Article (Périodiques scientifiques)
Shape-aware surface reconstruction from sparse 3D point-clouds
BERNARD, Florian; SALAMANCA MINO, Luis; THUNBERG, Johan et al.
2017In Medical Image Analysis, 38, p. 77-89
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Bernard_shape-aware_surface_reconstruction_orbilu.pdf
Preprint Auteur (6.93 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
sparse shape reconstruction; statistical shape model; point distribution model; Gaussian mixture model; expected conditional maximisation
Résumé :
[en] The reconstruction of an object’s shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are “oriented” according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BERNARD, Florian ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
SALAMANCA MINO, Luis ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
THUNBERG, Johan ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Tack, Alexander
Jentsch, Dennis
Lamecker, Hans
Zachow, Stefan
HERTEL, Frank 
GONCALVES, Jorge ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Gemmar, Peter
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Shape-aware surface reconstruction from sparse 3D point-clouds
Date de publication/diffusion :
mai 2017
Titre du périodique :
Medical Image Analysis
ISSN :
1361-8415
eISSN :
1361-8423
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
38
Pagination :
77-89
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
FNR - Fonds National de la Recherche
German federal ministry of education and research (BMBF)
Einstein Center for Mathematics (ECMath), Berlin
Disponible sur ORBilu :
depuis le 21 mars 2017

Statistiques


Nombre de vues
223 (dont 20 Unilu)
Nombre de téléchargements
879 (dont 8 Unilu)

citations Scopus®
 
39
citations Scopus®
sans auto-citations
33
OpenCitations
 
27
citations OpenAlex
 
44
citations WoS
 
36

Bibliographie


Publications similaires



Contacter ORBilu