This is an Open Access Article distributed under the Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ licensed by the respective authors for use and distribution on a non-commercial basis, subject to citation of the original source in accordance with the terms of the license under which the work was published (please check the license statement for the relevant article(s)). No permission is required from the authors or publishers for non-commercial reuse. Requests for commercial reuse should be directed to the rightsholder. Appropriate attribution can be provided by citing the original article, for example, “The Version of Scholarly Record of this Article is published in (JOURNAL TITLE) (year of publication), available online at: http://www.tandfonline.com/ (Article DOI).” For any reuse or redistribution of an article, users muse also make clear the license terms under which the article was published and retain all copyright notices and disclaimers. This permission does not cover any third-party copyrighted material which may appear in the work requested.
[en] Aberrant activation of oncogenic kinases is frequently observed in human cancers, but the underlying mechanism and resulting effects on global signaling are incompletely understood. Here, we demonstrate that the oncogenic FIP1L1-PDGFRalpha kinase exhibits a significantly different signaling pattern compared to its PDGFRalpha wild type counterpart. Interestingly, the activation of primarily membrane-based signal transduction processes (such as PI3-kinase- and MAP-kinase- pathways) is remarkably shifted toward a prominent activation of STAT factors. This diverging signaling pattern compared to classical PDGF-receptor signaling is partially coupled to the aberrant cytoplasmic localization of the oncogene, since membrane targeting of FIP1L1-PDGFRalpha restores activation of MAPK- and PI3K-pathways. In stark contrast to the classical cytokine-induced STAT activation process, STAT activation by FIP1L1-PDGFRalpha does neither require Janus kinase activity nor Src kinase activity. Furthermore, we investigated the mechanism of STAT5 activation via FIP1L1-PDGFRalpha in more detail and found that STAT5 activation does not involve an SH2-domain-mediated binding mechanism. We thus demonstrate that STAT5 activation occurs via a non-canonical activation mechanism in which STAT5 may be subject to a direct phosphorylation by FIP1L1-PDGFRalpha.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
HAAN, Serge ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
BAHLAWANE, Christelle ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
WANG, Jiali ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Nazarov, Petr V.
Muller, Arnaud
Eulenfeld, Rene
HAAN, Claude ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
ROLVERING, Catherine ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Vallar, Laurent
SATAGOPAM, Venkata ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
WIESINGER, Monique ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
The oncogenic FIP1L1-PDGFRalpha fusion protein displays skewed signaling properties compared to its wild-type PDGFRalpha counterpart.
Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348:1201-14; PMID:12660384; http://dx.doi.org/10.1056/ NEJMoa025217
Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A 2003; 100:7830-5; PMID:12808148; http://dx.doi.org/ 10.1073/pnas.0932698100
Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P, Williams IR, Gilliland DG, Cools J. Activation of FIP1L1-PDGFRα requires disruption of the juxtamembrane domain of PDGFRα and is FIP1L1- independent. Proc Natl Acad Sci U S A 2006; 103:8078-83; PMID:16690743
Bazenet CE, Gelderloos JA, Kazlauskas A. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol Cell Biol 1996; 16:6926-36; PMID:8943348
Eriksson A, Nanberg E, Ronnstrand L, Engstrom U, Hellman U, Rupp E, Carpenter G, Heldin CH, Claesson-Welsh L. Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors. J Biol Chem 1995; 270:7773-81; PMID: 7535778; http://dx.doi.org/10.1074/jbc.270.17.10161
Rupp E, Siegbahn A, Ronnstrand L, Wernstedt C, Claesson-Welsh L, Heldin CH. A unique autophosphorylation site in the platelet-derived growth factor alpha receptor from a heterodimeric receptor complex. Eur J Biochem 1994; 225:29-41; PMID: 7523122; http://dx.doi.org/10.1111/j.1432-1033. 1994.00029.x
Yokote K, Hellman U, Ekman S, Saito Y, Rönnstrand L, Saito Y, Heldin CH, Mori S. Identification of Tyr- 762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins. Oncogene 1998; 16:1229-39; PMID:9546424; http://dx.doi.org/ 10.1038/sj.onc.1201641
Hooshmand-Rad R, Yokote K, Heldin CH, Claesson-Welsh L. PDGF alpha-receptor mediated cellular responses are not dependent on Src family kinases in endothelial cells. J Cell Sci 1998; 111 (Pt 5):607-14; PMID:9454734
Gelderloos JA, Rosenkranz S, Bazenet C, Kazlauskas A. A Role for Src in Signal Relay by the Plateletderived Growth Factor alpha Receptor. J Biol Chem 1998; 273:5908-15; PMID:9488729; http://dx.doi. org/10.1074/jbc.273.10.5908
Valgeirsdǒttir S, Paukku K, Silvennoinen O, Heldin CH, Claesson-Welsh L. Activation of Stat5 by platelet- derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF beta-receptor juxtamembrane and kinase insert domains. Oncogene 1998; 16:505-15; http://dx.doi.org/10.1038/sj.onc. 1201555
Sachsenmaier C, Sadowski HB, Cooper JA. STAT activation by the PDGF receptor requires juxtamembrane phosphorylation sites but not Src tyrosine kinase activation. Oncogene 1999; 18:3583-92; PMID:10380880; http://dx.doi.org/10.1038/sj.onc. 1202694
Yu JC, Heidaran MA, Pierce JH, Gutkind JS, Lombardi D, Ruggiero M, Aaronson SA. Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction. Mol Cell Biol 1991; 11:3780-5; PMID:1646396
Miyake S, Lupher ML, Jr., Andoniou CE, Lill NL, Ota S, Douillard P, Rao N, Band H. The Cbl protooncogene product: from an enigmatic oncogene to center stage of signal transduction. Crit Rev Oncog 1997; 8:189-218; PMID:9570294; http://dx.doi.org/ 10.1615/CritRevOncog.v8.i2-3.30
Fantl WJ, Escobedo JA, Williams LT. Mutations of the platelet-derived growth factor receptor that cause a loss of ligand-induced conformational change, subtle changes in kinase activity, and impaired ability to stimulate DNA synthesis. Mol Cell Biol 1989; 9:4473-8; PMID:2479827
Kazlauskas A, Durden DL, Cooper JA. Functions of the major tyrosine phosphorylation site of the PDGF receptor beta subunit. Cell Regul 1991; 2:413-25; PMID:1653029
Sjoblom T, Boureux A, Ronnstrand L, Heldin CH, Ghysdael J, Ostman A. Characterization of the chronic myelomonocytic leukemia associated TELPDGF beta R fusion protein. Oncogene 1999; 18:7055-62; PMID:10597306; http://dx.doi.org/ 10.1038/sj.onc.1203190
Ross TS, Gilliland DG. Transforming properties of the Huntingtin interacting protein 1/ platelet-derived growth factor beta receptor fusion protein. J Biol Chem 1999; 274:22328-36; PMID:10428802; http:// dx.doi.org/10.1074/jbc.274.32.22328
Herren B, Rooney B, Weyer KA, Iberg N, Schmid G, Pech M. Dimerization of extracellular domains of platelet-derived growth factor receptors. A revised model of receptor-ligand interaction. J Biol Chem 1993; 268:15088-95; PMID:8325884
Haan S, Wuller S, Kaczor J, Rolvering C, Nocker T, Behrmann I, Haan C. SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene 2009; 28:3069-80; PMID:19543316; http://dx. doi.org/10.1038/onc.2009.155
Bahlawane C, Eulenfeld R, Wiesinger MY, Wang J, Muller A, Girod A, Nazarov PV, Felsch K, Vallar L, Sauter T, Satagopam VP, Haan S. Constitutive activation of oncogenic PDGFRa-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRa signalling characteristics. Cell Commun Signal 2015; 13:21; PMID:25880691; http://dx.doi.org/10.1186/s12964-015-0096-8
Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev 2011; 11:865-78; PMID:22089421
Gotlib J, Cools J, Malone JM, 3rd, Schrier SL, Gilliland DG, Coutre SE. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103:2879-91; PMID:15070659; http://dx.doi. org/10.1182/blood-2003-06-1824
Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J, Demoulin J-B. The fusion proteins TEL-PDGFR{beta} and FIP1L1-PDGFR {alpha} escape ubiquitination and degradation. Haematologica 2009; 94:1085-93; PMID:19644140; http://dx.doi.org/10.3324/haematol.2008.001149
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25:273-83; PMID: 24703957; http://dx.doi.org/10.1016/j.cytogfr.2014. 03.003
Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97:727-41; PMID:10380925; http://dx.doi.org/10.1016/ S0092-8674(00)80785-0
van Roeyen CR, Ostendorf T, Denecke B, Bokemeyer D, Behrmann I, Strutz F, Lichenstein HS, LaRochelle WJ, Pena CE, Chaudhuri A, et al. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells. Kidney Int 2006; 69:1393-402; PMID:16557224
Li B, Zhang G, Li C, He D, Li X, Zhang C, Tang F, Deng X, Lu J, Tang Y, et al. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS One 2012; 7: e34912; PMID:22523564; http://dx.doi.org/10.1371/ journal.pone.0034912
Paukku K, Valgeirsdǒttir S, Saharinen P, Bergman M, Heldin CH, Silvennoinen O. Platelet-derived growth factor (PDGF)-induced activation of signal transducer and activator of transcription (Stat) 5 is mediated by PDGF beta-receptor and is not dependent on c-src, fyn, jak1 or jak2 kinases. Biochem J 2000; 345:759-66; PMID:10642538; http://dx.doi. org/10.1042/0264-6021:3450759
Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 1998; 18:2545-52; PMID:9566874
Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat Rev 2004; 4:97-105; PMID:14964307
Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y, Beug H, Hennighausen L, Moriggl R, Sexl V. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107:4898-906; PMID:16493008; http:// dx.doi.org/10.1182/blood-2005-09-3596
Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005; 7:87-99; PMID:15652752; http://dx.doi.org/10.1016/j.ccr. 2004.12.010
Ye D, Wolff N, Li L, Zhang S, Ilaria RL, Jr. STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 2006; 107:4917-25; PMID:16522816; http://dx.doi.org/ 10.1182/blood-2005-10-4110
Ishihara K, Kitamura H, Hiraizumi K, Kaneko M, Takahashi A, Zee O, Seyama T, Hong J, Ohuchi K, Hirasawa N. Mechanisms for the proliferation of eosinophilic leukemia cells by FIP1L1-PDGFRa. Biochem Biophy Res Commun 2008; 366:1007-11; PMID:18086564; http://dx.doi.org/10.1016/j.bbrc. 2007.12.063
Mori S, Ronnstrand L, Yokote K, Engstrom A, Courtneidge SA, Claesson-Welsh L, Heldin CH. Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. Embo J 1993; 12:2257-64; PMID:7685273
Noel LA, Arts FA, Montano-Almendras CP, Cox L, Gielen O, Toffalini F, Marbehant CY, Cools J, Demoulin JB. The tyrosine phosphatase SHP2 is required for cell transformation by the receptor tyrosine kinase mutants FIP1L1-PDGFRalpha and PDGFRalpha D842V. Mol Oncol 2014; 8:728-40; PMID:24618081; http://dx.doi.org/10.1016/j.molonc. 2014.02.003
Detours V, Dumont JE, Bersini H, Maenhaut C. Integration and cross-validation of high-throughput gene expression data: comparing heterogeneous data sets. FEBS Lett 2003; 546:98-102; PMID:12829243; http://dx.doi.org/10.1016/S0014-5793(03)00522-2
Warnat P, Eils R, Brors B. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics 2005; 6:265; PMID:16271137; http://dx.doi. org/10.1186/1471-2105-6-265
Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 2010; 38:e169; PMID:20660011; http://dx.doi.org/10.1093/nar/ gkq636
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639-45; PMID:19541911; http://dx.doi.org/10.1101/gr.092759.109
Buitenhuis M, Verhagen LP, Cools J, Coffer PJ. Molecular mechanisms underlying FIP1L1- PDGFRA-mediated myeloproliferation. Cancer Res 2007; 67:3759-66; PMID:17440089; http://dx.doi. org/10.1158/0008-5472.CAN-06-4183
Harding A, Tian T, Westbury E, Frische E, Hancock JF. Subcellular localization determines MAP kinase signal output. Curr Biol 2005; 15:869-73; PMID:15886107; http://dx.doi.org/10.1016/j.cub. 2005.04.020
Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J. Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and jun B through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 1998; 273:31327-36; PMID:9813041; http://dx.doi.org/ 10.1074/jbc.273.47.31327
Kucharska A, Rushworth LK, Staples C, Morrice NA, Keyse SM. Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signall 2009; 21:1794-805; PMID:19666109; http://dx.doi.org/10.1016/j.cellsig.2009.07.015
Velghe AI, Van Cauwenberghe S, Polyansky AA, Chand D, Montano-Almendras CP, Charni S, Hallberg B, Essaghir A, Demoulin JB. PDGFRA alterations in cancer: characterization of a gain-of-function V536E transmembrane mutant as well as loss-offunction and passenger mutations. Oncogene 2014; 33:2568-76; PMID:23752188; http://dx.doi.org/ 10.1038/onc.2013.218
Xiang Z, Kreisel F, Cain J, Colson A, Tomasson MH. Neoplasia Driven by Mutant c-KIT Is Mediated by Intracellular, Not Plasma Membrane, Receptor Signaling. Mol Cell Biol 2007; 27:267-82; PMID: 17060458; http://dx.doi.org/10.1128/MCB.01153-06
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev 2009; 9:798-809; PMID:19851315
Avalle L, Pensa S, Regis G, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: A matter of balance. JAKSTAT 2012; 1:65-72; PMID:24058752
Groner B, Lucks P, Borghouts C. The function of Stat3 in tumor cells and their microenvironment. Sem Cell Dev Biol 2008; 19:341-50; PMID: 18621135; http://dx.doi.org/10.1016/j.semcdb.2008. 06.005
Haan S, Keller JF, Behrmann I, Heinrich PC, Haan C. Multiple reasons for an inefficient STAT1 response upon IL-6-type cytokine stimulation. Cell Signall 2005; 17:1542-50; PMID:15935617; http://dx.doi. org/10.1016/j.cellsig.2005.03.010
Costa-Pereira AP, Tininini S, Strobl B, Alonzi T, Schlaak JF, Is’harc H, Gesualdo I, Newman SJ, Kerr IM, Poli V. Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc Natl Acad Sci U S A 2002; 99:8043-7; PMID:12060750; http:// dx.doi.org/10.1073/pnas.122236099
Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611-29; PMID:23903221; http://dx.doi.org/10.1038/nrd4088
Knight ZA, Shokat KM. Features of selective kinase inhibitors. Chem Biol 2005; 12:621-37; PMID: 15975507; http://dx.doi.org/10.1016/j.chembiol. 2005.04.011
Kreis S, Munz GA, Haan S, Heinrich PC, Behrmann I. Cell density dependent increase of constitutive signal transducers and activators of transcription 3 activity in melanoma cells is mediated by Janus kinases. Mol Cancer Res 2007; 5:1331-41; PMID:18171991; http://dx.doi.org/10.1158/1541-7786.MCR-07-0317
Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner KU, Superti-Furga G, Sexl V. BCRABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 2012; 8:285-93; PMID:22286129; http://dx.doi.org/ 10.1038/nchembio.775
Gabler K, Rolvering C, Kaczor J, Eulenfeld R, Mendez SA, Berchem G, Palissot V, Behrmann I, Haan C. Cooperative effects of Janus and Aurora kinase inhibition by CEP701 in cells expressing Jak2V617F. J Cell Mol Med 2013; 17:265-76; PMID:23301855; http://dx.doi.org/10.1111/jcmm.12005
Page BD, Khoury H, Laister RC, Fletcher S, Vellozo M, Manzoli A, Yue P, Turkson J, Minden MD, Gunning PT. Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity. J Med Chem 2011; 55:1047-55; http://dx.doi.org/10.1021/ jm200720n
Neis MM, Wendel A, Wiederholt T, Marquardt Y, Joussen S, Baron JM, Merk HF. Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol 2010; 23:29-39; PMID:20090406; http://dx.doi.org/10. 1159/000257261
Haan C, Behrmann I. A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 2007; 318:11-9; PMID:17141265; http://dx. doi.org/10.1016/j.jim.2006.07.027
Wiesinger MY, Haan S, Wüller S, Kauffmann ME, Recker T, Küster A, Heinrich PC, Müller-Newen G. Development of an IL-6 inhibitor based on the functional analysis of murine IL-6Ra. Chem Biol 2009; 16:783-94; PMID:19635415; http://dx.doi.org/ 10.1016/j.chembiol.2009.06.010
Haan S, Haan C. Detection of activated STAT species using electrophoretic mobility shift assay (EMSA) and potential pitfalls arising from the use of detergents. Meth Mol Biol 2013; 967:147-59
Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8:52-6, 29; PMID:2268628; http://dx.doi.org/10.1016/0263-7855 (90)80070-V
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; http://dx.doi.org/10.1093/nar/ 25.17.3389
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4:249-64; PMID:12925520; http://dx.doi.org/ 10.1093/biostatistics/4.2.249
Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000; 290:2319-23; http://dx.doi. org/10.1126/science.290.5500.2319
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSSB 1995; 57:289-300
Myers JL, Well AD. Research Design and Statistical Analysis. Lawrence Erlbaum Associates; 2003
Li X, Ni LM. A pipeline architecture for computing cumulative hypergeometric distributions. IEEE 7th Symposium on Computer Arithmetic (ARITH) 1985:166-72
Pollard KS, Dudoit S, Laan MJVD. Applications of Multiple Testing Procedures: ALL Data. 2005:1-26
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498-504; http://dx.doi.org/10.1101/gr.1239303
Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT. Hubba: hub objects analyzer-a framework of interactome hubs identification for network biology. Nucleic Acids Res 2008; 36:W438-43; PMID: 18503085; http://dx.doi.org/10.1093/nar/gkn257
Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Gen 2013; 14:547; PMID:23941278; http://dx.doi.org/10.1186/1471-2164-14-547