues
194 (dont 12 Unilu)
Nombre de téléchargements
773 (dont 6 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu