Abstract :
[en] This paper addresses the problem of optimal stabilization for stochastic dynamical systems characterized by Markov switches and concentration points of jumps, which is a scenario not adequately covered by classical stability conditions. Unlike traditional approaches requiring a strictly positive minimal interval between jumps, we allow jump moments to accumulate at a finite point. Utilizing Lyapunov function methods, we derive sufficient conditions for exponential stability in the mean square and asymptotic stability in probability. We provide explicit constructions of Lyapunov functions adapted to scenarios with jump concentration points and develop conditions under which these functions ensure system stability. For linear stochastic differential equations, the stabilization problem is further simplified to solving a system of Riccati-type matrix equations. This work provides essential theoretical foundations and practical methodologies for stabilizing complex stochastic systems that feature concentration points, expanding the applicability of optimal control theory.
Funding text :
This work was funded by the Luxembourg National Research Fund C21/BM/15739125/ DIOMEDES to T.L. and P.V.N. For the purpose of open access, and in fulfilment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Scopus citations®
without self-citations
0