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Abstract—Machine learning (ML), and supervised learning in
particular, can be used to learn what makes it hard for a network
to be feasible and try to predict whether a network configuration
will be feasible without executing a conventional schedulability
analysis. A disadvantage of ML-based timing verification with
respect to schedulability analysis is the possibility of ”false
positives”: configurations deemed feasible while they are not.
In this work, in order to minimize the rate of false positives,
we propose the use of a measure of the uncertainty of the
prediction to drop it when the uncertainty is too high, and
rely instead on schedulability analysis. In this hybrid verification
strategy, the clear-cut decisions are taken by ML, while the more
difficult ones are taken by a conventional schedulability analysis.
Importantly, the trade-off achieved between prediction accuracy
and computing time can be controlled. We apply this hybrid
verification method to Ethernet TSN networks and obtain, for
instance in the case of priority scheduling with 8 traffic classes,
a 99% prediction accuracy with a speedup factor of 5.7 with
respect to conventional schedulability analysis and a reduction
of 46% of the false positives compared to ML alone.

Index Terms—Timing verification, machine learning, super-
vised learning, unsupervised learning, schedulability analysis,
real-time systems, Time-Sensitive Networking (TSN), design-
space exploration.

I. INTRODUCTION

Context: Ethernet TSN (Time-Sensitive Networking [1],
see [2] for a survey) is becoming the prominent layer
2 protocol for high-speed communication in real-time sys-
tems. TSN includes several Quality of Service (QoS) pro-
tocols relying on priorities, traffic shaping (e.g., Credit-
Based Shaper in IEEE802.1Qav), time-triggered transmission
(Time-Aware Shaper in IEEE802.1Qbv) and frame preemp-
tion (IEEE802.1Qbu). If these mechanisms open up a lot of
possibilities for the designer to meet diverse and demanding
communication requirements, they increase exponentially the
size of the design space, as, to the best of our knowledge, no
optimal protocol selection and configuration strategy exist in
the general case.

Verification of timing constraints in Design-Space Explo-
ration: The complexity of designing and configuring TSN
networks calls for Design-Space Exploration (DSE) algorithms

to assist in the selection and configuration of TSN protocols.
The ZeroConfig-TSN (ZCT) algorithm, presented in [3], [4]
and implemented in the RTaW-Pegase commercial tool [5],
is a first step in that direction. Such DSE algorithms typically
consists of three stages executed iteratively: creating candidate
solutions, configuring them and evaluating their performance
by schedulability analysis and simulation. The performance
evaluation step is a limiting factor with respect to the search
space that can be explored. For instance, measurements in [6]
show that assessing the feasibility of a 500-flow TSN network,
with the simple topology of Figure 1 and static priority
scheduling with three priority classes, requires an average
470ms computation time (Intel I7-8700 3.2Ghz) per configura-
tion, resulting in about 131 hours for 106 candidate solutions.
Machine learning algorithms offers a faster alternative to con-
ventional schedulability analysis (e.g., with a speedup factor
up to 200 for supervised learning and 1440 for unsupervised
learning in [6]). However the percentage of wrong predictions
of ML techniques (up to 7% for supervised learning and
11% for unsupervised learning in [6]) is an hindrance to their
application.

Contribution of the paper: this work is an extension of [6]
which explored the use of supervised and unsupervised ML
to predict the feasibility of TSN networks. In this study, we
improve upon [6] by proposing an hybrid method combin-
ing both ML and schedulability analysis. Importantly, this
approach offers user-adjustable trade-offs between accuracy
and computation time. The baseline hybrid method is extended
with the use, before possibly conducting precise schedulability
analysis, of a fast but approximate schedulability analysis. This
fast analysis serves to identify feasible network configurations
in a compute-efficient manner.

Existing works: ML techniques have been already ex-
tensively applied to many areas such as natural language
processing, autonomous driving and software engineering. ML
has also been applied to networking, especially networking
for the Internet, to solve problems like intrusion detection,
on-line decision making (e.g., dynamic routing), protocol
design, traffic and performance prediction, etc. For instance,
in [7] an expert framework algorithm predicts at run-time the978-1-7281-1268-8/19/$31.00 ©2019 European Union



round-trip time (RTT) of TCP connections, decreasing the
difference between the estimated RTT and the true RTT. Deep
Belief Networks are used in [8] to compute the packet routes
dynamically instead of using conventional solutions based on
OSPF (Open Shortest Path First). An impressive application
of ML is [9] where synthesis-by-simulation is implemented
to generate better congestion control protocols for TCP, some
comprising more than 150 control rules. The reader is referred
to [6], [10] for a more thorough overview of the state-of-the
art in ML applied to networking and real-time systems.

Organisation: The remainder of the paper is organised as
follows. In Section II, the TSN network model is introduced.
Section III highlights situations in which ML is likely to
lead to erroneous decisions. Section IV presents the hybrid
verification strategy and experimental results. This method is
refined in Section IV with the use of approximate schedulabil-
ity analysis as a pre-test. Finally, Section VI concludes with
a summary of the results and perspectives.

II. SYSTEM MODEL

We consider switched Ethernet networks supporting unicast
and multicast communications. The term traffic flow or traffic
stream refers to data sent to the receiver of an unicast connec-
tion or sent to a certain receiver in a multicast connection. We
assume that the routing of the packets is static and that the
maximum size of the successive frames belonging to a stream
is known.

A. Topology and traffic
In this work, we consider that the network topology (layout,

link data rates, etc) has been set as the well as the TSN
protocols that the network devices support. This is realistic
for industrial domains, like the automotive and aeronautical
domain, where most design choices pertaining to the topology
of the networks and the technologies are made early in the
design cycle at a time when the communication needs are not
entirely known.

The topology considered in this this study, intentionally
chosen simple, is the same as in [11] and similar in terms of
structure to the prototype Ethernet network developed by an
automotive OEM a few years ago [12]. As shown in Figure 1,
the network comprises two switches and eight nodes. The data
transmission rate is 100Mbps on all links except 1Gbps on the
inter-switch link to avoid the severe bottleneck that can occur
with such dumbbell topology. The packet switching delay is
assumed to be 1.3us at most in the experiments.

The traffic is made up of three classes whose characteristics
are summarized in Table I. Characteristics of the streams and
their proportion are the same as in [6], [11] and inspired
from a case-study provided by an automotive OEM in [13],
[14]. In the experiments, the number of streams varies but
the proportion of each stream (indicated in Table I) is a
fixed parameter of the stream generation procedure chosen
as in [11]. Each stream is either unicast or multicast with
a probability 0.5. The number of receivers for a multicast
stream is chosen at random between two and five. Sender and
receiver(s) of a stream are chosen at random.

Fig. 1. Topology of the network used in the experiments. The unicast stream
shown here goes from ECU1 to ECU6.

TABLE I
CHARACTERISTICS OF THE THREE TYPES OF TRAFFIC. THE

PERFORMANCE REQUIREMENT IS TO MEET DEADLINE CONSTRAINTS. THE
FRAME SIZES INDICATED ARE DATA PAYLOAD ONLY.

Audio Streams • 128 or 256 byte frames
• periods: 1.25ms deadline
• deadline constraints either 5 or 10ms
• proportion: 7/46

Video Streams • ADAS + Vision streams
• 30*1500byte frame each 33ms (30FPS

camera for vision)
• 15*1000byte frame each 33ms (30FPS

camera for ADAS)
• 10ms (ADAS) or 30ms (Vision) dead-

lines
• proportion: 7/46

Command & Control • from 53 to 300 byte frames
• periods from 5 to 80ms
• deadlines equal to periods
• proportion: 32/46

B. Scheduling solutions

In the following, a configuration refers to a TSN network
that has been fully configured: streams have been allocated
to the traffic classes whose relative priorities have been set,
scheduling mechanism (e.g., CBS at priority levels 1 and 2)
and its configuration parameters (e.g., values of the Idle Slope
on each egress port) have been chosen for all traffic classes.
A feasible configuration is a TSN configuration that meets
all the applications constraints. In this study, we consider
deadline constraints : the Worst-Case Traversal Time (WCTT)
of each stream, computed by schedulability analysis, must be
less than the stream’s deadline. The scheduling mechanisms
considered include the two main TSN QoS strategies, static
priority scheduling and traffic shaping, with different trade-offs
between complexity and ability to meet timing constraints:

1) FIFO scheduling (FIFO): all streams belong to the same
traffic class and thus possess the same priority level.

2) Priority scheduling with manual classification (Manual):
the streams are grouped into the three classes in Table I
with priorities set based on the criticality of the streams:
Command & Control above audio above video class.

3) Priority scheduling with eight priority levels (CP8):
priorities are set by the ”Concise Priorities” assignment
algorithm in RTaW-Pegase, which, in this setup, imple-
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Fig. 2. Frequency histograms of feasible and non-feasible configurations in the training set (4000 configurations) with respect to features’ values. The
histograms show that the features are able to cluster feasible and non-feasible configurations. However, the purple areas overlapping the two clusters suggest
that these features are not predictive enough to avoid any incorrect prediction.

ments the Optimal Priority Assignment algorithm [15]
shown optimal for the transmission of periodic/sporadic
streams in switched Ethernet network [16].

4) Manual classification with pre-shaping (Preshaping):
we re-use the manual classification with three priority
levels but apply a traffic shaping strategy called pre-
shaping in transmission” to all video-streams. Traffic
shaping is achieved by inserting idle times, pauses,
between the times at which the successive frames of
a segmented message (e.g. camera frame) are enqueued
for transmission. In the case-study in [17], this strategy
has been shown to perform as well as CBS without the
need for dedicated hardware and dedicated schedulabil-
ity analysis (i.e. it is compatible with the static priority
scheduling analysis). The principles of the algorithm to
set the idle times are described in [17].

Two schedulability analyses in Network-Calculus (NC),
based on results published in [18]–[20], are used in the
experiments:

• The ”approximate analysis” which computes WCTTs in
linear time with respect to the number of streams.

• The ”precise analysis”: WCTT computations execute in a
time that depends on the least common multiple (LCM)
of the frame periods, which can lead to an exponential
computation time if periods are coprime.

The reader can refer to [6] for typical computation times and
information about the class of (min,+) functions used in each
analysis. Importantly, the lower bounds proposed in [21], [22]
and used in [23] suggest that the existing NC schedulability
analyses for static priority scheduling are precise in terms of
the distance between the computed upper bounds and the true
worst-case latencies.

III. INSIGHTS INTO WHEN MACHINE LEARNING FAILS

In this section, we apply the ML technique introduced in [6]
and try to gain a better understanding of when ML fails.
Precisely, to predict the feasibility of TSN configurations, we
apply k-Nearest Neighbors (k-NN), a simple though powerful
supervised learning algorithm introduced in standard ML
textbooks like [24]. k-NN predicts the label (feasible/non-
feasible here) of unseen data points (TSN configuration here)
based on the label of the majority of their k nearest neighbors
in the feature space.

The performance of k-NN algorithm is evaluated through
1) the percentage of correct predictions (i.e., the overall
accuracy), 2) the true positive rate (TPR) (i.e. the percentage
of correct feasible predictions), and 3) the true negative rate
(TNR) (i.e. the percentage of correct non-feasible predictions).
In our experiments, the training set is made up of 4000 labelled
configurations while the testing set comprises 1000 unlabelled
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Fig. 3. 3D plots of k-NN feasibility predictions for Preshaping scheduling for the 1000 configurations of the testing set. The green, red and black points
represent true positive, true negative and wrong predictions, respectively. Wrong predictions mostly happen when the configuration lies between feasible and
non-feasible clusters.

configurations. Previous work [6] shows that k-NN has a
good prediction accuracy (from 92% to 96%, see Section IV).
However, unlike schedulability analysis, it may lead to ”false
positives” (i.e., configurations deemed feasible while they are
not). In this section, we try to shed light on when k-NN
produces incorrect predictions.

A. Predictive power of the selected features

Features in an ML algorithm are meant to capture the
domain-specific knowledge that is needed for ML to ”learn”
from the data. Here, we are not concerned with selecting, or
”engineering” better features but aim to understand when ML
cannot be trusted. We re-use the five features selected in [6]:
number of critical flows, audio flows, video flows, maximum
load over all links, balance the link loads (as measured by
the Gini index). The ability that a given feature has to predict
feasibility can be estimated with the frequency histogram of
feasible and non-feasible configurations with respect to the
feature values. Figure 2 shows the predictive power of the
five features when Preshaping scheduling is used. Similar
patterns are observed for the other scheduling mechanisms.
Table II provides further insights into the predictive ability
of the features with the Pearson coefficients of correlation
between the features values and feasibility.

From Figure 2 and Table II the most predictive features are
the maximum load, the number of critical flows and video
flows. The latter can be explained since video flows require a
large bandwidth and may have tight deadlines (up to 10ms for
the last of the 15 packets making up a camera image used in
an ADAS). In a similar manner, some command and control
frames have deadlines as low as 5ms. Intuitively, a maximum
load that is high will make it harder to find feasible scheduling
parameters for the flows routed on the most loaded link(s). The
histogram for the Gini index of the link loads (last histogram
in Figure 2) shows that non-feasible configurations tend to be

better balanced (i.e. lower value) than feasible configurations.
Since the source and destination of flows are chosen at random,
the load of the links in a configuration is more evenly balanced
if there are many flows (the difference to the mean decreases
exponentially fast with the number of flows because of the
large deviation principle, see [25] for an application).

TABLE II
PEARSON COEFFICIENT OF CORRELATION BETWEEN FEATURES VALUES

AND FEASIBILITY OF TSN NETWORKS. THE LABEL OF A NETWORK IS SET
TO 0 IF FEASIBLE OR 1 IF NON-FEASIBLE. THE CORRELATION BETWEEN

GINI INDEX AND FEASIBILITY IS NEGATIVE SINCE THE LARGER THE GINI
INDEX (i.e., THE LESS BALANCED THE LOAD), THE MORE LIKELY THE

NUMBER OF FLOWS TO BE SMALL AND THE NETWORK TO BE FEASIBLE.

Feature FIFO Manual CP8 Preshaping

# of critical flows 0.38 0.6 0.73 0.75
# of audio flows 0.35 0.55 0.68 0.69
# of video flow 0.43 0.67 0.79 0.8

Max load 0.5 0.72 0.8 0.73
Gini index -0.55 -0.67 -0.51 -0.5

In general, the selected features are predictive with respect
to feasibility of TSN configurations. However, the histograms
in Figure 2 shows that feasibility cannot be determined by
the individual features, and there are ”gray areas” in which
networks can be feasible or non-feasible.

B. Why ML prediction may fail?

The combined use of all the features enables ML to achieve
a better accuracy than using any of the features alone. Still,
there are areas in the feature space where both feasible and
non-feasible networks can be found. This can be seen in
Figure 3 which represents the correct (feasible networks in
green and non-feasible networks in red) and incorrect predic-
tions (in black) in the feature space. The three dimensions
are the number of flows of the different types. These three
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TABLE III
PERFORMANCE OF THE HYBRID VERIFICATION TECHNIQUE WHEN THE THRESHOLD (i.e., PROPORTION OF THE MINORITY IN THE SET OF K NEAREST

NEIGHBORS) VARIES FROM 5% TO 40%. THE FIRST ROW SHOWS THE BASELINE RESULTS WITH K-NN ALONE. COLUMN (#) IS THE NUMBER OF
CONFIGURATIONS REQUIRING PRECISE ANALYSIS. ACCURACY (ACC), TRUE POSITIVE RATE (TPR) AND TRUE NEGATIVE RATE (TNR) ARE EXPRESSED

IN PERCENTAGE. EXPERIMENTS CONDUCTED WITH A TESTING SET OF 1000 TSN CONFIGURATIONS.

FIFO Manual CP8 Preshaping

Threshold (%) (#) Acc TPR TNR (#) Acc TPR TNR (#) Acc TPR TNR (#) Acc TPR TNR

– 0 96.4 68 98.7 0 95.5 84.49 98.03 0 94.7 95.39 93.89 0 92.4 93.85 90.36
5 120 99.6 94.67 100 208 99.4 96.79 100 319 100 100 100 383 100 100 100
10 100 99.4 93.33 99.89 164 99 94.65 100 258 99.9 100 99.78 297 100 100 100
15 86 99.1 90.67 99.78 136 98.4 92.51 99.75 206 99.5 99.82 99.13 239 99.3 99.49 99.04
20 68 98.6 86.66 99.57 107 97.8 90.37 99.51 165 98.9 99.26 98.47 190 98.8 98.97 98.55
25 47 98.3 82.67 99.57 84 97.3 88.24 99.38 121 98.3 98.89 97.6 151 97.5 97.44 97.59
30 39 98.1 80 99.57 61 96.9 87.17 99.14 87 97.7 98.15 97.16 124 96.8 97.09 96.39
35 33 97.9 78.67 99.46 38 96.6 86.1 99.02 69 97.1 97.05 97.16 91 95.8 96.24 95.18
40 18 97.4 76 99.14 24 96.5 85.56 99.02 53 96.7 96.68 96.72 62 95.3 95.9 94.46

features directly determines the load of the network: in the
configurations with the largest number of flows, the ones that
are the most likely to be non-feasible, the maximum load will
be also high.

We observe that k-NN tends to produce wrong predictions
in areas where feasible and non-feasible configurations are
mixed. In those ”gray” areas, feasible neighbors do not signif-
icantly outnumber non-feasible neighbors, and vice-versa. We
could not find any effective voting rule for these areas. We
tested Support Vector Machines (SVM, see [24]) and faced
similar issues in the determination of the Maximum Margin
Hyper-plane (MMH) defining the boundary between feasible
and non-feasible configurations.

In the rest of the paper, we propose a method to identify
TSN configurations located in areas where k-NN is likely
to be wrong and conduct schedulability analysis on those
configurations to reduce the risk of incorrect prediction.

IV. HYBRID VERIFICATION STRATEGY COMBINING
MACHINE LEARNING AND SCHEDULABILITY ANALYSIS

From the insights in Section III and the experimental results
in terms of accuracy, we know that a nearest neighbors
algorithm like k-NN cannot be fully trusted for configurations
located in the gray areas. We therefore propose an hybrid veri-
fication strategy1 combining k-NN and schedulability analysis
that aims to reduce the rate of wrong predictions of ML, while
still improving the computation time compared to the use of
schedulability analysis alone.

A. Principles

The hybrid method relies on the following simple principles.
Given an unseen configuration, if the majority of its neighbors
does not ”significantly” outnumber the minority, the unseen
data is identified as in a gray area and its feasibility is
determined by the precise schedulability analysis. On the other
hand, if there is a clear consensus among the neighbors then
k-NN is trusted. It is worth noting that although the proposed

1The data and the R code used in this study is available as
open-source (AGPL V3.0) at https://github.com/crtes-group-unilux/
ML4TSN-Schedulability.

hybrid method is specified for the k-NN algorithm, it can be
adapted to any other ML algorithms with changes in how
the gray areas are identified. For instance, the distance of
the configuration under test to the MMH would be a natural
criterion for SVMs.

A crucial step of the hybrid method is to find a decision
criterion to trigger the execution of the schedulability analysis.
We use here the proportion of nodes in the minority group of
the k neighbors: schedulability analysis is conducted if the
proportion is over a certain threshold (referred to as threshold
for analysis). The performance of the hybrid method with
various threshold values is shown in Table III. The value of
k used for k-NN is the optimal value for a given scheduling
mechanism as determined in [6]: 30, 20, 80 and 20 for FIFO,
Manual, CP8 and Preshaping, respectively.

When the threshold for analysis is low, logically there
are more configurations requiring schedulability analysis (see
columns (#) in Table III), which leads to a higher accuracy.
In other words, the threshold value controls the prediction
accuracy. Importantly, when the threshold is low enough (i.e.,
5% for FIFO and 10% for the other policies), the hybrid
method does not return any false positive (FP) prediction. At
the threshold of 40%, compared to k-NN, the hybrid method
allows a decrease of 33%, 50%, 46% and 43% of the rate
of FP respectively for FIFO, Manual, CP8 and Preshaping
scheduling. It is also noteworthy that, with CP8 and Preshap-
ing scheduling, the hybrid method achieves 100% accuracy
without the need to perform schedulability analysis on all
configurations, but on 32% and 38% of them respectively.
However, one should bear in mind that when using this hybrid
approach one cannot rule out the possibility of misprediction,
even if it is less likely than using ML alone (e.g., for
Preshaping scheduling the accuracy improvement ranges from
2.9% to 7.6%, see Table III).

Table IV shows estimations, obtained by linear interpolation
from the numbers in Table III, of the number of configurations
requiring schedulability analysis to obtain a 99% prediction
accuracy. These estimations are provided for the k values
determined as optimal in [6] and k equals 100. It shows that
the more complex and powerful in terms of feasibility the
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Fig. 4. Accuracy (%) versus running time on 6-core 3.2Ghz Intel 8700 (seconds in log scale) with Manual scheduling for 103, 105 and 106 TSN configurations.
Squares, points and triangles identify results of k-NN, hybrid method and Precise analysis, respectively. The threshold for analysis of the hybrid method is
set to obtain 99% accuracy. Except for 103 configurations where precise analysis dominates the other techniques, each of the methods offers a meaningful
trade-off in terms of accuracy and execution times.

TABLE IV
ESTIMATED NUMBER OF CONFIGURATIONS REQUIRING PRECISE ANALYSIS

TO OBTAIN 99% PREDICTION ACCURACY, WITH K* THE OPTIMAL K
VALUE FOR K-NN FOR EACH SCHEDULING SOLUTION. COLUMN (#) GIVES

THE NUMBER OF CONFIGURATIONS REQUIRING PRECISE ANALYSIS OUT
OF 1000 CONFIGURATIONS.

FIFO Manual CP8 Preshaping

k 30* 100 20* 100 80* 100 20* 100

(#) 82 82 164 178 171 176 191 231

scheduling mechanism (see [6]), the more configurations are
requiring precise analysis. In addition, it shows that the values
of k identified as optimal in [6] still lead to better results
than the arbitrary value of 100. In practice, the accuracy that
can be achieved for a certain threshold value will depend
on how representative the training set is with respect to the
unseen data because the hybrid method involves supervised
ML. To mitigate this problem, as suggested in [26], one could
implement a measure to estimate the distance between the
training data and the unseen data, and lower the threshold
value to compensate for a lower efficiency of ML. Experiments
in [6] show however that feasibility prediction with k-NN is
robust to departure from the traffic characteristic assumptions
made for the training set.

Table V shows estimates (obtained by linear interpolation
from the numbers in Table III) of the prediction accuracy of
the hybrid method when exactly 10% of the configurations
undergo precise analysis. In practice, the maximum percentage
of schedulability analyses that can be conducted depends of
the CPU time budget available, from which the threshold
for analysis can be derived (e.g., by binary search). Table V

TABLE V
ESTIMATED PREDICTION ACCURACY (%) OF THE HYBRID METHOD IF

RUNNING PRECISE ANALYSIS IN 10% OF THE CONFIGURATIONS. ACC IS
ACCURACY IN %.

FIFO Manual CP8 Preshaping

k 30* 100 20* 100 80* 100 20* 100

Acc 99.4 99.4 97.65 97.96 97.93 97.92 96.07 95.83

shows a decrease in accuracy when the scheduling mechanism
becomes more complex. Based on these estimations, using the
k values that are optimal for the standard ML algorithm is still
preferable, except in the case of Manual scheduling where k
equals 100 is a better choice.

B. New trade-offs between accuracy and computation times

Figure 4 shows for Manual scheduling the trade-offs be-
tween accuracy and running times obtained with standard k-
NN, the hybrid method and precise analysis (measurements
on a 6-core 3.2Ghz Intel 8700 CPU). The other scheduling
mechanisms lead to similar patterns in terms of accuracy
versus running times. The speedup factors for a 99% accu-
racy obtained for all scheduling mechanisms are shown in
Table VII.

These experimental results lead to the observations summa-
rized below:

• For a small number of configurations (103 here), neither
ML or the hybrid method are competitive with schedula-
bility analysis as they are both less accurate and slower.
The latter is due to the time it takes to create the training
set (around 3 hours for all four scheduling mechanisms).
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TABLE VI
ACCURACY OF THE MULTI-STAGE HYBRID METHOD COMBINING K-NN, APPROXIMATE AND PRECISE ANALYSIS OBTAINED OVER 1000 TEST

CONFIGURATIONS. THE FIRST ROW SHOWS THE RESULTS WITH K-NN ONLY WHILE THE OTHERS ARE FOR ANALYSIS THRESHOLD VALUES FROM 5% TO
40%. THE VALUE OF K FOR K-NN IS 30 FOR FIFO AND 20 FOR MANUAL SCHEDULING. COLUMNS (1) AND (2) ARE THE NUMBER OF CONFIGURATIONS
REQUIRING THE EXECUTION OF THE APPROXIMATE AND THE PRECISE ANALYSIS, RESPECTIVELY. ACCURACY (ACC), TRUE POSITIVE RATE (TPR) AND

TRUE NEGATIVE RATE (TNR) ARE SHOWN IN PERCENTAGE (%).

FIFO Manual

Threshold (%) (1) (2) Acc TPR TNR (1) (2) Acc TPR TNR

– 0 0 96.4 68 98.7 0 0 95.5 84.49 98.03
5 181 137 99.8 97.33 100 208 166 99.4 96.79 100
10 100 64 99.4 93.33 99.89 164 132 99 94.65 100
15 86 53 99.1 90.67 99.78 136 109 98.4 92.51 99.75
20 68 40 98.6 86.67 99.57 107 81 97.8 90.37 99.51
25 57 35 98.4 84 99.57 84 62 97.3 88.24 99.38
30 39 27 98.1 80 99.57 61 44 96.9 87.17 99.14
35 33 23 97.9 78.6 99.46 38 28 96.6 86.1 99.02
40 18 9 97.4 76 99.14 24 18 96.5 85.56 99.02

TABLE VII
ESTIMATES OF THE SPEEDUP FACTORS OF THE HYBRID METHOD

COMPARED TO SCHEDULABILITY ANALYSIS FOR ALL SCHEDULING
MECHANISMS AND AN INCREASING NUMBER OF CONFIGURATIONS

(COLUMN (#)). THE HYBRID METHOD IS CONFIGURED TO ACHIEVE A 99%
PREDICTION ACCURACY. ESTIMATES OBTAINED BY LINEAR

INTERPOLATION BASED ON THE ACCURACY OBTAINED WITH THRESHOLD
VALUES RANGING FROM 5 TO 40% BY STEP 5%.

(#) FIFO Manual CP8 Preshaping

103 0.24 0.24 0.24 0.24
105 8.19 4.9 4.74 4.33
106 11.62 5.95 5.71 5.13

• For a medium and large number of configurations (105

and 106 here), each method is Pareto optimal and offers
a distinct and meaningful trade-off between accuracy and
running times. A 99% accuracy can be obtained with
the hybrid method with a speedup factor ranging from
4.33 to 11.62 over schedulability analysis. ML alone
is faster (e.g., speedup of 26 over the analysis for 105

configurations with Manual scheduling) but the accuracy
lower (i.e., 95.5%).

V. MULTI-STAGE HYBRID APPROACH WITH AN
APPROXIMATE ANALYSIS

For the same system, one can develop schedulability anal-
yses with different degrees of pessimism and different execu-
tion times. Up to now, all experiments were conducted with
a precise analysis that, considering Manual scheduling for
instance, takes about 40 times longer than the approximate
analysis introduced in Section II (see [6] for comprehensive
measurements).

The approximate analysis, because it is more pessimistic,
will lead to more false negatives (i.e., configurations deemed
unfeasible while they actually are feasible) than the precise
analysis but will never lead to any false positives. Based on this
observation, we can combine the use of k-NN, approximate
and precise analysis to create a hybrid multi-stage verification
method as follows:

1) Predict feasibility of the configurations with k-NN.
2) Use the threshold criteria introduced in Section IV to

identify the set of configurations in the gray area and run
the approximate analysis on them. If the approximate
analysis concludes that a configuration is feasible, the
configuration is removed from the ”gray” set.

3) Run the precise analysis to determine the feasibility for
the rest of the configurations in the ”gray” set.

The approach could be extended to include additional stages if
other schedulability analyses are available, or any other means
of verification that possesses the property to not create false
positives.

The performance of the new method is presented in Ta-
ble VI. Results are not shown for CP8 and Preshaping schedul-
ing, the latter because we don’t have an approximate analysis
for Preshaping. Regarding CP8, the approximate analysis was
not able to identify any configuration in the gray area as
feasible, and thus did not bring any improvement. This does
not invalidate the approach but shows that the power of the
approximate analysis (i.e., the rate of false negatives) plays
an important role in the overall efficiency. For FIFO and
Manual scheduling, Table VI shows a reduction in the number
of configurations requiring precise analysis with respect to
the baseline hybrid method. Precisely, with a 99% prediction
accuracy target, the multi-stage hybrid approach allows to
reduce the number of precise analyses by 38% for FIFO and
19% and Manual scheduling.

VI. SUMMARY AND CONCLUSIONS

The proposed hybrid method combining ML and scheduling
analysis can decrease the rate of false positive predictions
and increase the overall accuracy with respect to the use
of ML alone while reducing the computation time by a
several-fold factor with respect to a precise schedulability
analysis. If a sound schedulability analysis ensures no false
positives, they cannot be ruled out with ML predictions. This
is why, in a design-space exploration workflow, we think that
solutions deemed feasible by ML and retained to be part of the
final set of solutions proposed to the designer, must undergo
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schedulability analysis. Still, schedulability analysis will only
be performed for the final set of solutions and not for each
of the candidate solutions which has been created during the
exploration of the search space.

In this study, we implemented the hybrid method with k-
NN as the ML algorithm but the concept of hybrid verification
techniques for feasibility analysis can be adapted to any
other supervised ML algorithms with changes in the criterion
that triggers schedulability analysis. Importantly, the hybrid
method neither requires a huge amount of data nor important
computing power, it can be integrated into the toolbox of the
network designers and run on standard desktop computers.

Increasing the control, and the trust we can have on ML-
based techniques is crucial for their adoption in the industry.
This is true in particular for design-space exploration and
generative design approaches leveraging the new possibilities
brought by ML. By further automating the design and con-
figuration, these algorithmic tools will help designers handle
the increasing size and complexity of communication architec-
tures, often based on multiple protocols and communication
paradigms. Upcoming communication systems, be it in the
automotive or industrial domain, will increasingly be subject to
dynamically evolving communication requirements that may
require network re-configuration at run-time. To support these
new use-cases, we need techniques like proposed in this
paper that help speed up the timing verification of critical
communication systems.
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