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Abstract

This paper addresses the problem of optimal stabilization for stochastic dynamical systems
characterized by Markov switches and concentration points of jumps, which is a scenario
not adequately covered by classical stability conditions. Unlike traditional approaches
requiring a strictly positive minimal interval between jumps, we allow jump moments to
accumulate at a finite point. Utilizing Lyapunov function methods, we derive sufficient
conditions for exponential stability in the mean square and asymptotic stability in proba-
bility. We provide explicit constructions of Lyapunov functions adapted to scenarios with
jump concentration points and develop conditions under which these functions ensure
system stability. For linear stochastic differential equations, the stabilization problem is
further simplified to solving a system of Riccati-type matrix equations. This work pro-
vides essential theoretical foundations and practical methodologies for stabilizing complex
stochastic systems that feature concentration points, expanding the applicability of optimal
control theory.

Keywords: optimal control; Lyapunov function; system of stochastic differential equations;
Markov switches; concentration point

MSC: 60J25; 93D15; 93E03

1. Introduction
One of the prerequisites for the physical realization of a process is its stability. Hence,

ensuring stability is an essential task known as the stabilization problem.
The stabilization problem for stochastic dynamical systems with random structures

was first solved by I.Ya. Kats in [1]. For stochastic dynamical systems with random structure
and Markov switches that lead to jumps of the phase vector, the problem of optimal stabi-
lization was solved by the authors in [2]. In that work, it was assumed that the moments
of Markov switches are known. This assumption allowed a relatively straightforward
transfer of basic properties from stochastic differential equations (SDEs) with continuous
trajectories to systems with jumps. This global problem includes sub-problems related to

Mathematics 2025, 13, 2307 https://doi.org/10.3390/math13142307

https://doi.org/10.3390/math13142307
https://doi.org/10.3390/math13142307
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1651-6402
https://orcid.org/0000-0002-1291-9167
https://orcid.org/0000-0002-6532-5880
https://orcid.org/0000-0003-3443-0298
https://doi.org/10.3390/math13142307
https://www.mdpi.com/article/10.3390/math13142307?type=check_update&version=1


Mathematics 2025, 13, 2307 2 of 14

the Markov property for solution x(t), t ≥ 0, the martingale properties for ∥x(t)∥2, t ≥ 0,
and other local characteristics [3–5]. Similar problems for stochastic differential equations
with delays have been studied in [6,7]. Stochastic games [7,8] have become widely used,
in which it is assumed that two players have different objectives, and their strategies
are described by stochastic differential equations. More general approaches to analyzing
random fields and stochastic partial differential equations can be found in [9–13].

The inclusion of an integral term with respect to a Poisson measure also allowed
cases with random moments of finite jumps in the phase vector to be addressed. For such
systems, an explicit control form that stabilizes linear systems to asymptotic stochastic
stability was obtained in [5], along with justification of exact and approximate methods for
control calculation. A system of Riccati-type matrix equations has been derived to find a
general solution to the stabilization problem.

In the works mentioned above, as well as in most studies involving trajectory jumps,
i.e., distance between jumps satisfy the following condition: |tk − tk−1| > δ > 0. However,
in catastrophe theory or resonant systems, cases often arise where jumps concentrate at a
point, leading to the relation:

lim
k→∞

tk = t∞ < ∞.

In this scenario, as previously indicated in [14], the cumulative effect of jumps can
result in the loss of system stability. Consider the simple example which illustrates problems
with the existence of a concentration point:

dx(t) = −x(t)dt

with jumps defined by
x(tk) = x(tk−)(1 + k2)

at points

tk =
α

k
, α > 0.

One can easily conclude that
lim

t→α−
|x(t)| = ∞

provided that x(0) ̸= 0. This straightforward example highlights the critical role of jump
magnitudes in systems with concentration points.

In Section 2, we introduce the mathematical model for dynamical systems with jumps,
described by a system of stochastic differential equations with Markov parameters and
switches, providing sufficient conditions for the existence and uniqueness of solutions.
Section 3 establishes sufficient conditions for exponential stability of the solution x(t), t ≥ 0
(Theorem 1), which simultaneously define the class of admissible controls. Sufficient
conditions for the existence of solutions to the optimal stabilization problem are established
in Section 4 (Theorem 2). The synthesis of optimal control in explicit form for a linear
system with a quadratic quality functional is presented in Section 5.

2. Task Definition
On the probabilistic basis (Ω,F, F, P) [3,4,15], consider a controlled stochastic dynami-

cal system of random structure given by a stochastic differential equation (SDE)

dx(t) = a(t, ξ(t), x(t), u(t))dt + b(t, ξ(t), x(t), u(t))dw(t), t ∈ R+\K, (1)
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with Markov switches

∆x(t) = g(tk−, ξ(tk−), ηk, x(tk−)), tk ∈ K = {tn ⇑}, (2)

and initial conditions

x(0) = x0 ∈ Rm, ξ(0) = y ∈ Y, η0 = h ∈ H. (3)

Here, ξ(t), t ≥ 0 is a Markov chain with a finite number of states Y = {1, 2, . . . , N̄}
and generator Q = {qij}, i, j = 1, . . . , N̄; {ηk, k ≥ 0} is a Markov chain with values in the
space H and transition probability matrix PH ; x : [0,+∞)× Ω → Rm; u(t) ∈ Rm is the
control; w(t), t ≥ 0, is an m-dimensional standard Wiener process; the processes w, ξ, and η

are independent [3,4,15].
Define

Ftk = σ(ξ(s), w(s), ηe, s ≤ tk, te ≤ tk)

as the minimal σ-algebra with respect to which ξ(t) for t ∈ [0, tk] and ηn, n ≤ k are measurable.
Measurable functions a : R+ × Y ×Rm → Rm, b : R+ × Y ×Rm → Rm ×Rm and g :

R+ × Y × H ×Rm → Rm satisfy the boundedness and global Lipschitz conditions:
Coefficients of stochastic differential equation are measurable maps: a : R+ × Y ×

Rm → Rm, b : R+ × Y × Rm → Rm × Rm, g : R+ × Y × H × Rm → Rm satisfy the
boundedness condition and the global Lipschitz condition

|a(t, y, x, u)|2 + |b(t, y, x, u)|2 + |g(t, y, h, x)|2 ≤ C(1 + |x|2); (4)

|a(t, y, x1, u)− a(t, y, x2, u)|2 + |b(t, y, x1, u)− b(t, y, x2, u)|2 ≤ L|x1 − x2|2, x1, x2 ∈ Rm; (5)

|g(tk, y, h, x1)− g(tk, y, h, x2)|2 ≤ Lk|x1 − x2|2, x1, x2 ∈ Rm,
∞

∑
k=1

Lk < ∞. (6)

Consider the scenario with a concentration point of jumps, i.e.,

lim
n→∞

tn = t∗ < ∞.

Assume the following conditions are satisfied:

∞

∑
k=1

γk < ∞, γk = sup
x∈Rm , y∈Y,h∈H

|g(tk, y, h, x)| (7)

and

lim
ε↓0

(
ln ε + Nε

Nε

∑
k=1

Lk

)
= −∞, Nε := in f

{
k ≥ 1 :

∞

∑
m=k

γm < ε

}
. (8)

Conditions (4)–(8) in fact are the sufficient conditions of existence and unique for a
strong solution to the Cauchy problem (1)–(3) [16].

Define the transition probability of the Markov chain (ξ(tk), ηk, x(tk)) that determines
the solution of the problem (1)–(3) at step k as

Pk((y, h, x), Γ × G × C) :=

:= P((ξ(tk+1), ηk+1, x(tk+1)) ∈ Γ × G × C|(ξ(tk), ηk, x(tk)) = (y, h, x)).
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Definition 1 ([1]). The discrete Lyapunov operator (lvk)(y, h, x) on a sequence of measurable
scalar functions vk(y, h, x): Y × H × Rm → R1, k ∈ N ∪ {0}, for the SDE (1) with Markov
switches (2) is defined as

(lvk)(y, h, x) :=

:=
∫

Y×H×Rm

Pk(y, h, x)(du × dz × dl)vk+1(u, z, l)− vk(y, h, x). (9)

Here, vk(y, h, x), k ∈ N is a Lyapunov function defined by the following definition.

Definition 2 ([1,2]). A Lyapunov function for the system (1)–(3) is a sequence of nonnegative
non-decreasing functions {vk(y, h, x), k ≥ 0}, satisfying the following conditions:

1. for all k ≥ 0, y ∈ Y, h ∈ H, x ∈ Rm the discrete Lyapunov operator (lvk)(y, h, x) (9) is
defined;

2. vk(y, h, x) ≤ vk+1(y, h, x) for all k ≥ 0, y ∈ Y, h ∈ H, x ∈ Rm;
3. if r → ∞

v̄(r) ≡ inf
k∈N,y∈Y,h∈H,|x|≥r

vk(y, h, x) → +∞;

4. if r → 0
v(r) ≡ sup

k∈N,y∈Y,h∈H,|x|≤r
vk(y, h, x) → 0;

and v̄(r) and v(r) are continuous and monotonous.

Definition 3 ([17,18]). The stochastic system (1)–(3) is called:
—stable in probability if for ∀ε1 > 0, ε2 > 0 exist δ = δ(ε1, ε2) > 0, such that |x| < δ

implies

P

{
sup
t≥0

|x(t)| > ε1

}
< ε2 (10)

for all y ∈ Y, h ∈ H;
—asymptotically stochastically stable if it is stable in probability and for any ε > 0 there exists

δ2 > 0, such that

lim
T→∞

P

{
sup
t≥T

|x(t)| > ε

}
= 0 (11)

for all |x| < δ2, y ∈ Y, h ∈ H and T ≥ 0.

Definition 4 ([17–19]). The system (1)–(3) is called exponentially stable in the mean square if
∀x0 ∈ Rm, ξ(0) and η0, there exist constants α > 0, β > 0, such that

E|x(t)|2 ≤ α|x0|2e−βt, ∀t ≥ 0. (12)

In general, these two types of convergences are not related to each other [19], but in
specific cases one type of convergence can be used to infer the other. A remark to Theorem 1
allows us to state that, provided that the Lyapunov function exists, the exponential stability
in the mean square implies it is asymptotically stochastically stable. Thus, Theorem 1
allows us to draw conclusions, not only about the moment convergence of the solution to 0
but also about the probabilistic properties of the solution for large T.
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3. Stability
One common approach to establishing sufficient conditions for exponential stability

involves imposing a constraint on the switching moments of the type

|tk+1 − tk| > ∆, ∆ > 0 = const, (13)

which excludes the possibility of concentration points of jumps [1,20,21]. Clearly, in the
case considered here, condition (13) is not fulfilled. Therefore, it is essential to identify
conditions under which the solution to the system (1)–(3) is exponentially stable in the
mean square.

Theorem 1. Suppose that, for the system (1)–(3), there exist Lyapunov functions vk(x, y, h), k ≥ 0,
and strictly increasing on [0, ∞), positive and continuous functions c, f and z, c(0) = f (0) =
z(0) = 0, such that, under the condition,

f (|x(t)|2) ≤ vk(x(t), y, h) ≤ z(|x(t)|2) (14)

holds, along with the inequality

lvk(x(t), y, h) ≤ −c(|x(t)|2), (15)

for t ∈ [tk, tk+1), k ≥ 0, and

kNT+n−1

∑
j=kNT

E{vj(x, ξ(tj), ηj)} ≤ χk(vk(x(tk−), ξ(tk−), ηk)), (16)

for some integer NT ≥ 0, n = 1, 2, . . . , NT , where χk : R+ → R+ is a non-decreasing function
satisfying χk(s) ≤ s. Assume also that

inf
x∈(0,∞)

c(x)
z(x)

> 0.

Then, the system (1)–(3) is exponentially stable in the mean square.

Proof of Theorem 1. On the interval [tk, tk+1), k ≥ 0, consider the weak infinitesimal oper-
ator acting on the Lyapunov function vk(x, y, h). From (15), we have

lvk(x, y, h) ≤ −c(|x(t)|) = − c(|x(t)|)
vk(x, y, h)

· vk(x, y, h) ≤ −αvk(x, y, h),

where the scalar α > 0 is defined as

α = inf
x∈(0,∞)

c(x)
z(x)

.

By Dynkin’s formula [4], for any t ∈ [tk, tk+1), and some k ≥ 0,

E


k−1

∑
j=0

tj+1∫
tj

lvj(x(s), y, h)ds +
t∫

tk

lvk(x(s), y, h)ds

 =

=
k−1

∑
j=0

E{vj+1(x(tj+1−), ξ(tj+1−), η(tj+1−))} − vj(x(tj), ξ(tj), η(tj))+
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+Evk(x(tk), ξ(tk), η(tk))− vk(x, y, h) =

E{vk(x(tk), ξ(tk), η(tk))} − v0(x0, y, h)+[
k

NT

]
−1

∑
k=0

(k+1)NT−1

∑
j=kNT

E{vj(x(tj−), ξ(tj−), η(tj−))} − vj(x(tj), ξ(tj), η(tj))+

+
k

∑
j=
[

k
NT

]
NT

E{vj(x(tj−), ξ(tj−), η(tj−))} − vj(x(tj), ξ(tj), η(tj)).

Using (16), it follows that

E{vk(x(tk), ξ(tk), η(tk))} − v0(x0, y, h) ≤

≤ E


k−1

∑
j=0

tj+1∫
tj

lvj(x(s), ξ(tj), η(tj))ds +
t∫

tk

lvk(x(s), ξ(tk), η(tk))ds

 ≤

≤ −αE


k−1

∑
j=0

tj+1∫
tj

vj(x(s), ξ(tj), η(tj))ds +
t∫

tk

vk(x(s), ξ(tk), η(tk))ds

 =

= −αE


t∫

0

vk(x(s), ξ(tk), η(tk))ds

.

The last inequality implies that

d
dt

E{vk(x, ξ(tk), ηk)} ≤ −α
d
dt

t∫
0

E{vk(x(s), ξ(tk), ηk)}ds = −αE{vk(x, y, h)},

which, by the Gronwall–Bellman lemma, implies

E{vk(x(t), y, h)} ≤ vk(x0, y, h)e−αt, t ∈ [0, tk].

This estimate and (14) imply exponential stability in the mean square of the system
(1)–(3). Indeed, based on the estimate of E{vk(x, y, h)}, the event limt→∞ |x(t)| = 0 is
equivalent to limtk≥t,t→∞ E{vk(x(t), y, h)} = 0, proving the theorem.

Remark 1. Since the inequality (15) holds, the solution of (1)–(3) is asymptotically stable in
probability [14].

4. Stabilization
The problem of optimal stabilization for the system (1)–(3) consists of determining a

control u(t, x(t)), such that the trivial solution x(t) ≡ 0 of the system becomes asymptoti-
cally stable in probability.

It is assumed that the control u is based on the full feedback principle and is continuous
in t for t ≥ 0, x ∈ Rm, for all fixed ξ(t) = y ∈ Y and ηk = h ∈ H. Specifically, in the case of
continuous dynamics (1) and (2), the control is defined by the relation

u(t) = u(t, x(t−)),

and the left-hand side boundary is considered precisely due to the presence of jumps (2).
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The set of admissible controls consists of those controls for which the system is
exponentially stable [1,22], namely

U =
{

u(t) = u(t, x(t−))| E|x(t)| ≤ |x0|e−α(u)t, α(u) > 0
}

.

In the previous section, we established sufficient conditions under which exponential
stability in the mean square is equivalent to asymptotic stability in probability. Therefore,
if these conditions are met, every admissible control will be optimal with respect to the
stabilization problem, resulting in an infinite set of such controls. The optimal control
must then be selected based on the best quality of the transient process, expressed through
minimizing the quality functional

Iu(y, h, x0) :=

:=
∞

∑
k=0

∫ tk+1

tk

E{W(t, x(t), u(t))/ξ(0) = y, η0 = h, x(0) = x0}dt, (17)

where W(t, x, u) ≥ 0 is a measurable function defined for t ≥ 0, x ∈ Rm, u ∈ Rr.
The functional (17) can by calculated as follows:

A. Compute the trajectory x(t) of the SDE (1) for a given control u(t, y, h, x), e.g., using
the Euler–Maruyama method [23].

B. Put x(t), ξ(t), and u(t) = u(t, x(t)) into the functional (17).
C. Estimate the value of (17) through statistical simulation (Monte Carlo method).
D. The choice of the functional W(t, x, u), determining the functional estimate Iu and

the quality of the process x(t) as a strong solution of the SDE (1), must satisfy the
following criteria:

(a) Minimization conditions of (17) must ensure that the strong solution x(t) of
the SDE (1) converges to zero rapidly on average, with high probability;

(b) The integral’s value should reasonably estimate the computational cost for
generating the control u(t);

(c) The value of the quality functional should adequately reflect the computa-
tional effort required to determine the control u(t);

(d) The chosen functional W(t, x, u) must permit explicit or constructive solutions
to the stabilization problem.

Definition 5. A control u0(t) satisfying

Iu0(y, h, x0) = min Iu(y, h, x0),

where the minimum is taken over all controls continuous in variables t and x for each ξ(0) = y ∈ Y,
and η0 = h ∈ H is called optimal with respect to the optimal stabilization of the strong solution
x ∈ Rm of the system (1)–(3).

Theorem 2. Let, for the system (1)–(3), v0(tk, y, h, x) exists, and the r-vector function u0(t, y, h, x) ∈
Rr exists, such that:

1. The sequence of functions v0
k(y, h, x) ≡ v0(tk, y, h, x) is a Lyapunov functional, satisfying the

conditions of Theorem 1;
2. The sequence of r-dimensional control functions

u0
k(y, h, x) ≡ u0(tk, y, h, x) ∈ Rr

is measurable in all arguments, where 0 ≤ tk < tk+1, k ≥ 0;
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3. The sequence of functions appearing in the criterion (17) by x ∈ Rm is positive definite, i.e., for
∀t ∈ [tk, tk+1), k ≥ 0,

W(t, x, u0
k(y, h, x)) > 0;

4. The sequence of infinitesimal operators (lv0
k) |u0

k
, calculated at u0

k ≡ u0(y, h, x), satisfies the
condition for ∀t ∈ [tk, tk+1)

(lv0
k) |u0

k
= −W(t, x, u0

k);

5. The expression (lv0
k) + W(t, x, u) reaches its minimum at u = u0, k ≥ 0, i.e.,

(lv0
k) |u0

k
+ W(t, x, u0

k) =

= inf
u∈Rr

{(lv0
k) |u + W(t, x, u)} = 0. (18)

6. The series
∞

∑
k=0

∫ tk+1

tk

E{W(t, x(t), u(t))/x(tk)}dt < ∞

converges.

Then, the control u0
k ≡ u0(tk, y, h, x), k ≥ 0 stabilizes the solution of the problem (1)–(3).

Moreover, the following equality holds:

v0(y, h, x0) ≡

≡
∞

∑
k=0

∫ tk+1

tk

E{W(t, x(t), u(t))|x(tk)}dt =

= min
u∈Rr

∞

∑
k=0

∫ tk+1

tk

E{W(t, x(t), u(t))|x(tk)}dt ≡ Iu0(y, h, x0).

Proof of Theorem 2. The proof follows exactly the argument provided for Theorem 2
in [5].

Since ξ(tk) is a Markov process with a finite number of states, then transition probabil-
ity can be defined as follows:

P{ω : ξ(t + ∆t) = yj | ξ(t) = yi, yi ̸= yj} = −qij(t)∆t + o(∆t), i, j = 1, N. (19)

According to this assumption, we obtain an equation that must be satisfied by the
optimal Lyapunov functions v0

k(y, h, x) and the optimal control u0
k(t, x)∀t ∈ [tk, tk+1).

Following [14,24], the weak infinitesimal operator (WIO) (9) has the form

(lvk)(y, h, x) =
∂vk(y, h, x)

∂t
+ (∇vk(y, h, x), a(t, y, x, u))+

+
1
2

Sp(bT(t, y, x, u) · ∇2vk(y, h, x) · b(t, y, x, u))+

+
N

∑
j ̸=i

[
∫
Rm

vj(t, x)pij(t, z/x)dz − vi(t, x)]qij, (20)
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where (·, ·) is a scalar product, ∇vk =
(

∂vk
∂x1

, . . . , ∂vk
∂xm

)T
, ∇2vk =

[
∂2vk

∂xi∂xj

]m

i,j=1
, k ≥ 0, “T”

denotes transposition, Sp is a trace of the matrix, and pij(t, z/x) is a conditional probabil-
ity density

P{x(τ) ∈ [z, z + dz]/x(τ − 0) = x} = pij(τ, z/x)dz + o(dz)

assuming ξ(τ − 0) = yi, ξ(τ) = yj.
Using (20), we derive the first equation for v0 by substituting the averaged infinitesimal

operator (lv0
k)|u∗ [1] into the left-hand side of (18). The resulting equation at the points

(tk, yj, ηk, x) is:

∂v0
k

∂t
+

(∂v0
k

∂x

)T

· a(t, y, x, u)

+
1
2

Sp

((
bT(t, yi, x) ·

∂2v0
k

∂x2 · b(t, yi, x)

))
+

+
l

∑
j ̸=i

[∫ +∞

−∞
v0

j (yj, h, xj)pij(t, z/x)dz − v0
i (yi, h, x)

]
qij(t)dt+

+W(t, x, u) = 0. (21)

For defining optimal control u0
k(t, y, h, x) we differentiate (21) with respect to the

variable u: [(
∂v0

∂x

)T

·
(

∂a
∂u

)
+

(
∂W
∂u

)T
]∣∣∣∣∣

u=u0
k

= 0, (22)

where ∂a
∂u – m × r-matrix of Jacobi, stacked with elements

{
∂an
∂us

, n = 1, m, s = 1, r
}

;
(

∂W
∂u

)
≡(

∂W
∂u1

, . . . , ∂W
∂ur

)
, k ≥ 0.

Thus, according to Theorem 2, the problem of optimal stabilization reduces to solving
a complex system of the nonlinear Equation (18), involving partial derivatives, to find the
unknown Lyapunov functions v0

ik ≡ v0
k(y, h, x), where i = 1, l and k ≥ 0.

It is important to note that this nonlinear system is derived by eliminating the control
u0

k = u0(t, y, h, x) from Equations (21) and (22).
Given the inherent difficulty of solving such a nonlinear system directly, we will

subsequently focus on linear stochastic systems, for which more tractable solution schemes
can be constructed.

5. Stabilization of Linear Systems
Consider a linear case:

dx(t) = [A(t−, ξ(t−))x(t−) + B(t−, ξ(t−))u(t−)]dt+

+σ(t−, ξ(t−))x(t−)dw(t), t ∈ R+\K, (23)

with Markov switching given by

∆x(t)
∣∣∣
t=tk

= g(tk−, ξ(tk−), ηk, x(tk−)), tk ∈ K = {tn ⇑} (24)

where lim
n→+∞

tn = +∞, and initial conditions are

x(0) = x0 ∈ Rm, ξ(0) = y ∈ Y, η0 = h ∈ H. (25)

Here, A, B, σ are piecewise continuous integrable matrix functions of appropri-
ate dimensions.
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We assume that the jump conditions for the state vector x ∈ Rm at a switching instant
t = t∗, corresponding to the change in the structure of the system due to the transition
ξ(t∗−) = yi to ξ(t∗) = yj ̸= yi, are linear and expressed as

x(t∗) = Kijx(t∗−) +
N

∑
s=1

ξsQsx(t∗−), (26)

where ξs := ξs(ω) – are independent random variables satisfying Eξs = 0, Eξ2
s = 1, Kij and

Qs are given (m × m)-matrices.
Note that Equation (26) can replace the general jump conditions under the following

circumstances [21]:
If jumps are deterministic, then Qs = 0 and Expression (26) reduces to

x(t∗) = Kijx(t∗−);

Continuous changes in the phase vector correspond to Qs = 0 and Kij = I—the
identity matrix of size (m × m).

The quality of the transient process is evaluated through the quadratic functional

Iu(y, h, x0) := (27)

:=
∞

∑
k=0

∫ tk+1

tk

E
{

xT(t)M(t)x(t) + uT(t)D(t)u(t)/ y, h, x0}dt,

where M(t) ≥ 0 and D(t) > 0 are symmetric matrices of dimensions (m × m) and (r × r),
respectively.

The optimal Lyapunov functions are assumed in the quadratic form:

v0
k(y, h, x) = xTG(t, y, h)x, (28)

where G(t, y, h) is a positive-definite symmetric matrix of dimension (m × m).
Throughout this section, we assume that ξ(t) is a Markov chain with a finite state

space Y = {y1, y2, . . . , yl}, and ηk, k ≥ 0 is a Markov chain with states hk in a metric space
H and transition probabilities Pk(h, G) at step k. We introduce the following notations:

Ai(t) := A(t, yi), Bi(t) := B(t, yi), σi(t) := σ(t, yi),

Gik(t) := G(t, yi, hk), vik := v(yi, hk, x).

Substituting the functional (28) into Equations (21) and (22), we derive equations for
determining the optimal Lyapunov function v0

k(y, h, x) and optimal control u0
k(t, x) for

∀t ∈ [tk, tk+1). Using WIO form (20), we find that:

xT(t)
dGik(t)

dt
x(t) + 2[Ai(t)x(t) + Bi(t)u(t)]Gik(t)x(t)+

+Sp(xT(t)σT
i (t)Gik(t)σi(t)x(t))+

+xT(t)
N

∑
j ̸=i

[
KT

ij Gik(t)Kij +
l

∑
s=0

QT
s Gik(t)Qs − Gik(t)

]
qijx(t)+

+xT(t)Mik(t)x(t) + uT(t)Dik(t)u(t) = 0, (29)

2xT(t)Gik(t)Bi(t) + 2uT(t)Dik(t) = 0. (30)
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Using (30), we can derive optimal control for ξ(t) = yi and ηk = hk, k ≥ 0:

u0
ik(t, x) = −D−1

ik (t)BT
i (t)Gik(t)x(t). (31)

Given the matrix equality

2xT(t)Gik(t)Ai(t)x = xT(t)(Gik(t)Ai(t) + AT
i (t)Gik(t))x(t),

eliminating u0
ik from (29) and setting to zero a quadratic form, a system of matrix Riccati-

type differential equations for determining the matrices Gik(t), where i = 1, 2, . . . , l, k ≥ 0,
corresponding to the interval [tk, tk+1), are obtained:

dGik(t)
dt

+ Gik(t)Ai(t)− Bi(t)D−1
ik (t)BT

i (t)Gik(t)+

+Sp(σT
i (t)Gik(t)σi(t))+

+
N

∑
j ̸=i

[
KT

ij Gik(t)Kij +
l

∑
s=0

QT
s Gik(t)Qs − Gik(t)

]
qij + Mik(t) = 0, (32)

lim
t→∞

Gik(t) = 0, i = 1, N, k ≥ 0. (33)

Theorem 3. Suppose the system of matrix Equations (32) and (33) has positive-definite solutions
of the order (m × m):

G1k(t) > 0, G2k(t) > 0, . . . , Glk(t) > 0.

Then, the control defined by (31) provides a solution to the optimal stabilization problem for
the linear stochastic system (23)–(25) with jump conditions (26) and optimality criterion (27).

Remark 2. Sufficient conditions of resolvability of Ricatti-type Equations (32) and (33) given in
the work [25].

6. Model Example
For comparison results, consider example from [14]. For this example, define the linear

autonomous stochastic differential equation

dx(t) = (a(ξ(t))x(t) + b(ξ(t))u(t))dt + σ(ξ(t))x(t)dw(t), t ≥ 0,

with perturbations
x(tk) = x(tk−) + e−αkηk (x(tk−) ∧ 1),

where breakpoints tk are defined as

tk = 2 − 1
k

, k ≥ 1

with concentration point t∞ = limk→∞ = 2. Also define the non-random initial condition

x(0) = 10, ξ(0) = y0 ∈ Y, η0 = 1.

In this autonomous case, the system (32) has the next form [5]:

Gik Ai + AT
i Gik − BiD−1

ik BT
i Gik + σT

i Gikσi+

+
N

∑
j ̸=i

[
KT

ij GikKij +
l

∑
s=0

QT
s GikQs − Gik

]
qij + Mik = 0, i = 1, N, k ≥ 0.
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The three cases of the parameters are considered as in [14].
Case 1. Unstable system for b ≡ 0:

- if ξ = 1: a = 1, σ = 0.3, b = 1;
- if ξ = 2: a = −0.5, σ = 2.1, b = 1;

Case 2. Stable system for b ≡ 0:

- if ξ = 1: a = −1, σ = 0.3, b = 1;
- if ξ = 2: a = 0.5, σ = 2, b = 1;

Case 3. Unstable system with values of parameters from Case 2 and impulse action

x(tk) = x(tk−) + eαkηk (x(tk−) ∧ 1).

The results of synthesis of the optimal control (31) are visualized in Figure 1.

Figure 1. Examples of solution trajectories estimated by the Euler–Maruyama method (previously
shown in [14]): (a) Case 1—unstable, (b) Case 2—stable, and (c) Case 3—unstable with an ex-
treme growth at t = 2. Uncontrolled (red lines) and controlled (green lines) solutions with control
given by (31). Blue marks indicate moments of impulse actions. Optimal control stabilizes the
system’s trajectory.

As we can see, the optimal control stabilizes the unstable system in Case 1 and makes
the decay of stable solutions faster in Cases 2 and 3.

7. Discussion
Optimal control theory relies on several fundamental methods, one of the most promi-

nent being the Lyapunov function method. This method, along with its various modifica-
tions, is extensively employed to address practical problems in numerous mathematical
models, including stochastic differential equations. In this study, particular emphasis is
placed on applying Lyapunov functions to stochastic differential equations with Markov
switches, specifically addressing scenarios involving concentration points. This approach
could be extended by incorporating additional assumptions about the switching mecha-
nism, such as semi-Markov processes, where state durations do not necessarily follow an
exponential distribution.

The paper also considers a model example based on a similar example from [14].
As can be seen from the simulation results, unstable systems can be stabilized; however,
this is not possible in all cases, as illustrated in Case 3 of the model example. Thus, it
remains an important issue to study the conditions for unconditional boundedness of
solutions of the system (1)–(3).

Future research in this field will explore broader characteristics of the switching process
ξ(t) and validate the theoretical results derived here through practical applications. Fur-
thermore, the computational complexity of the algorithms proposed in Theorems 2 and 3
remains an area requiring further investigation, particularly in comparison to heuristic
algorithms for optimal control estimation. Hence, subsequent research will include com-
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parative analyses between the algorithms developed in this paper and heuristic methods.
Further studies will primarily focus on linear systems, exploring necessary and sufficient
conditions for stability and the existence of optimal controls.

8. Conclusions
In this paper, we have established sufficient conditions for ensuring stability in stochas-

tic differential equations characterized by jump concentration points. Unlike most classical
assumptions, which impose a strict minimal interval between jumps (i.e., |tk − tk−1| > ∆),
our study deliberately omits this condition, thus allowing for jump concentration scenarios.

The stability analysis performed leverages a sequence of Lyapunov functions
vk(y, h, x), k ≥ 0, whose properties guarantee the stability of the solutions to Equations (1)–(3).
Under assumption (7), these Lyapunov functions can explicitly be constructed as

vk(y, h, x) = dkv0(y, h, x),

where constants dk = 1 + ∑k
m=1 γm < ∞. Additionally, assumption (7) significantly relaxes

the previously stringent condition (8) used in earlier studies [16]. Thus, the derived stability
conditions for stochastic differential equations with jump concentration points combine
conditions from systems without jumps (g = 0) and constraints on jump magnitudes.

In the special case of linear stochastic differential equations, the stability conditions
simplify to the existence of positive-definite solutions to Riccati-type matrix equations,
similar to the classical cases. These conditions, derived from Equation (32), are sufficient
but do not fully characterize all stable systems, as demonstrated by the examples in [5].

Future research directions will focus specifically on linear systems, aiming to define
both necessary and sufficient stability conditions and determine the existence of optimal
control solutions.
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