Rapport de recherche externe (Rapports)
Using Machine Learning to Speed Up the Design Space Exploration of Ethernet TSN networks
NAVET, Nicolas; MAI, Tieu Long; Migge, Jörn
2019
 

Documents


Texte intégral
feasibility-with-ml.pdf
Postprint Éditeur (1.36 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
timing verification; machine learning; Time-Sensitive Networking (TSN); supervised learning; unsupervised learning; schedulability analysis; real-time systems; design-space exploration
Résumé :
[en] In this work, we ask if Machine Learning (ML) can provide a viable alternative to conventional schedulability analysis to determine whether a real-time Ethernet network meets a set of timing constraints. Otherwise said, can an algorithm learn what makes it difficult for a system to be feasible and predict whether a configuration will be feasible without executing a schedulability analysis? In this study, we apply standard supervised and unsupervised ML techniques and compare them, in terms of their accuracy and running times, with precise and approximate schedulability analyses in Network-Calculus. We show that ML techniques are efficient at predicting the feasibility of realistic TSN networks and offer new trade-offs between accuracy and computation time especially interesting for design-space exploration algorithms.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
NAVET, Nicolas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
MAI, Tieu Long ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Migge, Jörn;  RealTime-at-Work (RTaW)
Langue du document :
Anglais
Titre :
Using Machine Learning to Speed Up the Design Space Exploration of Ethernet TSN networks
Date de publication/diffusion :
29 janvier 2019
Maison d'édition :
University of Luxembourg
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 29 janvier 2019

Statistiques


Nombre de vues
1023 (dont 47 Unilu)
Nombre de téléchargements
3341 (dont 97 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu