Profil

KIEFER Ann

University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > LUCET

ORCID
0000-0001-9557-619X
Main Referenced Co-authors
PARLIER, Hugo  (5)
TEHEUX, Bruno  (5)
Jespers, E. (4)
Bächle, Andreas (3)
HARION, Dominic  (3)
Main Referenced Keywords
Secondary Education (5); Digital Sciences (3); Group Rings (3); Luxembourg Programme for Innovative Teaching and Training (3); Fundamental Domain (2);
Main Referenced Disciplines
Mathematics (20)
Education & instruction (6)
Social & behavioral sciences, psychology: Multidisciplinary, general & others (1)

Publications (total 27)

The most downloaded
73 downloads
KIEFER, A. (2012). Le théorème de Fermat vu par M. Le Blanc. Brussels Summer School of Mathematics, Notes de la cinquième BSSM, p. 51--65. https://hdl.handle.net/10993/53286

The most cited

12 citations (Scopus®)

KIEFER, A., & Leemans, D. (2010). On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group $ Sz(q)$. Journal of Combinatorial Theory. Series A, 117 (8), 1248--1257. doi:10.1016/j.jcta.2010.01.001 https://hdl.handle.net/10993/45740

KIEFER, A. (09 June 2023). Florence Nightingale, vue d’une mathématicienne [Paper presentation]. Comment faire bénéficier les soins de santé de la culture des données ? Un héritage de Florence Nightingale, infirmière pionnière, Esch-sur-Alzette, Luxembourg.

KIEFER, A. (2023). VidéoMATHon. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58051.

KIEFER, A. (2023). Histoire en puissance - Indication didactique. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58050.

PARLIER, H., TEHEUX, B., & KIEFER, A. (2023). The feel of Math.

Bächle, A., Janssens, G., Jespers, E., KIEFER, A., & Temmerman, D. (2022). Abelianization and fixed point properties of units in integral group rings. Mathematische Nachrichten. doi:10.1002/mana.202000514
Peer Reviewed verified by ORBi

BAUMANN, S., HARION, D., & KIEFER, A. (2022). #Discover Life on Mars with a Rover - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52796.

HARION, D., & KIEFER, A. (2022). #Involution - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52795.

KIEFER, A., & LENZ, T. (2022). Data Viz Superpowers - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53281.

Bächle, A., Janssens, G., Jespers, E., KIEFER, A., & Temmerman, D. (2022). A dichotomy for integral group rings via higher modular groups as amalgamated products. J. Algebra, 604, 185--223. doi:10.1016/j.jalgebra.2022.03.044
Peer reviewed

Bächle, A., KIEFER, A., Maheshwary, S., & del Río, Á. (2022). Gruenberg-Kegel graphs: cut groups, rational groups and the Prime Graph Question. accepted in Forum Mathematicum. doi:10.1515/forum-2022-0086
Peer reviewed

BAUMANN, I. E., HARION, D., & KIEFER, A. (2022). #Pupils vs Machine - Indication didactique. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58049.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). Math: joue, pense, découvre!

KIEFER, A. (2022). Was ist Mathematik? [Paper presentation]. Science Slam Göttingen, Göttingen, Germany.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate, ReShape, ReTrace.

KIEFER, A. (2021). Créativité et sciences : Échange d'expériences sur la réalisation d'un atelier créatif en cours de maths ou de sciences [Paper presentation]. I love Sciene Festival, Brussels, Belgium.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2021). The Simplicity of Complexity.

KIEFER, A. (2021). What is mathematics ? [Paper presentation]. Science Slam Luxembourg, Luxembourg, Luxembourg.

KIEFER, A. (2020). On units in orders in 2-by-2 matrices over quaternion algebras with rational center. Groups, Geometry, and Dynamics, 14 (1), 213--242. doi:10.4171/ggd/541
Peer reviewed

Jespers, E., KIEFER, A., & del Río, Á. (2016). Presentations of groups acting discontinuously on direct products of hyperbolic spaces. Mathematics of Computation, 85 (301), 2515--2552. doi:10.1090/mcom/3071
Peer Reviewed verified by ORBi

Jespers, E., Juriaans, S. O., KIEFER, A., de A. e Silva, A., & Souza Filho, A. C. (2016). Dirichlet-Ford domains and double Dirichlet domains. Bulletin of the Belgian Mathematical Society Simon Stevin, 23 (3), 465--479. doi:10.36045/bbms/1473186517
Peer Reviewed verified by ORBi

Jespers, E., Juriaans, S. O., KIEFER, A., de A. e Silva, A., & Souza Filho, A. C. (2015). From the Poincaré theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, 84 (293), 1489--1520. doi:10.1090/S0025-5718-2014-02865-2
Peer Reviewed verified by ORBi

Eisele, F., KIEFER, A., & Van Gelder, I. (2015). Describing units of integral group rings up to commensurability. Journal of Pure and Applied Algebra, 219 (7), 2901--2916. doi:10.1016/j.jpaa.2014.09.031
Peer Reviewed verified by ORBi

Jespers, E., KIEFER, A., & del Río, Á. (2015). Revisiting Poincaré's Theorem on presentations of discontinuous groups via fundamental polyhedra. Expositiones Mathematica, 33 (4), 401--430. doi:10.1016/j.exmath.2015.01.001
Peer Reviewed verified by ORBi

KIEFER, A., & Leemans, D. (2013). On pairs of commuting involutions in $ Sym(n)$ and $ Alt(n)$. Communications in Algebra, 41 (12), 4408--4418. doi:10.1080/00927872.2012.701360
Peer Reviewed verified by ORBi

KIEFER, A. (2012). Le théorème de Fermat vu par M. Le Blanc. Brussels Summer School of Mathematics, Notes de la cinquième BSSM, p. 51--65.

KIEFER, A., & Leemans, D. (2010). On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group $ Sz(q)$. Journal of Combinatorial Theory. Series A, 117 (8), 1248--1257. doi:10.1016/j.jcta.2010.01.001
Peer Reviewed verified by ORBi

Contact ORBilu