Reference : Almost Global Consensus on the n-Sphere
Scientific journals : Article
Engineering, computing & technology : Electrical & electronics engineering
Systems Biomedicine
Almost Global Consensus on the n-Sphere
Markdahl, Johan mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > >]
Thunberg, Johan mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > >]
Goncalves, Jorge mailto [University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > >]
IEEE Transactions on Automatic Control
Yes (verified by ORBilu)
[en] synchronization ; consensus ; almost global
[en] This paper establishes novel results regarding the global convergence properties of a large class of consensus protocols for multi-agent systems that evolve in continuous time on the n-dimensional unit sphere or n-sphere. For any connected, undirected graph and all n 2 N\{1}, each protocol in said class is shown to yield almost global consensus. The feedback laws are negative gradients of Lyapunov functions and one instance generates the canonical intrinsic gradient descent protocol. This convergence result sheds new light on the general problem of consensus on Riemannian manifolds; the n-sphere for n 2 N\{1} differs from the circle and SO(3) where the corresponding
protocols fail to generate almost global consensus. Moreover, we derive a novel consensus protocol on SO(3) by combining two almost globally convergent protocols on the n-sphere for n in {1, 2}. Theoretical and simulation results suggest that the combined protocol yields almost global consensus on SO(3).

File(s) associated to this reference

Fulltext file(s):

Open access
bare_jrnl10.pdfAuthor preprint552.49 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.