Profil

PARLIER Hugo

University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)

Main Referenced Co-authors
KIEFER, Ann  (5)
TEHEUX, Bruno  (5)
Erlandsson, Viveka (4)
Pournin, Lionel (4)
Souto, Juan (4)
Main Referenced Keywords
Mathematics - Geometric Topology (7); Mathematics - Differential Geometry (5); Mathematics - Combinatorics (3); Geometric identities (2); hyperbolic surfaces (2);
Main Referenced Disciplines
Mathematics (39)
Computer science (2)

Publications (total 41)

The most downloaded
440 downloads
despré, V., devillers, O., PARLIER, H., & SCHLENKER, J.-M. (2018). Delaunay Triangulations of Points on Circles. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35413. https://hdl.handle.net/10993/35413

The most cited

18 citations (Scopus®)

Disarlo, V., & PARLIER, H. (2019). The geometry of flip graphs and mapping class groups. Trans. Amer. Math. Soc, 372 (6), 3809--3844. doi:10.1090/tran/7356 https://hdl.handle.net/10993/45392

Despré, V.* , Kolbe, B.* , PARLIER, H.* , & Teillaud, M.*. (2023). Computing a Dirichlet Domain for a Hyperbolic Surface. In E. W. Chambers (Ed.), 39th International Symposium on Computational Geometry, SoCG 2023. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. doi:10.4230/LIPIcs.SoCG.2023.27
Peer reviewed
* These authors have contributed equally to this work.

DOAN, N. M.* , PARLIER, H.* , & Tan, S. P.*. (2023). MEASURING PANTS. Transactions of the American Mathematical Society, 376 (8), 5281 - 5306. doi:10.1090/tran/8893
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

Balacheff, F.* , Despré, V.* , & PARLIER, H.*. (2023). Systoles and diameters of hyperbolic surfaces. Journal of Mathematics of Kyoto University, 63 (1), 211 - 222. doi:10.1215/21562261-2022-0040
Peer reviewed
* These authors have contributed equally to this work.

PARLIER, H., TEHEUX, B., & KIEFER, A. (2023). The feel of Math.

PARLIER, H., Wu, Y., & Xue, Y. (2022). THE SIMPLE SEPARATING SYSTOLE FOR HYPERBOLIC SURFACES OF LARGE GENUS. J. Inst. Math. Jussieu, 21 (6), 2205--2214. doi:10.1017/S1474748021000190
Peer reviewed

McLeay, A., & PARLIER, H. (2022). Ideally, all infinite-type surfaces can be triangulated. Bull. Lond. Math. Soc, 54 (5), 2032--2040. doi:10.1112/blms.12677
Peer reviewed

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate, ReShape, ReTrace.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). ReCreate.

KIEFER, A., PARLIER, H., & TEHEUX, B. (2022). Math: joue, pense, découvre!

Fossas, A.* , & PARLIER, H.*. (2022). Flip graphs for infinite type surfaces. Groups, Geometry, and Dynamics, 16 (4), 1165 - 1178. doi:10.4171/GGD/685
Peer reviewed
* These authors have contributed equally to this work.

Ebbens, M., PARLIER, H., & Vegter, G. (2021). Minimal Delaunay triangulations of hyperbolic surfaces. In 37th International Symposium on Computational Geometry (pp. 31, 16). Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. doi:10.4230/LIPIcs.SoCG.2021.31
Peer reviewed

Balacheff, F., Karam, S., & PARLIER, H. (2021). The minimal length product over homology bases of manifolds. Math. Ann, 380 (1-2), 825--854. doi:10.1007/s00208-021-02150-5
Peer reviewed

KIEFER, A., PARLIER, H., & TEHEUX, B. (2021). The Simplicity of Complexity.

DOAN, N. M., PARLIER, H., & Tan, S. P. (2020). Measuring Pants. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/42494.

Erlandsson, V., PARLIER, H., & Souto, J. (2020). Counting curves, and the stable length of currents. J. Eur. Math. Soc. (JEMS), 22 (6), 1675--1702. doi:10.4171/jems/953
Peer reviewed

Erlandsson, V., & PARLIER, H. (2020). Short closed geodesics with self-intersections. Math. Proc. Cambridge Philos. Soc, 169 (3), 623--638. doi:10.1017/s030500411900032x
Peer reviewed

PARLIER, H., & Weber, A. (2020). Geometric simplicial embeddings of arc-type graphs. J. Korean Math. Soc, 57 (5), 1103--1118. doi:10.4134/JKMS.j190407
Peer reviewed

Judge, C., & PARLIER, H. (2019). The maximum number of systoles for genus two Riemann surfaces with abelian differentials. COMMENTARII MATHEMATICI HELVETICI, 94 (2), 399-437. doi:10.4171/CMH/463
Peer reviewed

Disarlo, V., & PARLIER, H. (2019). The geometry of flip graphs and mapping class groups. Trans. Amer. Math. Soc, 372 (6), 3809--3844. doi:10.1090/tran/7356
Peer reviewed

despré, V., devillers, O., PARLIER, H., & SCHLENKER, J.-M. (2018). Delaunay Triangulations of Points on Circles. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35413.

PARLIER, H., & Petri, B. (2018). The Genus of Curve, Pants and Flip Graphs. Discrete and Computational Geometry, 59 (1), 1--30. doi:10.1007/s00454-017-9922-7
Peer reviewed

PARLIER, H. (2018). Interrogating surface length spectra and quantifying isospectrality. MATHEMATISCHE ANNALEN, 370 (3-4), 1759-1787. doi:10.1007/s00208-017-1571-x
Peer reviewed

PARLIER, H., & Pournin, L. (2018). Once Punctured Disks, Non-Convex Polygons, and Pointihedra. Annals of Combinatorics, 22 (3), 619-640. doi:10.1007/s00026-018-0393-1
Peer Reviewed verified by ORBi

PARLIER, H., & Pournin, L. (2018). Modular flip-graphs of one-holed surfaces. EUROPEAN JOURNAL OF COMBINATORICS, 67, 158-173. doi:10.1016/j.ejc.2017.07.003
Peer reviewed

Disarlo, V., & PARLIER, H. (2018). Simultaneous Flips on Triangulated Surfaces. Michigan Mathematical Journal, 67 (3), 451-464. doi:10.1307/mmj/1530151253
Peer reviewed

Judge, C., & PARLIER, H. (2017). The maximum number of systoles for genus two Riemann surfaces with abelian differentials. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30056.

PARLIER, H., & Petit, C. (2017). Chromatic numbers for the hyperbolic plane and discrete analogs. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30054.

Massart, D., & PARLIER, H. (2017). On the homology length spectrum of surfaces. International Mathematics Research Notices, (8), 2367--2401. doi:10.1093/imrn/rnw086
Peer reviewed

PARLIER, H., & Zappa, S. (2017). Distances in domino flip graphs. American Mathematical Monthly, 124 (8), 710--722. doi:10.4169/amer.math.monthly.124.8.710
Peer reviewed

Basmajian, A., PARLIER, H., & Souto, J. (2017). Geometric filling curves on surfaces. Bulletin of the London Mathematical Society, 49 (4), 660--669. doi:10.1112/blms.12057
Peer reviewed

PARLIER, H., & Pournin, L. (2017). Flip-graph moduli spaces of filling surfaces. J. Eur. Math. Soc. (JEMS), 19 (9), 2697--2737. doi:10.4171/JEMS/726
Peer reviewed

Aramayona, J., Fossas, A., & PARLIER, H. (2017). Arc and curve graphs for infinite-type surfaces. Proceedings of the American Mathematical Society, 145 (11), 4995--5006. doi:10.1090/proc/13608
Peer reviewed

Erlandsson, V., PARLIER, H., & Souto, J. (2016). Counting curves, and the stable length of currents. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30053.

PARLIER, H. (2016). Interrogating surface length spectra and quantifying isospectrality. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30052.

Basmajian, A., PARLIER, H., & Souto, J. (2016). Geometric filling curves on surfaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30051.

Erlandsson, V., & PARLIER, H. (2016). Short closed geodesics with self-intersections. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30050.

PARLIER, H., & Zappa, S. (2016). Distances in domino flip graphs. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30049.

PARLIER, H., & Pournin, L. (2016). Once punctured disks, non-convex polygons, and pointihedra. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/30045.

PARLIER, H., & Petit, C. (2016). Chromatic numbers of hyperbolic surfaces. Indiana University Mathematics Journal, 65 (4), 1401--1423. doi:10.1512/iumj.2016.65.5842
Peer reviewed

Anderson, J. W., PARLIER, H., & Pettet, A. (2016). Relative shapes of thick subsets of moduli space. American Journal of Mathematics, 138 (2), 473--498. doi:10.1353/ajm.2016.0010
Peer reviewed

Fanoni, F.* , & PARLIER, H.*. (2016). Filling sets of curves on punctured surfaces. New York Journal of Mathematics, 22, 653--666.
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

Contact ORBilu