Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Some Naturally defined star products for Kaehler manifolds
SCHLICHENMAIER, Martin
2025Gauge Symmetries and Poisson Geometry
Peer reviewed
 

Files


Full Text
schlich-arpino-handout.pdf
Author postprint (185.82 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] We give for the Kaehler manifold case an overview of the constructions of some naturally defined star products (i.e. deformation quantizations). In particular, the Berezin-Toeplitz, Berezin, geometric Quantization, Bordemann-Waldmann, and Karabegov standard star product are introduced. The mathematical background is explained. With the exception of the Geometric Quantization case these star products are of separation of variables type, i.e. respecting the complex structure. The classifying Karabegov forms and the Deligne-Fedosov classes are given. Moreover, it is shown how these star products relate.
Disciplines :
Mathematics
Author, co-author :
SCHLICHENMAIER, Martin  ;  University of Luxembourg
External co-authors :
no
Language :
English
Title :
Some Naturally defined star products for Kaehler manifolds
Publication date :
26 November 2025
Event name :
Gauge Symmetries and Poisson Geometry
Event place :
Arpino, Italy
Event date :
24-28 November 2025
By request :
Yes
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 02 December 2025

Statistics


Number of views
8 (2 by Unilu)
Number of downloads
3 (1 by Unilu)

Bibliography


Similar publications



Contact ORBilu