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Abstract:  In this work, we ask if Machine Learning (ML) can provide a viable alternative to 

conventional schedulability analysis to determine whether a real -time Ethernet network meets a 

set of timing constraints. Otherwise said, can an algorithm learn what makes it difficult for a 

system to be feasible and predict whether a configuration will be feasible without executing  a 

schedulability analysis? In this study, we apply standard supervised and unsupervised ML 

techniques and compare them, in terms of their accuracy and running times, with precise and 

approximate schedulability analyses in Network-Calculus. We show that ML is efficient at 

predicting the feasibility of realistic TSN networks, above 93% of accuracy for the best ML 

algorithm tested whatever the exact TSN scheduling mechanism, and offer new trade -offs between 

accuracy and computation time that are especially interesting for design-space exploration 

algorithms. 
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1  T he  de s i gn  a nd  con f igu r a t io n  o f  T SN ne tw or k s  

1.1  TSN opens up a wealth of possibi l it ies at the data l ink layer  

Ethernet is becoming the prominent layer 2 protocol for high-speed communication in real-time 

systems. Over time it appears that it will be replacing most other wired high-speed local area 

network technologies, be it in the industrial and automotive domains, or even for telecom 

infrastructures. These applications domains often have strong Quality of Service (QoS) 

requirements that include performance (e.g., latency, synchronization and throughput 

requirements), reliability (e.g., spatial redundancy)  and security (e.g., integrity), which cannot be 

met by the standard Ethernet technology.  

The IEEE802.1 TSN TG (Time Sensitive Networking Technical Group), started in 2012, is a follow-

up initiative to the IEEE AVB (Audio Video Bridging) TG meant to develop the technologies to 

address these QoS requirements. Companies, mainly from the industry and telecom domains, as 

well as hardware vendors, are driving the works in IEEE802.1 TSN TG with respect to their 

technical and business roadmaps. TSN TG has developed more than 10 individual standards, 

which, after their adoption as amendments to the current IEEE802.1Q specification, are 

integrated into the newest edition of IEEE802.1Q ([IEEE802.1Q-2018] at the time of writing). The 

reader interested in a survey of the TSN standards related to low -latency communication, and the 

ongoing works within TSN TG can refer to [Na18]. 

TSN protocols offer a wealth of possibil ities to the network architect. For instance, temporal QoS 

can be implemented through the use of priorities, as offered by 802.1Q [IEEE802.1Q-2018], 

traffic shaping with the Credit-Based Shaper (CBS) of [IEEE802.1Qav] or time-triggered 

transmissions with the Time-Aware Shaper (TAS) of [IEEE802.1Qbv]. Other powerful mechanisms 

include frame pre-emption defined in [802.1Qbu], and flexible per-stream shaper as currently 

being worked on in [IEEE802.1Qcr].   Importantly, these protocols and mechanisms can be used 

in a combined manner, for instance TSN/TAS for the highest -priority traffic, then AVB CBS at the 

two immediate lower priority levels followed by a number of best -effort traffic classes each 

assigned to a distinct priority level (see [MiViNaBo18b] for a realistic automotive case-study 

showcasing the joint use of several TSN protocols).  Besides temporal QoS, TSN provides support 

for other requirements like dependability, e.g. through frame replication [IEEE802.1CB] and per-

stream filtering [IEEE802.1Qci], which further increases the complexity of the design problem.  

1.2  The complexity of configuring TSN networks  

All the technical possibilities offered by TSN provide a lot of flexibility and power to the designer to 

meet the requirements of an application and use the bandwidth in an efficient manner. It however 

makes the configuration step much harder for several reasons: the largely increased size of the 

space of possible configurations and the non-trivial interactions between the protocols. The sole 

problem of configuring time-triggered transmissions with TAS (i.e., defining the Gate Control List 

schedules on all network devices) is known to be intractable (see [SOCrSt18]) in the sense that 

there is no polynomial-time algorithm to find an optimal solution. There are however efficient 

algorithms to solve this problem for the Qbv protocol [Ra17, SOCrSt18], as well as most other 

technology-specific configuration problems like setting the traffic shaper parameters 

[IEEE,NaMiViBo18] or choosing the priorities for a set of streams [HaScFr14]. In our view, the 

global problem of selecting the suitable TSN protocols for the application at hand, and configuring 

them in an efficient, if not optimal manner remains largely unaddressed. In the industrial practice, 

these design choices cannot be made on technical grounds only, they have to integrate other 

concerns like costs, time-to-market and the risk of adopting a new technology. This means that, in 

a specific industrial context, some technical solutions  have to be ruled out because they would not 

allow meeting certain constraints like typically time-to-market.   
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1.3  Design Space Exploration for automating the design of TSN networks 

Design-Space Exploration (DSE), that is design decisions based on the systematic exploration of 

the search space, encompasses a set of techniques used in various domains like e lectronic circuit 

design or 3D modelling that are increasingly leveraging the possibilities brought by ML, see for 

instance [EEN18].  

The complexity of designing and configuring TSN networks calls for DSE algorithms to assist in 

the selection and configuration of TSN protocols.  An algorithm that serves this purpose is 

ZeroConfig-TSN (ZCT), presented in [MiViNaBo18a,NaViMi18] and implemented in the RTaW-

Pegase tool [Peg18]. Its overall goal is to create the most efficient solutions given communication 

requirements and set of TSN mechanisms chosen by the designer.  As depicted in Figure 1, it 

works by iteratively creating candidate solutions using the allowed set of TSN mechanisms, 

configuring the mechanisms using dedicated algorithms, and then assess by schedulability 

analysis or simulation whether the requirements are met by the candidate solutions.  

For networks, even with optimized implementations of simulator and schedulability analysis, this 

last step is compute intensive and drastically limits the size of the search space that can be 

explored.  For instance, assessing the feasibility of the TSN network used in the experiments of 

this study with 500 flows scheduled with three priority levels requires an average 470ms 

computation time (Intel I7-8700 3.2Ghz) per configuration, resulting in about 131hours for 10
6
 

candidate solutions. To mitigate this problem, this work studies whether ML algorithms can be a 

faster alternative to conventional schedulability analysis to determine whether a real -time TSN 

network meets a set of timing constraints. A drastic speed -up in feasibility testing thanks to ML 

would facilitate the adoption of DSE algorithms in the design of E /E architectures.      

 

 

 

Figure 1: Illustration of design-space exploration for TSN networks with Zero-Config TSN (figure 

from [MiViNaBo18a]). 

 

We believe high-level functions like ZCT will increasingly be used be it alone because they provide 

solutions to problems that cannot be solve manually as efficiently in the same amount of time. In 

our view, it is key that these algorithms incorporate as much domain-specific knowledge as 

possible, as, in our experiments with evolutionary algorithms, computing power alone does not 

lead to efficient solutions. With such techniques belonging to the realm of generative design, the 

designer has to accept to not exactly know how the solution is created . What is mandatory though 

is that the designer is provided with proofs that the retained solution meets the requirements.   
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1.4  Verif ication of timing constraints  

The two main model-based approaches to assess whether a real -time system meets its temporal 

constraints are: 

 Schedulability analysis, also called feasibility analysis, worst-case analysis, response time 

analysis or worst-case traversal time analysis in the case of networks,  is a mathematical 

model of the system used to derive upper bounds on the performance metrics 

(communication latencies, buffer usage, etc).  Typically, the model will focus on a subset of 

the possible trajectories of the systems that are proven to contain the most pessimistic 

scenarios.  

 Timing-accurate simulation: a system is characterized by a certain state Sn and a set of 

rules to change from state n to n+1: Sn+1 = F( Sn+1) are defined in the simulation model. 

The evolution of the system depends on this set of evolution rules and the sequence of 

values provided by the random generator.  The model can abstract everything that is not 

relevant from the timing point of view but must capture all activities having an impact on 

the performance metrics, like typically the waiting time of a packet in any network device.     

Some temporal constraints of an application can be checked by schedulability analysis (e.g., 

deadline constraints for safety critical streams) while others should be verified by simulation (e.g., 

TCP throughput for data upload [HaKi16,NaMi18]).  Indeed, simulation is the only solution when 

no schedulability analysis exists, e.g. for application-specific traffic patterns (diagnostic data) and 

complex high-level protocols as TCP. Simulation is also required for performance metrics like 

throughput that cannot be evaluated by conventional schedulability analysis. Simulation is more 

versatile than schedulability analysis in the sense that it suited for complex systems as well, and 

any quantities the designer is interested in can be collected during simulation runs.  

The main drawback of simulation is that, even if the coverage of the verification can be adjusted 

to the requirements (see [Na14]), it only provides statistical guarantees and not firm guarantees. 

Simulation is thus better suited to evaluate performance metrics pertaining to the less critical 

streams. Interestingly, in today’s complex automotive communication architectures, both 

schedulability analysis and simulation have usually to be employed for the same application, making 

up what can be referred to as “mixed-criticality timing analysis”.  

1.5  Contributions of the study 

This work explores the extent to which supervised and unsupervised ML techniques can be used 

to determine whether a real-time Ethernet configuration is schedulable or not, and quantifies the 

prediction accuracies and computation times that can be expected.  Intentionally, to ensure the 

practicality of our proposals, we study these questions using standard ML techniques that can 

run on desktop computers with relatively small amounts of training data. Although ML has been 

applied to diverse related areas including performance evaluation (see Section 7 for a review of 

the state-of-the-art), this is to the best of our knowledge the first study to apply ML to determine 

the feasibility of a real-time system.   

1.6  Organisation of the document 

The remainder of this document is organised as follows. In Section 2, we introduce the TSN 

network model and define the design problem. Section 3 presents the schedulability analyses that 

will serve as benchmarks for ML algorithms.  In Section 4 and Section 5 we apply respectively 

supervised and unsupervised learning algorithms to predict feasibility. Section 6 provides a recap 

of the results achieved and a comparison with the performances that can be obtained with 

conventional schedulability analysis . In Section 7, we give an overview of the applications of ML 

techniques in related domains. Finally, Section 8 provides first insights gained about the use of ML 
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techniques for timing analysis and identifies several possible improvements and research 

directions.  

2  E t he rne t  TSN  mode l  a nd  de s ig n  prob l em  

In this work, we consider that the network topology (layout, link data rates, etc) has been set as 

the well as the TSN protocols that the network devices must support. The supported TSN protocols 

determine the space of scheduling solutions that are feasible (e.g., FIFO, priority levels plus traffic 

shaping, etc). This is realistic with respect to industrial contexts, like the automotive and 

aeronautical domains, where most design choices pertaining to the topology of the networks and 

the technologies are made early in the design cycle at a time when the communication needs are 

not entirely known. Indeed, many functions become available later in the development cycle or are 

added at later evolutions of the platform. 

2.1  TSN model  

We consider a standard switched Ethernet network supporting unicast and multicast 

communications between a set of software components distributed over a number of stations. In 

the following, the terms “traffic flow” or “traffic stream” refers to the data sent to the receiver of 

an unicast transmission or the data sent to a certain receiver of a multicast transmission (i.e., a 

multicast connection with n receivers creates n distinct traffic flows). A number of assumptions 

are placed: 

 All packets, also called frames, of the same traffic flow are delivered over the same path: 

the routing is static as it is today the norm in critical systems, 

 It is assumed that there are no transmission errors and no buffer overflows leading to 

packet loss. If the amount of memory in switches is known, the latter property can be 

checked with schedulability analysis as it returns both upper bounds on stream latencies 

and maximum memory usage at switch ports,   

 Streams are either periodic, sporadic (i.e., two successive frames become ready for 

transmission at least x ms apart) or sporadic with bursts ( i.e., two successive burst of n 

frames become ready for transmission at least x ms apart). The latter type of traffic 

corresponds for instance to video streams from cameras that cannot fit into a single 

Ethernet frame and must be segmented into several frames.  

 The maximum size of the successive frames belonging to a stream is known, as required 

by schedulability analysis.  

 The packet switching delay is assumed to be 1.3us at most.  This value, which of course 

varies from one switch model to another, is in line with the typical latencies of modern 

switches 

2.2  Traff ic characterist ics   

The traffic is made up of three classes whose characteristics are summarized in Table 1.  The 

characteristic of the streams and their proportion is the same as in [NaMi18], which in turn is 

inspired from the case-study provided by an automotive OEM in [MiViNaBo18b, NaViMiBo17].  

 

Audio Streams 

 128 or 256 byte frames  

 periods: 1.25ms 

 deadline constraints either 5 or 10ms 

 proportion: 7/46 
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Video Streams 

 ADAS + Vision streams 

 30*1500byte frame each 33ms (30FPS camera 

for vision) 

 15*1000byte frame each 33ms (30FPS camera 

for ADAS) 

 10ms (ADAS) or 30ms (Vision) deadlines 

 proportion: 7/46 

Command & Control 

(C&C) 

 from 53 to 300 byte frames 

 periods from 5 to 80ms 

 deadlines equal to periods 

 proportion: 32/46 

Table 1: Characteristics of the three types of traffic. The performance requirement is to meet 

deadline constraints. The frame sizes indicated are data payload only.  

 

In the experiments, the number of streams varies but the proportion of each stream (indicated in 

Table 1) is a fixed parameter of the stream generation procedure chosen as in [NaMi18].  Each 

stream is either unicast or multicast with a probability 0.5. The number of receivers for a multicast 

stream is chosen at random between two and five. The sender and receiver(s) of a stream are set 

at random.  

2.3  Network topology 

The topology considered in this this study, intentionally chosen simple, is the same as in [NaMi18] 

and similar in terms of structure to the prototype Ethernet network developed by an automotive 

OEM a few years ago [NaSeMi16]. As shown in Figure 1, the network comprises two switches and 

height nodes. The data transmission rate is 100Mbps on all links except 1Gbps on the inter-switch 

link to avoid the severe bottleneck that can occur with such “dumbbell” topology.  

_j  

Figure 1: Topology of the prototype network used in the experiments. The unicast stream shown 

here goes from ECU1 to ECU6 (RTaW-Pegase screenshot). 

Nb: experiments with the more complex network topology from [NaViMiBo17] are presented in 

[MaNaMi19b]. Although the exact results vary, the main takeaways from this report remain valid 

with the more complex topology.  

2.4  Designing and conf iguring TSN networks 

Besides eliciting the communication requirements and proposing a candidate topology, TSN design 

and configuration involves a number of additional sub -problems: 

 Group traffic streams into traffic classes and set the relative priorities of the traffic 

classes: up to 8 priority levels are possible in TSN [IEEE802.1Q-2018], 

 Select the QoS protocols for each traffic class: priorities alone, shaping with CBS, time -

triggered transmission with exclusive bus access (“exclusive gating”) with TAS, etc  
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 Configure each traffic class: parameters of CBS ( i.e., class measurement interval (CMI), 

values of the “idle slopes” per class per switch), Gate Control List (i.e. TT transmission 

schedule) for TAS in each switch, etc . 

 If frame pre-emption is used [802.1Qbu], decide the subset of traffic classes that can be 

pre-empted by the rest of the traffic classes. 

In the following, a possible configuration, or candidate solution, refers to a TSN network that has 

been fully configured as detailed above, while a feasible configuration is configuration that meets 

all the application’s constraints.  

The number of possible candidate solutions depends on the set of allowed mechanisms. In this 

study, we consider the following solutions corresponding to distinct trade -offs in terms of their 

complexity and their ability to meet diverse timing constraints : 

1. FIFO scheduling (FIFO): all streams belong to the same traffic class and thus have the same 

level of priority. This is the simplest possible solution.  

2. Priority with manual classification (Manual): the streams are grouped into the three 

classes shown in Table 1 and their priority is as follows: C&C class above audio class above 

video class. This can be seen as the baseline solution that a designer would try based on 

the criticality of the streams.  

3. “Concise priorities” with height priority levels (CP8): “concise priorities” is the name of the 

priority assignment algorithm in RTaW-Pegase, which relies on the same principles as the 

Optimal Priority Assignment 1 algorithm for mono-processor system [Aud01] that has been 

shown to be optimal as well with an analysis developed with "the trajectory approach"  for 

the transmission of periodic/sporadic streams in switched Ethernet network s [HaScFr14].  

With concise priorities, unlike with manual classification, flows of the same type can be 

assigned to different traffic classes and more than three priority levels will be used if 

required by the timing constraints.  

4. Manual classification with “pre-shaping” (Preshaping): we re-use the manual classification 

with three priority levels but apply a traffic shaping strategy called “pre-shaping” in 

transmission to all video-streams. This traffic shaping strategy, combines standard static 

priority scheduling with traffic shaping introduced by inserting idle times, pauses, between 

the times at which the successive frames of a segmented message (e.g. camera frame) 

are enqueued for transmission. All the other characteristics of the traffic remain 

unchanged. In [NaMiViBo18], this strategy has been shown to perform as well as CBS 

without the need for dedicated hardware. In our context, pre-shaping will benefit to video 

streams as it will reduce the interference brought by same priority video streams by 

intertwining the transmissions of the different video streams sharing the same links. The 

principles of the algorithm used to set the idle times, available under the name of “Pres h” 

algorithm in RTaW-Pegase, are described in [NaMiViBo18]. 

This set of scheduling solutions has been selected to include two main QoS strategies, namely 

static priority scheduling and traffic shaping. Importantly, the lower bounds obtained in 

[BaScFr12,BoNaFu12] suggest that the existing schedulability analyses for these relatively simple 

scheduling mechanisms are accurate in terms of the distance between the computed upper 

bounds and the true worst-case latency.   

                                                      
1 “Concise Priorities" and OPA differ by how unfeasible configurations are handled: concise priorities returns a priority assignment 
that tries to minimize the number of flows not meeting their constraints, while this is not part of standard OPA. This differ ence 
however does not play a role in this study.  Whether OPA remains optimal in the TSN context with other analyses and other 
formalisms than the trajectorial approach such as Network-Calculus, as used in the paper, or Event -stream is to the best of our 
knowledge an open question. Experiments not shown here suggest that OPA is anyway efficient at finding feasible priority 
allocations with the schedulability analyses used in this report.  
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3  Ve r i f i ca t ion  w i th  sc hed u l ab i l i t y  a n a l ys i s  

Worst-case traversal time (WCTT) analysis, also referred to as schedulability analysis, is the 

technique that is the best suited to provide the firm guarantees on latencies, jitters and buffer 

utilization needed by critical streams. There are different mathematical formalisms to develop 

WCTT analysis: Network-Calculus [LBTh01] or NC for short, Real-Time Calculus [ThChNa00], 

which is a specialization of NC for real-time systems, but also the trajectorial approach [LiGe16] 

and the event-stream approach as used for TSN in [ThErDi15]. Network-Calculus has probably 

been the dominant approach for the performance evaluation of safety critical embedded networks, 

one reason being that it has been used in aeronautics certification for the last 15 years, but 

recent results show that several of these formalisms can be unified into a larger theory [BoRo16].  

3.1  A spectrum of schedulabi l ity analyses  

Schedulability analyses, except in simple scheduling models like fixed-priority non-preemptive 

scheduling on CAN buses [Dav07], are pessimistic in the sense that they provide bounds on the 

quantity of interest instead of the exact values. The exact degree of pessimism (i.e., tightness of 

the bounds) is hard to quantify, or even to foresee, although in some cases we can estimate it by 

comparison with lower bounds as done in [BaScFr12] and [BoNaFu12] (the latter study relies on 

the lower bounds from [BaScFr10]). It can be useful to develop several analyses for the same 

system, each offering a specific trade-off with respect to accuracy, computation time (e.g., linear 

or exponential time) and development time. Typically , as further discussed in [BoNaFu12], a 

network-calculus analysis can be characterized by three main attributes: 

1. the internal representation of numbers (e.g., floating point or fractional representation), 

2. the class of mathematical functions on which the computations are done  (e.g. simple 

Increasing Convex or Concave functions (ICC) or more accurate Ultimately Pseudo Periodic 

functions (UPP), see [BoTh07]), 

3. how input streams are modeled (e.g., stair-case or linear work arrival functions). 

The more approximate the analysis, the faster it is for a given system as less computation is 

needed. Typically, not considering stair-case arrival functions but linear functions drastically 

reduces the number of computations needed at the expense of accuracy.  For example in 

[BoNaFu12] the authors, using an earlier version of the RTaW-Pegase tool2, report for AFDX 

networks a difference of computation time of approximately a factor 10 for the two analyses at 

the opposite ends of the spectrum of analyses in terms of complexity. Large dif ferences in 

computation time between precise and approximate analyses exist for CAN network s as well as 

shown in [Fra19]. 

In the following, we will use in the experiments two analyses for static-priority scheduling in TSN 

offering distinct trade-offs between computation time and accuracy:  

 The approximate analysis: ICC function class / fractional number representation / token 

bucket stream model. For this approximate analysis, WCTT computation execute in a time 

that is linear with the number of streams. 

 The precise analysis: UPP function class / fractional number representation / stair-case 

stream model. For this accurate analysis, WCTT computations execute in a time that 

depends on the least common multiple (LCM) of the frame periods, which can lead to an 

exponential computation time if periods are coprime (i.e., periods do not share any other 

positive divider other than 1).    

These two analyses, available in RTaW-Pegase, are based on results published in [BoTh07,  

BoMiNa11,Que12]. As the use of floating point numbers may give rise to numerical accuracy 

                                                      
2 See https://www.realtimeatwork.com/software/rtaw-pegase/  

https://www.realtimeatwork.com/software/rtaw-pegase/
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problems, possibly leading to configurations deemed feasible while they are not, the two analyses 

implement rational number computation.   

3.2  Feasibil ity : false positive and false neg ative  

Whatever the schedulability analysis used, it should be safe in the sense that it actually provides 

worst-case results or at least upper-bounds on the metrics considered ( i.e., latencies, jitters and 

buffer usage).  A schedulability analysis must thus rule out the possibility of false positives: 

configurations that are deemed feasible while they are not. On the other hand, the proportion of 

false negatives (i.e., configurations deemed non-feasible while they actually are) directly depends 

on the tightness/accuracy of the analysis.  

In statistical terms, false positives, called type 1 error, determine the significance of the test, 

while false negatives, called type 2 error, determines the power of the test. A sound schedulability 

analysis ensures no type 1 error but prediction of the feasibility using machine learning 

techniques, as investigated in this work, will lead to a certain amount of type 1 errors. This is why, 

in a design-space exploration workflow, we think that solutions deemed feasible by machine 

learning (or any other technique possibly leading to false positives) and retained to be part of the 

final set of solutions proposed to the designer, must undergo a conventional schedulabi lity analysis 

to ensure their actual feasibility. However schedulability analysis will only be performed for the 

final set of solutions and not for each of the candidate solution which has been created during the 

exploration of the search space.    

3.3  Schedulabi l ity analysis execution t imes  

Among the four scheduling mechanisms presented in §2.4, FIFO and Manual do not entail any 

further configuration before a schedulability analysis can be executed. On the other hand, CP8 

iteratively explores the search space to find a feasible priority allocation. Similarly, Preshaping 

tries in an iterative manner to find the shaping parameters leading to the optimal solution in terms 

of spreading out the load over time [NaMiViBo18] . In both cases, the time needed to assess the 

feasibility of a configuration includes computation that is not purely related to schedulability 

analysis, and both CP8 and Preshaping require the execution of several, usually many 

schedulability analyses each of the same complexity as the one for Manual scheduling (i.e., static 

priority scheduling). In order to not account for the time it takes to configure a policy , we provide 

hereafter the running times of the schedulability analysis for Manual scheduling.      

Figure 1 shows the boxplots of the execution times for both analyses with RTaW-Pegase V3.3.6 

on a single CPU core of a 3.2Ghz Intel I7-8700 for a varying number of streams. Four hundred 

random configurations with Manual scheduling are tested for feasibility for any number of streams 

shown in the plot. The first observation is that the execution times are small : 471ms on average 

with the precise analysis for configurations with 500 streams versus 13ms with the approximate 

analysis. This comes from both the efficiency of the implementations, which have been used and 

tuned for over 10 years, and, importantly, from the reasonnable value of the Least Common 

Multiple (LCM) of the frames’ periods (160 seconds here with the 30 FPS cameras modeled as 

sending an image every 32ms instead of 33.33ms as typically done). . A second observation is that 

the execution times increase linearly with the size of the problem. In terms of the average 

execution times, the approximate analysis is much faster than the precise analysis with a speedup 

factor ranging from 34 to 46.  
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Figure 2: Boxplots (“whiskers” plots) of the computation times (ms) for the precise (blue plot) and 

approximate schedulability analyses (red plot) for a number of streams ranging from 100 to 500.  

The computation is performed with a single thread for all experiments. Each boxplot is created 

from samples of size 400. The bodies of the boxes are delimited by the 25% quantile (Q1) and the 

75% quantile (Q3), while the upper, respectively lower “whisker”, extends to 1.5 * (Q3-Q1) above, 

respectively below Q1 and Q3. Outliers, here the points beyond the whiskers, are not shown in the 

plots.  

Table 2 shows the average execution times as well as the associated margins of errors (i.e., half 

the width of the confidence interval expressed in percentage)  that quantify the uncertainty due to 

the fact our measurements are not exhaustive, they cannot, but only consists of 400 runs for a 

given number of flows. As the sequences of execution times, whatever the analysis and the number 

of flows, do not follow a normal distribution (i.e., the Jarque-Bera normality test is rejected at the 

1% significance level), the standard formula to estimate the margins of errors cannot be applied 

here. As classically done in such situation, we used bootstrap simulations to estimate the margin 

of errors with the number of simulations set as suggested in [LB10]. The small values observed 

for the margins of error (less than 2.08%) suggest that in our context the number of 

measurements is sufficiently large.  

 

 Precise analysis Approximate analysis 

Number of flows 

per configuration 

Average 

execution times 

Margin of error  Average 

execution times 

Margin of error  

100 159.45ms 2.08% 4.61ms 1.60% 

200 292.32ms 1.07% 6.35ms 0.75% 

300 371.11ms 0.80% 8.45ms 0.60% 

400 425.49ms 0.65% 10.56ms 0.48% 

500 470.63ms 0.57% 12.79ms 0.41% 

Table 2: Average execution times and corresponding margins of errors for the precise and the 

approximate analysis of the Manual scheduling solution. The first 10 and last 10 measurements 

have been discarded.  

Let us consider a design space exploration algorithm that would evaluate 1000,000 

configurations with 500 flows over the course of its execution , the approximate schedulability 

analysis would take less than 4 hours to execute on a single core versus about 131 hours for the 

precise analysis. The motivation of this work is to investigate whether machine learning techniques 

could allow drastically reduce this computation time , enabling thus a much more extensive 

exploration of the search space. 
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It should be noted that RTaW-Pegase offers multi-threaded versions of the two schedulability 

analyses used in this study with a speed-up that is close to linear with the number of CPU cores. 

To get a more precise comparison, we decided in this Section to not show measurements with 

multi-threading turned on, as the results depend on several additional factors, like the efficiency 

of the OS multi-threading services and the hardware to support them, the extent to which it is 

possible to parallelize a given analysis, etc. It should be pointed out that besides parallelising the 

schedulability analysis for a given configuration, it is also of course possible to execute in parallel 

schedulability analyses for several distinct configurations.  

4  P re d i ct i ng  fe a s ib i l i t y  w i th  su pe rv i sed  le a r n in g  

In this section, we apply a supervised ML algorithm, namely k-Nearest Neighbours (k-NN), that 

makes use of a training set with labels to predict whether unlabelled configurations are feasible 

or not. k-Nearest Neighbours is a simple though powerful machine learning algorithm, described 

in standard ML textbooks like [HaTiFri09], that classifies unlabelled data points by placing them in 

the same category as their “nearest” neighbours, that is the closest data points in the feature 

space. 

4.1  Supervised learning applied to network classif ication  

Supervised learning is a class of ML algorithms that learn from of a training set in order to predict 

the value or the label of unseen data. The data in the training set are classified into categories: 

they are given “labels”. On the other hand, algorithms belonging to unsupervised learning, as 

experimented in Section 5, tackle the classification problem without relying on a training set with 

labelled data.  

In this study, as illustrated in Figure 3, the training set is a collection of TSN configurations that 

vary in terms of their number of flows and the parameters of each flow. A configuration in the 

training set will be labelled as feasible or non-feasible, depending on the results of the 

schedulability analysis: a configuration is feasible if and only if all latency constraints are met. As 

explained in §3.1, it should be noted that different schedulability analyses may return different 

conclusions depending on their accuracy.  To label the training set, we use the accurate 

schedulability analysis, which minimizes the number of “false negatives”.  A configuration in the 

training set is characterized by a set of “features”, that is a set of properties or domain-specific 

attributes that summarize this configuration. Those features will be the inputs of the ML algorithm, 

and choosing the right features plays a crucial role in the ability of an ML algorithm to perform 

well on unseen data.   

 

Figure 3 : Configurations in the training set are classified as feasible (blue triangle) or non -feasible 

(red star) based on the results of the precise schedulability  analysis. The ML algorithm then tries 

to learn the characteristics of the configurations, that is the values of their features , that are 

predictive with respect to the feasibility of the configurations. Here the ML algorithm draws a 
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separation between feasible and non-feasible configurations that will be used to classify an 

unlabelled configuration.   

4.2  Feature engineering and feature selection  

Defining features to be used in a ML algorithm is called “feature engineering” . This is a crucial 

step as the features, which are raw data or which are created from raw data, are meant to capture 

the domain-specific knowledge needed for the ML algorithm to be efficient on the problem at hand.  

Once a set of potential features has been identified, we have to select the o nes that will be the 

most “predictive” and remove extraneous ones, as features with little or without predictive power 

will reduce the efficiency of an ML algorithm. Indeed, selecting all potential features together is 

not the best solution as it has now been well documented that more features does not equate to 

better classification after a certain point (“peaking” effect, see [DoHuSi09]).  

As they are key issues in ML, feature engineering and feature selection have given rise to hundreds 

of studies over the past two decades (see [DoHuSi09, Li17] for good starting points). Feature 

engineering is typically done with domain knowledge, or it can be automated with feature learning 

techniques and techniques belonging to deep learning. Feature selection algorithms are typically, 

offered by any ML package (e.g., up to 40 different algorithms in scikit-feature [Li17]). Feature 

engineering and feature selection remain nonetheless difficult issues especially in domains where 

the number of raw data is huge (e.g., biological data such as genes, proteins, etc).  

In our context, the raw data available to us are relatively limited in number: number of streams of 

each type, characteristics of the streams, topology of the network, etc. In addition, with the 

understanding of the TSN protocols and how schedulability analysis works, there are 

characteristics that we know will tend to make it difficult for a network to be feasible. For instance, 

if there is a bottleneck link in the network (i.e, the maximum load over all links is close to 1), or if 

the load is very unbalanced over the links, then it is more likely that the network will not be feasible 

than a network with perfectly balanced link loads .  In a similar manner, with prior domain 

knowledge, it is possible to discard some features that will not be important factors for feasibility.  

In this study, we selected by iterative experiments the features among the raw data so as to 

maximize the prediction accuracy. We created one feature from the raw data,  the Gini index of 

the load of the links, which evaluates the unbalancedness of link loads and thus the likelihood that 

there is one or several bottleneck links. This feature proves to increase noticeably the 

classification accuracy.    From empirical experiments, we identified a set of five features with the 

most predictive power: the number of critical flows, the number of audio flows, the number of 

video flows, the maximum load of the network (over all links), the Gini index of the loads of the links. 

4.3  The k-NN classif ication algorithm 

Given a training set made up of data characterized by a vector of d features, k-NN works as follows: 

 It caches all data of the training set. 

 Given an unlabelled data p, it calculates the Euclidean distance from p to each cached data 

q as in Equation 1: 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) =  √(𝑝1 − 𝑞1) + (𝑝2 − 𝑞2) + ⋯ + (𝑝𝑑 − 𝑞𝑑) (1) 

with d the number of features. 

 Based on the Euclidean distances, the algorithm identifies the k records that are the 

“nearest” to the unlabelled data p.  

 K-NN classifies the data p in the category that is the most represented among its k nearest 

neighbours. Here we are solving a binary classification problem: if the majority of the k 

nearest neighbours is feasible, the unlabelled data is predicted to be feasible, otherwise, it 

is predicted to be non-feasible. 



 

©2019 UL / RTaW   14/35 

In the general case, the optimal value for k cannot be known beforehand, it has to be determined 

by iterative search, but the square root of the training set size typically provides a good starting 

point. 

An advantage of k-NN is its reduced algorithmic complexity, which allows the use of large training 

sets. Actually, k-NN does not have a true training phase, it just stores the training data and 

postpone computation until classification. In terms of k-NN complexity, given n the number of data 

in the training set, the complexity of prediction for each unlabelled data is 𝑂(𝑛). For a comparison, 

Table 3 shows the complexity of two other very popular ML classification algorithms namely 

Decision Trees and Support Vector Machines [HaTiFri09].  Though the complexity of prediction in 

Decision Tree and SVM is smaller, the complexity of training is significant: it is polynomial in the 

size of the training set. Indeed, in the worst case, the complexity of training for Decision Trees is 

𝑂(𝑛2), and it is 𝑂(𝑛3) for SVMs. It is worth noting that since the algorithms use the same number 

of features d, contribution of d is ignored for the sake of simplicity.  

 

Algorithm Complexity of  

Training 

Complexity of  

Prediction 

K-NN -- 𝑂(𝑛) 

Decision Tree Worst case: 𝑂(𝑛2) 𝑂(1) 

SVM Worst case: 𝑂(𝑛3)  𝑂(1) 

Table 3 : Complexity of supervised learning algorithms as implemented in the popular scikit ML 

library [Pe11], with n being the size of the training set. K-NN does not require training step, and 

its prediction time is linear with the size of the training set, whereas the worst-case complexity of 

training Decision Trees and SVMs requires polynomial time but the prediction then runs in 

constant time. 

4.4  Suitabil ity  of K-NN for TSN network classif ication  

There is a diversity of ML algorithms to perform classification (see [HaTiFri09]), how to choose 

an algorithm that will perform well on the problem at hand is thus not a straightforward issue. As 

each classification algorithm has different ways of making use of the training data, an approach 

is therefore to try to gain insight into the training data and identify some of their structural 

characteristics, and try to determine if a given algorithm can be efficient on this data. A usually 

powerful manner of gaining an understanding of the data is to visualize it.  
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Figure 4: Configurations in the feature space (i.e., number of audio, video and critical streams). 

The green dots are configurations feasible with Preshaping, while the red dots are configurations 

non-feasible with Preshaping. The configurations are split into two disjoint groups. In the feasible 

group, configurations have small number of flows, whereas in the non-feasible group, 

configurations have larger number of flows. Similar clustering in the feature space can be 

observed for all scheduling mechanisms considered in this study.   

In our context, as shown in Figure 4, we observe that the two clusters, feasible and non-feasible 

configurations, are well disjoint in the 3D space. Precisely, we plot the training data according to 

three main features:  the number of critical streams (x-axis), audio streams (y-axis) and video 

streams (z-axis).  As can be seen on Figure 4, the configurations are clustered into two distinct 

groups: a group of feasible configurations (green points), which have small numbers of flows, and 

a group of non-feasible configurations (red points), which have large numbers of flows. The two 

groups tend to occupy different areas in the 3D space, and the data points , i.e., configurations, 

belonging to these groups are well clustered together. This suggests that if a new configuration 

is located in an area with a high density of feasible configurations, there is a large chance that 

this configuration is also feasible, and vice versa.  

In other words, whether a new configuration is feasible or not can be predicted by a majority voting 

among the closest data points in the 3D space, or d-dimensional space in general (with d the 

number of features). As k-NN relies on the very same classification mechanism, this suggests that 

k-NN can be efficient at predicting the feasibility of TSN configurations. However, they are also 

small areas in the feature space where feasible and non-feasible configurations are mixed, where 

k-NN, or any methods trying to draws boundaries between groups like Support Vector Machines 

(SVM, see [HaTiFri09]), will not be able to make the right decision 3. A more thorough analysis of 

the situations in which k-NN fails, and the relative predictive power of each of the features, can be 

found in [MaNaMi19a].  

4.5  Generation of the training set  

The training set is comprised of random TSN configurations based on the topology and traffic 

characteristics described in §2.2 with a total number of flows in the set [50, 100, 150, 200, 250, 

300, 350, 400, 450, 500]. The latter interval for the training set is chosen to be sufficiently wide 

to cover the needs of many applications. The type of each flow and the parameters of each flow 

are chosen at random with the characteristics described in §2.2.  

Like usually done in ML, the five features retained (see §4.2) are scaled into the range [0,1] based 

on the minimum and maximum possible value taken by a feature: 

normalized value =  
raw value −  min

max − min
 

This normalization allows that all features possess a similar weight in the Euclidean distance 

calculation.  

A crucial issue is then to choose the size of the training set; the larger the training set, the better 

the performance of ML but the higher the computation time. To estimate how many labelled 

configurations are needed for k-NN to be accurate, we increase the size of the training set until 

the prediction accuracy of k-NN does not show significant improvements.  

                                                      
3 Experiments with SVMs not shown here have led to very similar performances as the ones obtained with k -NN. 
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Figure 5 : Prediction accuracy of k-NN (y-axis) versus size of the training set (x-axis). The accuracy 

increases when the training set grows, however there is a plateau when the training set size 

reaches 3600. The fluctuation of the accuracy, e.g. between 2400 and 2800, can be explained 

by the non-deterministic characteristics of the TSN configurations evaluated. Results shown for 

Preshaping scheduling with 5-fold validation, with parameter k for k-NN equal to 20. 

Figure 5 shows the relationship between prediction accuracy of k-NN, with k the number nearest 

neighbours set to 20, and size of the training set. Although the accuracy of k-NN increases when 

the training set is larger, it plateaus off past 3600. Therefore, in the rest of the study, we use 

training sets of size 4000.  We conducted the same experiments for the three other scheduling 

solutions (FIFO, Manual, CP8) but only show here the prediction accuracy for Preshaping since, as 

the experiments will show, it is the scheduling solution whose feasibility is the most difficult to 

predict and requires the largest training set.  

4.6  Performance criteria  and evaluation technique  

The following four metrics are retained to evaluate the performance of all the techniques 

considered in this work: 

 The overall Accuracy (Acc) is the proportion of correct predictions over all predictions.  The 

accuracy is the primary performance criterion in the following but it should be 

complemented with metrics making distinctions about the type of errors being made and 

considering class imbalance.   

 The True Positive Rate (TPR), also called the sensitivity of the model, is the percentage of 

correct predictions among all configurations that are feasible.  

 The True Negative Rate (TNR), also called the specificity of the model, is the percentage of 

correct predictions among all configurations that are not feasible.  

 The Kappa statistic is an alternative measure of accuracy that takes into account the 

accuracy that would come from chance alone (e.g., suppose an event occurring with a rate 

of 1 in 1000, always predicting non-event will lead to an accuracy of 99.9%).  



 

©2019 UL / RTaW   17/35 

As classically done to combat model overfitting, that is a model being too specific to the training 

data and not generalizing well outside those training data, we use cross-validation with the k-fold4 

evaluation technique. In k-fold, the data set is divided into k equal sized subset (the k “folds”). A 

single subset is retained as testing set to determine the prediction accuracy while the remaining 

subsets are used all together as training set. The process is repeated k times until all subsets 

have served as testing set, then the accuracy of prediction is computed as the mean over all 

testing sets. k-fold evaluation guarantees that all configurations in the data set are used for 

feasibility prediction, i.e., there is no bias due to the prediction accuracy variability across the 

testing sets. In the following, we perform 5-fold evaluation, i.e., there are 4000 labelled 

configurations in the training set and 1000 unlabelled configurations in the testing set. With 

testing sets of size 1000, applying Theorem 2.4 in [LB10], the margin of error of the prediction 

accuracy is less than 3.1% at a 95% confidence level.  

4.7  Experimental results  

4.7.1 Parameter setting for k-NN 

Since the optimal number of nearest neighbours k leading to the best k-NN performance is 

unknown, we test the values of k in the range [10, 100] by step 10 for each scheduling solution 

as shown in Table 4. 

 

k 

FIFO Manual CP8 Preshaping 

Acc  

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

10 97.35 78.53  98.88  95.37 84.87  97.79  93.88 94.06  93.67  93.01 94.27  91.23  

20 97.34 76.93  98.99  95.64 85.78 97.91 94.07 93.84 94.32 93.01 94.10 91.49 

30 97.42 76.93  99.08  95.63 85.19 98.03 94.09 93.82 94.41 92.87 93.73 91.66 

40 97.33 76.53  99.01 95.6 85.08 98.02 94.13 93.99 94.30 92.81 93.86 91.30 

50 97.26 76.00  98.98 95.37 84.65 97.84 94.18 93.95 94.45 92.75 93.59 91.57 

60 97.2 76.13  98.91 95.4 84.81 97.84 94.24 94.00 94.54 92.63 93.45 91.47 

70 97.23 76.93  98.88 95.39 84.92 97.81 94.23 94.00 94.50 92.51 93.40 91.28 

80 97.23 77.20  98.85 95.37 84.76 97.81 94.29 93.93 94.69 92.59 93.49 91.33 

90 97.16 77.33  98.77 95.47 85.13 97.85 94.18 93.86 94.56 92.43 93.35 91.13 

100 97.06 77.33 98.65 95.42 84.81 97.87 94.12 93.75 94.59 92.35 93.26 91.08 

Table 4 : Prediction results of k-NN with k ranging from 10 to 100 for the four scheduling 

solutions. Bold font is used to identify the maximum prediction accuracy. Acc stands for accuracy, 

FP for false positive and FN for false negative.   Values obtained by 5-fold evaluation with testing 

sets of size 1000 each.  

We observe that the accuracy of k-NN is high for all values of k that are close to the optimal value. 

The difference between the best possible accuracy and the one obtained with a value of k either 

10 above or below the optimal k value is always less than 0.9%. This su ggests that in our problem 

k-NN is robust with respect to parameter k.  

We note that the prediction accuracy of k-NN tends to decrease when the complexity of the 

scheduling mechanism increases. The more powerful the scheduling mechanism in terms of 

feasibility, we have FIFO < Manual < CP8 < Preshaping, the harder it is to predict its outcome on a 

given configuration.  

4.7.2 Accuracy of the predictions 

A prediction is wrong either due to a false positive or false negative. As Table 5 shows, there are 

differences between TPR and TNR across scheduling solutions. With FIFO, the TNR is much higher 

                                                      
4 The parameter k in k-fold is neither related to the parameter k in k -NN, nor to the parameter K in the K-means algorithm. In the 
following, we keep the names of these standard techniques of the literature.  
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than the TPR. The reason may be due to the imbalance between feasible and non-feasible 

configurations in the training set, see Table 6. Indeed, with FIFO, non-feasible configurations largely 

outnumber feasible configurations with a proportion of 93.27%. Since there are much more 

“negative” training data, i.e., non-feasible configurations, the machine learning algorithm may be 

more likely to conclude to non-feasibility even when the configuration is actually feasible.    

 

Solution Optimal k Accuracy 

(%) 

True Positive 

Rate (%) 

True Negative 

Rate (%)  

Kappa 

statistic (%) 

FIFO 30 97.42 76.93  99.08  71.03 

Manual  20 95.64 85.78 97.91 83.98 

CP8 80 94.29 93.93 94.69 89.52 

Preshaping 20 93.01 94.10 91.49 83.55 

Table 5 : Performance of k-NN for the different scheduling solutions with the optimal k values. 

Accuracy, True Positive and True Negative Rates are obtained by 5-fold evaluation with testing 

sets of size 1000 each.  

We might be concerned that with the imbalance in the testing set between feasible and non-

feasible solutions (see Table 6), a high prediction accuracy can be obtained by chance alone. For 

instance, prediction accuracy for FIFO could be high just by consistently predicting non-feasible 

simple because the large majority of configurations are non feasible. In order to address this issue, 

we calculate the Kappa statistic, aka Kappa coefficient, which measures an “agreement” between 

correct prediction and true labels. If the Kappa coefficient is low, it is likely that true labels and 

predicted labels just match by chance. On the other hand, a Kappa coefficient higher than 60% 

was shown to be significant [MHMa12]. Table 5 shows the Kappa coefficients of k -NN prediction 

for the optimal value of k. Since the coefficients range from 71.03% to 89.52%, this suggests 

that the high accuracy of k-NN prediction is not obtained by chance alone. 

Solution Feasible  

configurations (%) 

Non-feasible 

configurations (%) 

FIFO 6.73 93.27 

Manual 17.98 82.02 

CP8 55.38 44.62 

Preshaping 58.53 41.47 

Table 6 : Percentage of feasible and non-feasible configurations for each scheduling solution in 

the training set with 4000 configurations. Logically, the percentage of feasible configurations 

increases with the possibilities offered by the scheduling mechanisms.  

4.7.3 Robustness of the model 

An important practical consideration is that a ML algorithm is able to perform well even if the 

unseen data does not meet perfectly the assumptions used in the training of the algorithm, that 

is during the learning phase. If the ML algorithm possesses some generalization ability to adapt 

to departure from the training assumptions, the model does not have to be retrained, and training 

sets re-regenerated in our context, each time the characteristics of the network change. 

Here we study the extent to which changes in the traffic characteristics will influence the 

prediction accuracy of k-NN. We study this by keeping the training set unchanged, while changing 

some of the characteristics of the testing set. Precisely, the data payload size (denoted by s) of 

each critical flow in the testing set is set to a value randomly chosen in the range [s – x%, s + x%]. 

Table 7 reports the prediction accuracy of k-NN with a ± variation x up to 90% for the payload of 

the critical streams in the testing set. Figure 6 summarizes the numbers in Table 7 using boxplots, 

with the horizontal lines being the baseline predic tion accuracies without changes in the training 
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set. Although, as can be seen in Figure 6, the performance of k-NN tends to decrease with these 

changes, the deterioration is limited: less than 2.17% whatever the scheduling solution.  A possible 

first explanation is that some of the selected features, namely the maximum link load and the Gini 

index, are able to capture the variations of the data payloads and therefore remain predictive. 

Another explanation is that the average network load remains similar, as the variations are both 

positive and negative with the same intensity in both cases.    

 

Var 

± 

(%) 

FIFO (k = 30) Manual (k = 30) CP8 (k = 80) Preshaping (k = 20) 

Acc  

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

0 97.42 76.93  98.97  95.64 85.78  97.91  94.29 93.93  94.69  93.01 94.10  91.49  

10 96.88 66.14 99.19 95.19 83.33 97.74 95.49 96.33 94.47 92.78 94.91 89.93 

20 96.4 66.88 98.97 95.1 81.09 98.44 93.67 94.00 93.26 92.11 93.71 89.80 

30 96.2 65.12 98.90 94.61 79.49 98.34 94.25 93.20 95.59 91.66 94.09 88.38 

40 96.91 72.06 98.72 95.59 81.78 98.72 94.17 94.06 94.30 92.23 93.37 90.74 

50 96.6 67.61 98.82 95.33 81.81 98.69 94.22 93.28 95.34 91.3 92.99 89.00 

60 97.0 70.13 99.24 96.33 88.47 98.17 93.92 93.99 93.84 93.24 94.64 91.33 

70 97.43 70.83 99.49 95.34 84.95 97.68 94.75 93.60 96.14 93.47 95.23 91.28 

80 96.59 69.08 98.85 93.47 76.45 97.65 93.96 94.24 93.63 92.39 94.06 90.16 

90 96.85 65.47 99.00 94.31 81.55 97.13 95.1 95.44 94.71 92.14 94.17 89.49 

Table 7 : Performance of k-NN with variations from -90% to 90% of the data payload for the 

critical flows in the testing set. Values in bold font are the minimum and maximum accuracy for 

each scheduling solution.  

 

 

Figure 6 : Boxplot of the prediction accuracies obtained with k-NN with variations of the data 

payload of critical flows in the testing set between -90 and +90%. The horizontal lines are the 

baseline accuracies obtained when the traffic parameters used to generate the training and the 

testing set are identical.  
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5  P re d i ct i ng  fe a s ib i l i t y  w i th  u n su pe rv ised  le a rn i ng  

5.1  General pr inciples  

As illustrated in the previous section with the k-NN algorithm and further experimentations (not 

shown here) with SVMs leading to similar performances, supervised learning algorithms possess 

a good ability in predicting the feasibility of TSN configurations. However, supervised learning 

requires that the data in the training set are all labelled, i.e., here we have to execute a precise 

schedulability for each of the configurations in the training set. This is a compute intensive 

process, for instance for the experiments of the previous section, it took about three hours to 

determine the feasibility with the four scheduling solutions of the 4000 TSN training 

configurations on a 6 core 3.2Ghz Intel I7-8700. 

In this section, we apply unsupervised learning, another class of ML techniques that learns to 

recognize patterns in a training set without relying on labels. Specifically, we focus on clustering 

algorithms, which group data into “clusters”. Data in the same cluster are more “similar” to each 

other than those in other clusters. The process of clustering data creates knowledge that may be 

taken advantage of to predict feasibility. In our problem, the TSN configurations, are summarized 

by the five features listed in §4.2. There is a correlation between the feasibility of a configuration 

and the values of those features. Here the underlying assumption is that if we cluster together 

configurations with similar feature values, they may possess the same status with respect to 

feasibility.   

In the following, we use the term feasible cluster when we assume that the majority of the 

configurations in this cluster are feasible. If this assumption holds, if an unlabelled configuration 

is assigned to a feasible cluster, then it is likely that this configuration is feasible as well. In other 

words, we apply a clustering algorithm to predict the feasibility of unlabelled configurations based 

on the clusters they are assigned to. Similarly, we denote by non-feasible cluster a group of 

configurations that are assumed to be in majority non-feasible.  

Since, in unsupervised learning, configurations in the training set are unlabelled, we need a method 

to distinguish between feasible and non-feasible clusters once they have been created:  

 Method 1: for each cluster that has been created, we select at random a number of 

configurations and give them labels based on the precise analysis. The cluster is identified 

as a feasible cluster if the majority of the configurations tested are feasible. 

 Method 2: once the clusters have been created, we generate new configurations that 

undergo precise schedulability analysis in order to label them. Then we assign those 

configurations to the clusters whose center is the closest to them. If a majority of the 

labelled configurations assigned to a given cluster are feasible, then the cluster is identified 

as a feasible cluster. These newly created labelled configurations are making up what we 

refer to as the voting set in the following.  

If the two methods are based on a voting scheme, the first requires to store all the configurations 

in the training set, which may be a problem in practice as clustering is typically done on very large 

number of configurations (100,000 in our experiments).  In contrast, with the second method, 

only the vector of features of the configurations needs to be stored. For this reason, we choose 

to implement this second approach. 
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Figure 7 : After feature selection, configurations in the training set are grouped into clusters 

(dashed circles) by the K-means algorithm. The labelled configurations part of the voting set, either 

feasible (blue triangle) or non-feasible (red star), are used to identify feasible clusters (light blue 

circles) and non-feasible clusters (light red circles) based on the majority of labelled configurations  

within a cluster.  

The approach proposed here could be considered a semi-supervised learning technique as we 

make use of both labelled and unlabelled data. However, semi-supervised clustering techniques 

[Bai13] typically make use of the labelled data, along with the unlabelled data, to build the clusters, 

while we are using labelled data only to determine the probable status of the clusters wi th respect 

to feasibility. For this reason, we consider here that this approach belongs to the class of 

unsupervised learning techniques. 

5.2  The K-means clustering algorithm 

In this study, we experiment with the K-means clustering algorithm as it is a well-understood low-

complexity algorithm that is known to perform well in context where clusters are not of too widely 

varying densities and tend to be spherical.      

Given a training set with unlabelled configurations and a predefined number of clusters K, K-means 

starts by selecting K points at random in the feature space to serve as the cluster centers. It then 

iterates between two steps:  

 Allocate data point to clusters: compute the squared Euclidean distance of the features 

from a data point to all the cluster centers, then assign the data point to the cluster whose 

center is the nearest. Repeat for all data in the training set. 

 Update centers: a new center is recomputed as the mean of the features of all data points 

belonging to this cluster. 

This iterative algorithm finishes when the algorithm has converged, i.e., no more data points are 

moved from one cluster to another. This happens when the sum of the squared distances from 

the data points to their cluster center has been minimized, that is when the dissimilarity in terms 

of features within clusters is minimum.  

In addition to its simplicity, K-means is among the fastest clustering algorithms. Although it has 

been shown in some specific cases to be superpolynomial [ArVa06], the complexity of K-means is 

linear with respect to the number of training data in most practical cases, compared to polynomial 

time for most other clustering algorithms [HaTiFri09]. 

5.3  Generation of the training set  

A training set for K-means is generated with the same settings as in §4.5 for k-NN. [Do14] 

recommends the size of the training set to be no less than 2𝑑, preferably 5 ∗ 2𝑑 where d is the 

number of features. We decided to use 100,000 unlabelled configurations, which is much larger 

the guidelines in [Do14] to guarantee that the training set is large enough. In terms of computation 

time, generating 100,000 unlabelled TSN configurations takes only 9mn on 6 computational cores 

compared to 3 hours of computation for labelling 4000 TSN configurations using precise 

schedulability analysis, which represents a speedup of approximatively  20. If we include the cost 



 

©2019 UL / RTaW   22/35 

of creating the voting set (see §5.1) made up of 500 labelled configurations in our experiments, 

the speedup drops to approximatively a factor 6.  

5.4  Experimental results  

5.4.1 Number of clusters 

On the contrary to other clustering techniques, K-means requires us to choose the number of 

clusters K. In many applications, the number of clusters is imposed by the problem, or can be 

determined with domain knowledge. In our problem, this is not the case and we have to choose a 

reasonable value for the number of clusters.  We first note that as K-means minimizes the total 

sum of the squared distances within clusters, the more clusters there is, the smaller this quantity. 

However, having more clusters increases the running time and there is a point past which the 

gain of adding clusters becomes limited. This can be observed by plotting the sum of the within-

cluster squared distances versus the number of clusters as shown in Figure 8, which is referred 

to as the “elbow” technique.  As can be seen, K-means does not show significant improvements 

when the number of clusters exceeds 20. Therefore, in the following experiments we set 20 as 

the upper bound for the maximum number of clusters.  

 

Figure 8 : Sum of the within-cluster squared distances, i.e. which is the measure of dissimilarity 

used in K-means, versus the number of clusters K. The “elbow” of the plot happens for K in range 

[2, 20]. 

5.4.2 Size of the voting set 

As explained in §5.1 we use a number of labelled configurations, the voting set, to determine 

whether a cluster is a feasible cluster or not. A configuration in the voting set is allocated to the 

cluster whose center is the nearest in terms of features’ distance. To have enough labelled 

configurations in each cluster, the size of the voting set must be large enough. However, there is 

a trade-off to be found as the larger the voting set, the more computation time needed.     

Figure 9 shows the prediction accuracy of K-means for a voting set from 100 to 1000 

configurations. We observe that below 400 the improvements in accuracy are significant but 

afterwards the accuracy plateaus off. In all the following experiments, the size of the voting set is 

set to 500. 
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Figure 9 : Size of voting set versus prediction accuracy of K-means for Preshaping sheduling. 

The accuracy of K-means does not show significant improvement when the voting set exceeds 

400. From this point onwards, clusters have a sufficient number of labelled configurations for 

majority voting. Each point is computed over 1000 test configurations with K = 20. 

5.4.3 Accuracy of the predictions 

Like for k-NN, the performance criteria for the evaluation are the accuracy and the rate of true 

positive (TPR) and true negative (TNR). Similarly, we use testing sets of 1000 unlabelled TSN 

configurations. Table 8 shows the performance of K-means in predicting the feasibility of TSN 

networks with the four scheduling solutions. We observe that globally the accuracy of K-means is 

better for large number of clusters, although there are differences depending on the scheduling 

solution. The accuracy with Manual is maximum for K equal 10 and remains high for larger values. 

The same pattern can be observed with CP8 with an optimal K value of 12. The accuracy with FIFO 

and Preshaping is the highest for K = 20. For these policies, the best values for K are around 50 

leading to an improvement of less than 1% in accuracy over K=20. However, more clusters 

requires more training time, which reduces the interest of K-means over k-NN. 

 

 

K 

FIFO Manual CP8 Preshaping 

Acc  

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

2 92.5 0.0   100.0  81.3 0.0  100.00   86.5 76.57  98.25  83.6 72.14  99.76  

4 92.5 0.0 100.0   93.6 85.03 95.57   86.8 76.94 98.47 85.5 97.78 68.19 

6 94.88 85.47 95.64   91.85 71.66 96.49   90.13 95.41 83.89 87.53 87.83 87.11 

8 95.08 70.00 97.11   92.35 87.59 93.44   89.73 86.94 93.03 88.17 89.25 86.65 

10 94.86 62.40 97.49   93.72 81.12 96.62   92.56 93.08 91.94 88.39 88.65 88.02 

12 94.2 51.87 97.63   94.56 77.27 98.54   91.89 95.18 87.99 88.04 85.04 92.27 

14 94.37 64.93 96.76   93.59 79.30 96.88   91.18 91.57 90.72 88.37 86.79 90.60 

16 95.15 77.73 96.56   93.76 81.66 96.54   91.79 93.30 90.00 89.25 88.99 89.61 

18 95.18 81.20 96.31   93.23 82.89 95.61   91.47 92.80 89.89 89.32 89.44 89.16 

20 95.52 80.80 96.71 93.67 77.27 97.44 91.91 93.54 89.98 89.49 89.37 89.66 

Table 8 : Prediction results for K-means with K ranging from 2 to 20 for the four scheduling 

solutions with testing sets of 1000 TSN configurations. Bold font identifies the maximum 

prediction accuracy. Acc stands for accuracy, TPR for True Positive Rate and TNR for True 
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Negative Rate.  Predictions for FIFO and Preshaping are more accurate for the largest values of 

K unlike for Manual and CP8 scheduling.  

Table 9 summarizes the performance of K-means with the optimal number of clusters in the 

interval [2,20]. The accuracy ranges from 89.5 to 95.5%. Like for k -NN, the more powerful (in 

terms of feasibility) the scheduling mechanism, the harder it is to predict the feasibility for a given 

network configuration. Compared to supervised learning with k -NN (see Table 5), the accuracy of 

K-means is lower by 1 to 3.5%. Table 9 also shows the Kappa coefficients, which suggests that K-

means possesses a true predictive abil ity in our context. 

Solution Optimal K Accuracy 

(%) 

True Positive 

Rate (%) 

True Negative 

Rate (%)  

Kappa 

coefficient (%) 

FIFO 20 95.52 80.80 96.71 95.16 

Manual  12 94.56 77.27 98.54 93.82 

CP8 10 92.56 93.08 91.94 91.44 

Preshaping 20 89.49 89.37 89.66 88.01 

Table 9 : Performance of K-means with the optimal number of cluster K for each scheduling 

solution and corresponding Kappa coefficients.  

5.4.4 Robustness of the model 

We study whether changes in the traffic characteristics would affect the accuracy of K-means by 

adding variations to the packet size of critical flows in the same manner as done in § 4.7.3.   

Table 10 reports the prediction accuracy of K-means, as obtained with the optimal K values, with 

a ± variation x up to 90% for the payload of the critical streams in the testing set.  Figure 10 

summarizes the numbers in Table 10 using boxplots with the horizontal lines being the baseline 

prediction accuracies without changes in the training set.  

As can be seen in Figure 10, the performance of K-means tends to decrease with these changes 

for Manual and CP8, with a deterioration respectively of 1.85% and 1.84% in the worst-case. The 

loss in accuracy is less pronounced for FIFO (-0.81%) and Preshaping (-1.48%). As it is the case 

for k-NN, these results suggest that K-means is robust to changes in the data payload between 

the training and the testing set. If variations in the traffic characteristics lead to fluctuat ions in 

the accuracy, we do not observe a clear correlation between the accuracy and percentage of 

variation. For instance, in the case of CP8, the accuracy without variation is 92.56%, the highest 

value, while with a 90% ± variation it remains almost identical at 92.54%. 

Var 

± 

(%) 

FIFO (K = 20) Manual (K = 12) CP8 (K = 10) Preshaping (K = 20) 

Acc  

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

Acc 

(%) 

TPR 

(%) 

TNR 

(%) 

0 95.52 80.80  96.71  94.56 77.27  98.54  92.56 93.08  91.94  89.49 89.37  89.66  

10 95.74 75.57 97.26 94.27 75.71 98.26 92.2 92.14 92.28 90.61 89.35 92.29 

20 94.75 75.12 96.46 94.52 75.85 98.98 90.72 90.58 90.90 88.51 87.97 89.29 

30 96.19 81.88 97.43 93.3 82.37 96.00 91.67 90.55 93.11 89.61 88.57 91.01 

40 95.32 80.88 96.37 94.26 78.81 97.77 91.38 90.46 92.47 88.77 87.03 91.04 

50 96.1 81.55 97.21 93.85 76.23 98.23 91.37 88.07 95.32 88.01 86.52 90.05 

60 95.2 76.75 96.74 95.19 81.53 98.40 91.01 17.10 90.18 90.34 89.71 91.21 

70 96.77 79.44 98.11 93.22 76.25 97.05 91.79 87.81 96.60 90.82 90.18 91.61 

80 94.71 75.66 96.28 92.71 74.92 97.07 92.32 89.94 95.16 90.56 90.12 91.14 

90 94.84 78.91 95.93 93.4 76.69 97.09 92.54 93.34 91.61 88.7 88.59 88.85 

Table 10 : Performance evaluation of K-means for predicting the feasibility of TSN configurations 

with four scheduling solutions when the data payload size of the critical flows varies in the testing 

set. Experiments performed with the optimal number of clusters for each scheduling solution, as 
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shown in Table 8. Although the accuracy of K-means fluctuates, it does not show any trend with 

respect to the percentage of variation.  

 

Figure 10 : Boxplot of the prediction accuracies obtained with K-means with variations of the data 

payload of critical flows in the testing set between -90 and +90%. The horizontal lines are the 

baseline accuracies obtained when the traffic parameters used to generate the training and the 

testing set are identical. The change of data payload size also leads to fluctuation in the prediction 

accuracy of K-means, which is as observed for K-NN. 

6  O n t he  u se  o f  M L t o  speed  up  the  v er i f i c a t i on  

In this work, we explore the application of ML to the problem of determining the feasibility of TSN 

configurations. We summarize in this section the experimental results and discuss the new trade-

offs between accuracy and computation time offered by ML techniques.  

6.1  Summary of the experiments  

Table 11 provides a recap of the experimental results with the four methods used to determine 

feasibility: supervised learning with k-NN, unsupervised learning with K-Means, approximate 

schedulability analysis and precise schedulabili ty analysis.  The execution times shown in this 

paragraph were obtained on a 6-core 3.2Ghz Intel 8700 configured following the guidelines in 

[Pao10] to remove frequency scaling and turbo mode options, which are known sources of 

indeterminism. The total computation times reported in Table 11 are for all scheduling solutions, 

that is the feasibility of each TSN configuration is tested with the four scheduling mechanisms 

described in §2.4. In the case of the ML algorithms, the computation times include both the 

training time and the actual prediction time once the algorithms have been trained. This is the 

computation time that assessing the feasibility of TSN configurations in a design space exploration 

algorithm would require.   

It should be kept in mind that, beyond computing WCTTs, the approximate and precise analyses 

for CP8 and Preshaping perform additional computation for setting parameters, respectively 

priority assignment and traffic shaping parameters. Most often, for a given TSN configuration, 

both CP8 and Preshaping examine several candidate solutions each requiring each a WCTT 

analysis, before concluding on the schedulability.  This explains why, in Table 11, the approximate 

analysis is only 3 times faster than the precise analysis. Indeed, because the approximate analysis 
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leads to larger WCTT bounds, approximate analysis for CP8 requires trying more candidate 

solutions before a feasible one is found than with the precise analysis.  

 

Method K-means k-NN Approximate 

NC analysis 

Precise NC 

analysis 

Approach Unsupervised 

learning 

Supervised 

learning 

Schedulability 

analysis 

Schedulability 

analysis 

Size of 

training set 

100 000 

unlabelled 

configurations 

+ 500 

labelled 

configurations 

for voting set 

4 000 

labelled 

configurations 

-- -- 

Time to 

generate 

training set 

≈ 31mn ≈ 3h 

 

-- -- 

Training time ≈ 48s -- -- -- 

Time to 

assess 

feasibility of 

1000 

configurations 

≈ 8ms ≈ 120ms ≈ 15mn  

(include priority 

allocation for 

CP8)  

≈ 45mn  

(include priority 

allocation for CP8 

and computation of 

traffic shaping 

parameters for 

Preshaping)  

Accuracy for 

FIFO 

95.52 % 97.42 % 97.42 % 100% 

TPR for FIFO 80.80% 76.93% 69.33% 100% 

TNR for FIFO 96.71% 99.08% 100% 100% 

Accuracy for 

Manual 

94.56 % 95.56 % 94.2 % 100% 

TPR for 

Manual 

77.27% 85.78% 68.98% 100% 

TNR for 

Manual 

98.54% 97.91% 100% 100% 

Accuracy for 

CP8 

92.56 % 94.29% 85.4% 100% 

TPR for CP8 93.08% 93.93% 71.22% 100% 

TNR for CP8 91.94% 94.69% 100% 100% 

Accuracy for 

Preshaping 

89.49 % 93.01 % Not available 

in toolset 

100% 

TPR for 

Preshaping 

89.37% 94.10% Not available 

in toolset 

100% 

TNR for 

Preshaping 

89.66% 91.49% Not available 

in toolset 

100% 

Table 11 : Summary of the experiments performed on a 6-core 3.2Ghz Intel I7-8700 with RTaW-

Pegase V3.3.6 for the schedulability analyses . The time taken to assess the feasibility of 1000 

configurations ranges from 8ms (K-means with a trained model) to 45mn (precise schedulability 

analysis). The worst accuracy (85.4% for CP8) is obtained with the approximate schedulability 

analysis that requires approx. 15mn of computation, which is more than the two ML techniques 
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k-NN and K-means. However, none of the two schedulability analysis lead to false positive. 

Execution time for approximate analysis of Preshaping scheduling estimated based on the ratio 

between the execution times of CP8 and Preshaping precise analysis.  

It should be pointed out that the results of the precise schedulability analysis are considered in 

this study as 100% accurate, as this is the most accurate technique we have, and a s we know for 

certain that it does not lead to false positive. In reality, the precise schedulability analysis is 

conservative, it returns upper bounds and not the exact worst -case values, which creates a certain 

amount of false negative configurations.  Even if prior works [BaScFr12, BoNaFu12] suggest that 

the precise analysis for static priority is tight, its pessimism will create a certain amount of 

configurations deemed unfeasible while they actually are feasible. This phenomenon introduces a 

bias in the accuracy results presented here, which leads to the false positive rate (FPR) to be 

overestimated and the true negative rate (TNR) to be underestimated. As our main concern are 

false positives, the actual risk with supervised learning can be less than in  the results shown 

hereafter, though it cannot be precisely quantified.    

Table 12 shows estimates of the total running times on six CPU cores of the four verification 

techniques to determine the feasibility of 1000, 100 000 and 1000 000 TSN configurations. For 

ML algorithms, this running time includes the time to generate the training set, the training time, 

and the time to predict feasibility. Numbers in Table 12 are representative of what can be expected 

in terms of execution times on a standard desktop computer. These results suggest that ML is 

the most appropriate technique for design space exploration involving the creation of a large 

number of candidate solutions. 

Number of TSN 

networks 

K-means k-NN Approximate 

analysis 

Precise 

analysis 

1 000 31mn48s 3h 15mn 45mn 

100 000 31mn49s 3h 1day1h 3days3h 

1000 000 31mn56s 3h2mn 10days10h 31days6h 

Table 12 : Estimation of the computation times to predict feasibility with all the four possible 

scheduling mechanisms for a varying number of TSN configurations. For k-NN and K-means 

algorithms, both training and prediction times are accounted for. Figures shown for TSN networks 

on a 6-core 3.2Ghz Intel I7-8700. 

6.2  Efficiency area of the verif ication techniques  

Figure 11 shows the trade-offs between accuracy and running times obtained with each of the 

techniques. We consider Manual scheduling with computation on a single CPU core, which leads 

to the most unbiased comparisons in terms of execution times.  



 

©2019 UL / RTaW   28/35 

 

Figure 11 : Accuracy (%) versus running time on a single computational core (seconds in log 

scale) with Manual scheduling for 1000, 100000 and 1000000 TSN configurations. Squares, 

points, triangles and diamonds identify results with k -NN, K-means, Approximate and Precise 

analysis respectively. Running times of ML algorithms only increase marginally when the number 

of configurations grows, whereas the running time of the analyses increases linearly with size of 

the testing set. In terms of accuracy, ML algorithms are between approximate and precise 

analysis. 

The experiments done in this study lead to the insights summarized below:  

 For a small number of configurations (1000 here), the machine learning algorithms 

experimented are not competitive with precise schedulability analysis as they are both 

slower and less accurate.  

 For a medium number of configurations (100,000 here), approximate analysis, K-means 

and precise analysis offer all different meaningful trade-offs between accuracy and running 

times. Supervised learning with k-NN is not competitive here. In many contexts however, 

like for Preshaping in this study, an efficient approximate analysis will not be available and 

then supervised learning becomes competitive for a relatively small number of 

configurations (i.e., as soon as the number of configurations tested is larger than the size 

of the training set).  

 For a large number of configurations (1000,000 here), all techniques are m eaningful as 

none is dominated by another for both the accuracy and running times. However precise 

analysis may not be practical because of the execution times (16 hours with Manual and 

31 days with all four scheduling analyses, see §3.3 and Table 12) compared to 3 hours 

for supervised learning and slightly more than 30mn for unsupervised learning with all four 

analyses on 6 cores. Once the training time has been amortized, machine learning 

techniques are very fast even for large number of configurations. Among ML algorithms, k-

NN is slower but offers a better accuracy than K-means (+1 to 3.5%) and possesses a 

better ability to identify feasible configurations. For instance, for Manual scheduling, k-NN 

is able to predict correctly 86% of the feasible solutions versus 77% for K-means.  

 Approximate analysis is less accurate than machine learning techniques in our 

experiments. Despite its speed, the benefits of using it are unsure to us, excep t if false 

positive must be ruled out.   
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It should be borne in mind that both the approximate and precise TSN schedulability analysis are 

very fast (resp. 13ms and 471ms on average for 500 flows, see Table 2). This comes from both 

the efficiency of the implementation and the small value of the Least Common Multiple (LCM) of 

the frames’ periods (at most 160 seconds). The area of efficiency of the different techniques may 

thus be different for other schedulability analyses and message sets.  

7  Re la ted  w or k  

Over the last two decades, ML techniques have been successfully applied to very diverse areas 

such as bioinformatics, computer vision, natural language processing, autonomous driving and 

software engineering [Al18, As18]. In recent years, deep learning algorithms, that perform 

feature extraction in an automated manner unlike with traditional ML techniques, have been an 

especially active field of research (see [Po18] for a survey).   

The two application domains of ML directly relevant to this work are networking and real -time 

systems. Between the two, ML in networking (see [Wa18] for an overview), especially networking 

for the Internet, has been by far the most active area. ML has been applied to solve problems such 

as intrusion detection, on-line decision making (parameters and routes adaptation), protocol 

design, traffic and performance prediction. For instance, in [AN14] an ML algorithm, based on the 

“expert framework” technique, is used to predict on-line the round-trip time (RTT) of TCP 

connections. This algorithm allows TCP to adapt more quickly to changing congestion conditions, 

decreasing thus on average the difference between the estimated RTT and the true RTT, which 

results in better overall TCP performance. In [Ma17] an algorithm belonging to Deep Belief 

Networks computes the packet routes dynamically instead of using conventional solutions based 

on OSPF (Open Shortest Path First). Another impressive application of ML is to be found in 

[WiBa13] where the authors implement a “synthesis -by-simulation” approach to generate better 

congestion control protocols for TCP comprising more than 150 control rules.  

ML has also found applications in real-time systems, although the results appear to be more 

disparate and much less numerous. As early as 2006, [KaBa06] proposes the use of ML for the 

problem of automatically deriving loop bounds in WCET estimation. Later, researchers from the 

same group use a Bayesian network created from a training set made up of program executions 

to predict the presence of instructions in the cache [BaBaCu10]. More recently, a line of work has 

been devoted to ML algorithms for Dynamic Voltage and Frequency Scaling (DVFS) in battery-

powered devices. For instance, [Ma18] presents a learning-based framework relying on 

reinforcement learning for DVFS of real-time tasks on multi-core systems. ML techniques are also 

applied to decide the order of execution of tasks on-line. This has been done in various contexts . 

For instance [MaDaPa18] implements a neural network trained by reinforcement learning with 

evolutionary strategies to schedule real-time tasks in fog computing infrastructures, while in 

[Ma16] multi-core task schedules are decided with Deep Neural networks trained by 

reinforcement learning using standard policy gradient control.  

Very relevant to this work is [RiGuGH17] that presents a framework based on the MAST tool suite 

for real-time systems to generate massive amount of synthetic test problems, configure them and 

perform schedulability analyses. This framework dedicated to the study of task scheduling 

algorithms is similar in the spirit to the RTaW-Pegase framework used in this study, that can be 

operated through a JAVA API and that includes a synthetic problem generation component named 

“Netairbench”. Such frameworks are key to facilitate and speed-up the development and 

performance assessment of ML algorithms, which requires extensive experiments, be they based 

on real or artificial data.   
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8  D i scu ss io n  and  p er spec t i ve s  

This study shows that standard supervised and unsupervised ML techniques can be efficient at 

predicting the feasibility of realistic SN network configurations in terms of compu tation time and 

accuracy. In particular our experiments show that ML techniques outperform a coarse grained 

schedulability analysis with respect to those two performance metrics. Importantly, the ML 

algorithms experimented in this work neither require huge amount of data nor important 

computing power, they can be part of the toolbox of the network designers and be run on standard 

desktop computers. This approach investigated in this work can be applied for verifying the 

feasibility in other areas of real -time computing, for instance it could be used for end-to-end timing 

chains across several resources whose schedulability analyses are typically very compute 

intensive. Further work is however clearly needed to assess the capabilities and limits of this 

approach in other contexts. 

A key difference of ML-based feasibility verification with conventional schedulability analysis is the 

possibility of having a certain amount of “false positives” (up to 3.53% with k-NN): configurations 

deemed feasible while they are not. In our view, this may not be a problem in a design-space 

exploration process as long as the few retained solutions at the end are verified by an analysis 

that is not prone to false positives. If ML techniques are to be used to predict feasibility in contexts 

where no schedulability analysis is available, then the execution environment should provide 

runtime mechanisms (e.g., task and message dropping, backup mode) to mitigate the risk of not 

meeting timing constraints and ensure that the system is fail-safe.      

A well-known pitfall of supervised ML is to rely on training data that are not representative of the 

unseen data on which the ML algorithm will be applied. This may cause ML to fail silently, that is 

without ways for the user to know it. For instance, k-NN is more likely to return a wrong prediction 

when, in the feature space, the neighbourhood of the unseen data is sparse. In this study, we 

tested the sensitivity of the ML algorithms to departure from the traffic characteristic 

assumptions and the algorithms proved to be robust. In this work the network topology of the 

configurations in the training set and the testing set are identical. Changes in the topology was 

outside the scope of the study, as, in the design of critical embedded netw orks, the topology is 

usually decided early in the design phases, before the traffic is entirely known.  The problem will 

probably be more difficult for ML if the unseen configurations may have different topologies, much 

larger training sets with a diversity of topologies will be required and the overall prediction 

accuracy might be reduced. A metric to estimate the distance between the training data and the 

unseen data and, as suggested in [JuRo07], could help  assess the uncertainty of prediction. 

This study can be extended in several directions: 

 In order to minimize the rate of false positives, a measure of the uncertainty of prediction 

could be used to decide to drop a prediction if the uncertainty is too high and rely instead 

on a conventional schedulability analysis. This will only be possible for systems for which 

there exists a precise schedulability analysis. This may lead to hybrid feasibility verification 

algorithms where the clear-cut decisions are taken by ML algorithms, while the more 

difficult ones are taken by conventional schedulability analyses.  This approach is explored 

in [MaNaMi19a] 

 We intentionally applied standard ML techniques using the kind of computing power for 

building the training sets that can be provided by standard desktop computers in a few 

hours. A better prediction accuracy may be achievable with 1) larger training sets, 2) 

additional features such as the priorities of the flows to capture additional domain -specific 

knowledge, and 3) more sophisticated ML algorithms li ke XGBoost for supervised learning 

or DBSCAN and Expectation–Maximization clustering using Gaussian mixture models for 

unsupervised learning. In particular, the latter algorithms are known to be more robust 

than K-means when the feature space is not spherical. Also promising are “ensemble 
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methods” which combine the results of several ML algorithms, for instance by majority 

voting.   

 Semi-supervised learning techniques, making use for the training set of a small amount of 

labelled data together with a large amount of unlabelled data, possess a lot of potential on 

the problem of predicting feasibility. Indeed, as the CPU time needed to create synthetic 

TSN configurations is negligible compared to the CPU time needed to label the data by 

schedulability analysis, this would allow the ML algorithms to rely on training sets several 

orders of magnitude larger than with supervised learning.       

 To perform well, the k-NN and K-means algorithms used in this work ideally requires to be 

provided with “hand-crafted” features capturing domain knowledge, such as the Gini index 

of the link loads in this study. Most likely not all relevant features have been identified. A 

future work is to apply on the same problem deep learning techniques (e.g., Convolutional 

Neural Network - CNN) that simplify feature engineering by automating feature extraction. 

However, to do so, deep learning algorithms typically require much larger training set , in 

the millions in many deep learning applications,  and lead to less understandable results. 

In this work, ML is applied to predict the feasibility with respect to the types of constraints that 

can be verified by a schedulability analysis ( i.e., worst-case latencies, jitters and buffer utilization). 

There are other timing constraints that can only be verified by simulation, such as throughput 

constraints. ML could be also very interesting for such constraints as a simulation, for its results 

to be sufficiently robust in terms of sample size, typically takes at least one order of magnitude 

longer to execute than a schedulability analysis.    

Generally speaking, ML has the potential to offer solutions to other difficult and topical problems 

in the area of real-time networking. In our view, it could be especially helpful for admission control 

in real-time, which is an emerging need in real -time networks with the increasing dynamicity of the 

applications for both the industrial and the automotive domains. Another domain of application of 

ML, like exemplified in [Ma16], is resource allocation. In the context of TSN networks, ML is a good 

candidate to help build bandwidth-effective time-triggered communication schedules for 

IEEE802.1Qbv. 
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