Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A Hybrid Machine Learning and Schedulability Method for the Verification of TSN Networks
MAI, Tieu Long; NAVET, Nicolas; Migge, Jörn
2019In 15th IEEE International Workshop on Factory Communication Systems (WFCS2019)
Peer reviewed
 

Documents


Texte intégral
hybrid-verification-TSN.pdf
Preprint Auteur (768.71 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
timing verification; machine learning; Time-Sensitive Networking (TSN); schedulability analysis; real-time systems; design-space exploration; in-vehicle networks; industrial communication systems
Résumé :
[en] Machine learning (ML), and supervised learning in particular, can be used to learn what makes it hard for a network to be feasible and try to predict whether a network configuration will be feasible without executing a conventional schedulability analysis. A disadvantage of ML-based timing verification with respect to schedulability analysis is the possibility of "false positives": configurations deemed feasible while they are not. In this work, in order to minimize the rate of false positives, we propose the use of a measure of the uncertainty of the prediction to drop it when the uncertainty is too high, and rely instead on schedulability analysis. In this hybrid verification strategy, the clear-cut decisions are taken by ML, while the more difficult ones are taken by a conventional schedulability analysis. Importantly, the trade-off achieved between prediction accuracy and computing time can be controlled. We apply this hybrid verification method to Ethernet TSN networks and obtain, for instance in the case of priority scheduling with 8 traffic classes, a 99% prediction accuracy with a speedup factor of 5.7 with respect to conventional schedulability analysis and a reduction of 46% of the false positives compared to ML alone.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAI, Tieu Long ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
NAVET, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Migge, Jörn;  RealTime-at-Work (RTaW)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Hybrid Machine Learning and Schedulability Method for the Verification of TSN Networks
Date de publication/diffusion :
mars 2019
Nom de la manifestation :
15th IEEE International Workshop on Factory Communication Systems (WFCS2019)
Lieu de la manifestation :
Sundsvall, Suède
Date de la manifestation :
from 27-05-2019 to 29-05-2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
15th IEEE International Workshop on Factory Communication Systems (WFCS2019)
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 07 mars 2019

Statistiques


Nombre de vues
339 (dont 36 Unilu)
Nombre de téléchargements
2247 (dont 79 Unilu)

citations Scopus®
 
23
citations Scopus®
sans auto-citations
20
citations OpenAlex
 
27

Bibliographie


Publications similaires



Contacter ORBilu