KIEFER, A. (09 June 2023). Florence Nightingale, vue d’une mathématicienne [Paper presentation]. Comment faire bénéficier les soins de santé de la culture des données ? Un héritage de Florence Nightingale, infirmière pionnière, Esch-sur-Alzette, Luxembourg. |
KIEFER, A. (2023). VidéoMATHon. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58051. |
KIEFER, A. (2023). Histoire en puissance - Indication didactique. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58050. |
PARLIER, H., TEHEUX, B., & KIEFER, A. (2023). The feel of Math. |
Bächle, A., Janssens, G., Jespers, E., KIEFER, A., & Temmerman, D. (2022). Abelianization and fixed point properties of units in integral group rings. Mathematische Nachrichten. doi:10.1002/mana.202000514 Peer Reviewed verified by ORBi |
BAUMANN, S., HARION, D., & KIEFER, A. (2022). #Discover Life on Mars with a Rover - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52796. |
HARION, D., & KIEFER, A. (2022). #Involution - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/52795. |
KIEFER, A., & LENZ, T. (2022). Data Viz Superpowers - Didaktischer Kommentar. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53281. |
Bächle, A., Janssens, G., Jespers, E., KIEFER, A., & Temmerman, D. (2022). A dichotomy for integral group rings via higher modular groups as amalgamated products. J. Algebra, 604, 185--223. doi:10.1016/j.jalgebra.2022.03.044 Peer reviewed |
Bächle, A., KIEFER, A., Maheshwary, S., & del Río, Á. (2022). Gruenberg-Kegel graphs: cut groups, rational groups and the Prime Graph Question. accepted in Forum Mathematicum. doi:10.1515/forum-2022-0086 Peer reviewed |
BAUMANN, I. E., HARION, D., & KIEFER, A. (2022). #Pupils vs Machine - Indication didactique. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58049. |
KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). Math: joue, pense, découvre! |
KIEFER, A. (2022). Was ist Mathematik? [Paper presentation]. Science Slam Göttingen, Göttingen, Germany. |
KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate. |
KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate, ReShape, ReTrace. |
KIEFER, A. (2021). Créativité et sciences : Échange d'expériences sur la réalisation d'un atelier créatif en cours de maths ou de sciences [Paper presentation]. I love Sciene Festival, Brussels, Belgium. |
KIEFER, A., PARLIER, H., & TEHEUX, B. (2021). The Simplicity of Complexity. |
KIEFER, A. (2021). What is mathematics ? [Paper presentation]. Science Slam Luxembourg, Luxembourg, Luxembourg. |
KIEFER, A. (2020). On units in orders in 2-by-2 matrices over quaternion algebras with rational center. Groups, Geometry, and Dynamics, 14 (1), 213--242. doi:10.4171/ggd/541 Peer reviewed |
Jespers, E., KIEFER, A., & del Río, Á. (2016). Presentations of groups acting discontinuously on direct products of hyperbolic spaces. Mathematics of Computation, 85 (301), 2515--2552. doi:10.1090/mcom/3071 Peer Reviewed verified by ORBi |
Jespers, E., Juriaans, S. O., KIEFER, A., de A. e Silva, A., & Souza Filho, A. C. (2016). Dirichlet-Ford domains and double Dirichlet domains. Bulletin of the Belgian Mathematical Society Simon Stevin, 23 (3), 465--479. doi:10.36045/bbms/1473186517 Peer Reviewed verified by ORBi |
Jespers, E., Juriaans, S. O., KIEFER, A., de A. e Silva, A., & Souza Filho, A. C. (2015). From the Poincaré theorem to generators of the unit group of integral group rings of finite groups. Mathematics of Computation, 84 (293), 1489--1520. doi:10.1090/S0025-5718-2014-02865-2 Peer Reviewed verified by ORBi |
Eisele, F., KIEFER, A., & Van Gelder, I. (2015). Describing units of integral group rings up to commensurability. Journal of Pure and Applied Algebra, 219 (7), 2901--2916. doi:10.1016/j.jpaa.2014.09.031 Peer Reviewed verified by ORBi |
Jespers, E., KIEFER, A., & del Río, Á. (2015). Revisiting Poincaré's Theorem on presentations of discontinuous groups via fundamental polyhedra. Expositiones Mathematica, 33 (4), 401--430. doi:10.1016/j.exmath.2015.01.001 Peer Reviewed verified by ORBi |
KIEFER, A., & Leemans, D. (2013). On pairs of commuting involutions in $ Sym(n)$ and $ Alt(n)$. Communications in Algebra, 41 (12), 4408--4418. doi:10.1080/00927872.2012.701360 Peer Reviewed verified by ORBi |
KIEFER, A. (2012). Le théorème de Fermat vu par M. Le Blanc. Brussels Summer School of Mathematics, Notes de la cinquième BSSM, p. 51--65. |
KIEFER, A., & Leemans, D. (2010). On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group $ Sz(q)$. Journal of Combinatorial Theory. Series A, 117 (8), 1248--1257. doi:10.1016/j.jcta.2010.01.001 Peer Reviewed verified by ORBi |