Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Model-Free Robust Adaptive Control for Flexible Rubber Objects Manipulation
JASIM, Ibrahim; PLAPPER, Peter; VOOS, Holger
2015In 20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Luxembourg 8-11 September 2015
Peer reviewed
 

Documents


Texte intégral
2015 IEEE ETFA_Article1.pdf
Preprint Auteur (2.95 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Adaptive fuzzy systems; Flexible object manipulation; Robust control; Sliding mode control; Switched constrained robots
Résumé :
[en] This article addresses the control problem of robots with unknown dynamics and manipulating flexible rubber objects of unknown elasticity. The manipulated rubber object is considered to be interacting with arbitrarily-switched constraints. Such a kind of robot system is shown to have switched impedance parameters during a task execution that results in an unknown hybrid nonlinear system with arbitrarily switched signal. A Model-Free Robust Adaptive Control (MFRAC) strategy is proposed for such a robot system that is proved to guarantee global stable performance with all closed loop signals are assured to be bounded. The suggested MFRAC strategy relies on the synergy of the Adaptive Fuzzy System (AFS), the Sliding Mode Control (SMC), and the notion of Common Lyapunov Functions (CLF). The AFS relaxes the need for knowing the precise robot dynamics, the SMC adds robustness against the drift of the dynamics parameters, and the CLF accommodates the arbitrary switching of the impedance parameters. The bounds of the impedance parameters are adapted online and incorporated in the MFRAC design such that a convergent performance is achieved. Experiment is conducted on a KUKA Lightweight Robot (LWR) doing flexible rubber peg-in-hole assembly process that falls in the category of systems considered in this article. From the experimental results, excellent tracking performance is reported when using the proposed MFRAC strategy for the considered robotic system despite the dynamics anonymity and the unknown impedance parameters arbitrary switching.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
JASIM, Ibrahim ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
PLAPPER, Peter ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Model-Free Robust Adaptive Control for Flexible Rubber Objects Manipulation
Date de publication/diffusion :
08 septembre 2015
Nom de la manifestation :
20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Luxembourg, Luxembourg
Date de la manifestation :
8-9-2015 to 11-9-2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Luxembourg 8-11 September 2015
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet FnR :
FNR2955286 - Self-adaptive Fuzzy Control For Robotic Peg-in-hole Assembly Process, 2011 (01/05/2012-30/04/2016) - Ibrahim Fahad Jasim Ghalyan
Intitulé du projet de recherche :
R-AGR-0071 - IRP13 - PROBE (20130101-20151231) - PLAPPER Peter
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 14 septembre 2015

Statistiques


Nombre de vues
192 (dont 7 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
3
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu