SCHLICHENMAIER, M. (02 November 2022). Lie superalgebras of Krichever-Novikov type and their central extensions [Paper presentation]. SPQR 2022 Symplectic and Poisson Geometry, Cargese, Corsica, France. |
SCHLICHENMAIER, M. (10 August 2022). N-Point Virasoro Algebras are multipoint Krichever-Novikov type algebras [Paper presentation]. hTematic Programme on Higher Structures, ESI, Vienna, Austria. |
SCHLICHENMAIER, M. (2022). Krichever-Novikov type algebras. A general review and the Genus Zero case. In S. Hervig, B. Kruglikov, I. Markina, ... D. The (Eds.), Geometry, Lie theory and applications (pp. 279-330). Springer. doi:10.1007/978-3-030-81296-6_13 Peer reviewed |
SCHLICHENMAIER, M. (2022). Les algebres de type Krichever - Novikov.: Definitions et resultats. In A. Makhlouf (Ed.), Algebre et applications 1 (pp. 205-252). London, Unknown/unspecified: ISTE. Peer reviewed |
SCHLICHENMAIER, M. (2021). Krichever-Novikov type algebras. Definition and Results. In A. Makhlouf (Ed.), Non-associative Algebras and Categories (pp. 199-244). Wiley. Peer reviewed |
ECKER, J. M.-A., & SCHLICHENMAIER, M. (2021). The low-dimensional algebraic cohomology of the Witt and the Virasoro algebra with values in natural modules. Banach Center Publications, 123, 141-174. Peer reviewed |
SCHLICHENMAIER, M. (13 March 2020). N-point Virasoro algebras and Krichever-Novikov type algebras [Paper presentation]. University of Lyon, Lyon, France. |
SCHLICHENMAIER, M. (13 March 2020). Berezin-Toeplitz quantization - an overview [Paper presentation]. University of Lyon, Lyon, France. |
SCHLICHENMAIER, M. (04 February 2020). N point Virasoro algebras considered as Krichever - Novikov type algebras [Paper presentation]. III International workshop on Nonassociative Algebras, Malaga, Spain. |
SCHLICHENMAIER, M. (10 September 2019). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Geoquant, Jinshan, Taiwan. |
SCHLICHENMAIER, M. (28 June 2019). N point Virasoro algebras are multi-point Krichever Novikov type algebras [Paper presentation]. The Abel Symposium 2019, Geometry, Lie theory and applications, Alesund, Norway. |
SCHLICHENMAIER, M. (02 May 2019). Canonical quantization for compact quantizable Kaehler manifolds [Paper presentation]. Algebra, deformation and quantization, Mulhouse, France. |
SCHLICHENMAIER, M. (19 March 2019). N point Virasoro algebras are multi-point Krichever Novikov type algebras [Paper presentation]. Complex Analysis and Mathematical Physics dedicated to the 70th birthday of A.G. Sergeev, Moscow, Russia. |
SCHLICHENMAIER, M. (2019). Krichever-Novivkov type algebras. A general review and the genus zero case. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/41411. |
SCHLICHENMAIER, M. (November 2018). Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds. Analysis and Mathematical Physics, 8 (4), 691-710. doi:10.1007/s13324-018-0225-9 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2018). Krichever-Novikov Type Algebras and Wess-Zumino-Novikov-Witten Models. In Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds, and Picard-Fuchs Equations (pp. 327-368). International Press. Peer reviewed |
SCHLICHENMAIER, M. (June 2018). An Introduction to KN type algebras - A lecture course (5 lectures) [Paper presentation]. School of Lie algebras, Charleston, United States. |
SCHLICHENMAIER, M. (2018). Krichever-Novikov type algebras. Definitions and Results. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/37351. |
ECKER, J. M.-A., & SCHLICHENMAIER, M. (2018). The low-dimensional algebraic cohomology of the Witt and the Virasoro algebra [Poster presentation]. QUANTMOD2 — Quantization and Moduli Spaces. |
ECKER, J. M.-A., & SCHLICHENMAIER, M. (2018). The low-dimensional algebraic cohomology of the Virasoro algebra. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/37269. |
SCHLICHENMAIER, M., Molina, G., Grong, E., Gumenyuk, P., & Takhtajan, L. (Eds.). (2018). ICAMI 2017: International Conference on Applied Mathematics and Informatics: Forum on Analysis, Geometry, and Mathematical Physics. Analysis and Mathematical Physics, 8, 250. Peer Reviewed verified by ORBi |
ECKER, J. M.-A., & SCHLICHENMAIER, M. (2018). The low-dimensional algebraic cohomology of the Witt and the Virasoro algebra. Journal of Physics. Conference Series. doi:10.1088/1742-6596/1194/1/012032 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (19 December 2017). An elementary proof of the formal rigidity of the Witt and Virasoro algebra [Paper presentation]. Colloquium Pierre Lecomte, Liege, Belgium. |
SCHLICHENMAIER, M. (27 November 2017). Some naturally defined star products for Kaehler manifolds [Paper presentation]. International Conference on Applied Mathematics and Informatics, San Andres, Colombia. |
SCHLICHENMAIER, M. (05 July 2017). Introduction to Berezin-Toeplitz quantization [Paper presentation]. Kolloquium, Oldenburg, Germany. |
SCHLICHENMAIER, M. (Ed.). (2017). Travaux mathematiques, Scientific contributions of the Centre for Quantum Geometry of Moduli Spaces, AQM Aarhus Denmark. Luxembourg, Unknown/unspecified: University of Luxembourg. |
SCHLICHENMAIER, M. (07 February 2017). Canonically defined star products for Kaehler manifolds [Paper presentation]. IAP DYGEST Annual Meeting, Louvain, Belgium. |
SCHLICHENMAIER, M. (2017). Basic Algebraic Structures - Lecture notes for the MICS. (Unilu - University of Luxembourg, Luxembourg, Basic Algebraic Structures MICS). |
SCHLICHENMAIER, M. (2017). Algebraic Curves. (Unilu - University of Luxembourg, Luxembourg, Algebraic Curves - BASI - track mathematics). |
SCHLICHENMAIER, M. (2017). N-point Virasoro algebras are multipoint Krichever-Novikov-type algebras. Communications in Algebra, 45, 776-821. doi:10.1080/00927872.2016.1175464 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2017). Introduction to Berezin-Toeplitz quantization (3 Lectures) [Paper presentation]. Summerschool, Lisbon,, Portugal. |
ECKER, J. M.-A., & SCHLICHENMAIER, M. (2017). The Vanishing of Low-Dimensional Cohomology Groups of the Witt and the Virasoro algebra. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/31809. |
SCHLICHENMAIER, M. (14 December 2016). N-point Virasoro algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. Higher Structure Workshop. |
SCHLICHENMAIER, M. (12 December 2016). N-point Virasoro algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. IAP workshop Brussels. |
SCHLICHENMAIER, M. (2016). Mathematik als universeller Schluessel komplexer Systeme [Paper presentation]. Session Institute Grand-Ducal, Luxembourg, Luxembourg. |
SCHLICHENMAIER, M. (Ed.). (2016). Travaux mathematiques, Geoquant 2015. University of Luxembourg. |
SCHLICHENMAIER, M. (25 July 2016). N-point Virasoro algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. Joint Meetings on Noncommutative Geometry and Higher Structures, Perugia, Italy. |
SCHLICHENMAIER, M. (11 July 2016). N-point Virasoro algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. QQQ, Kristineberg, Sweden. |
SCHLICHENMAIER, M. (20 June 2016). Canonical ways to quantize Kaehler manifolds [Paper presentation]. Colloque a la memoire de Louis de Boutet de Monvel, Paris, France. |
SCHLICHENMAIER, M. (19 May 2016). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Quantum mechanics meets Symplectic Topology, Tel-Aviv, Israel. |
SCHLICHENMAIER, M. (30 April 2016). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Bayrischzell Workshop: Quantum spacetime structures; Dualities and new geometries, Bayrischzell, Germany. |
SCHLICHENMAIER, M. (18 February 2016). Some naturally defined star products for K\"ahler manifolds [Paper presentation]. Geometria in Bicocca 2016, Milano, Italy. |
SCHLICHENMAIER, M. (05 January 2016). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Workshop on Poisson Geometry and Mathematical Physics, Nankai University, TIanjin, China. |
SCHLICHENMAIER, M., Kielanowski, P., Ali, S. T., Bieliavsky, P., Odzijewicz, A., & Voronov, T. (Eds.). (2016). Geometric Methods in Physics, Bialowieza 2015. Birkhaeuser. |
SCHLICHENMAIER, M. (2016). N-point Virasoro algebras considered as Krichever-Novikov type algebras. In M. SCHLICHENMAIER, P. kielianowski, P. Bieliavsky, A. Odzzijewicz, T. Voronov, ... S. T. Ali (Eds.), Goemetric Methods in Physics (pp. 295-310). Birkhaeuser. Peer reviewed |
SCHLICHENMAIER, M. (2016). Krichever-Novikov type algebras. An introduction. In K. Misra, D. Nakano, ... B. Parsall (Eds.), Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topis (pp. 40). AMS. Peer reviewed |
SCHLICHENMAIER, M. (2016). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Geometria in Bicocca 2016, Milano,, Italy. |
SCHLICHENMAIER, M. (January 2016). Berezin-Toeplitz quantization - a lecture course of 5 lectures [Paper presentation]. EQUALS8, Quantization, Noncommutativity and Nonlinearity, Putra Malaysia, Malaysia. |
SCHLICHENMAIER, M. (2015). Krichever-Novikov type algebras and Wess-Zumino-Witten models. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/23007. |
SCHLICHENMAIER, M. (2015). N point Virasoro algebras considered as Krichever-Novikov type algebras. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/22999. |
SCHLICHENMAIER, M. (23 October 2015). N point Virasoro Algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. Conference Algebra and Group Theory (in honour of Otto Kegel), Mulhouse, France. |
SCHLICHENMAIER, M. (01 October 2015). Some naturally defined star products on Kaehler manifolds [Paper presentation]. Hilbert - Modules and index theory, Trieste, Italy. |
SCHLICHENMAIER, M. (16 July 2015). Multi-point Krichever-Novikov type algebras [Paper presentation]. Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds, and Picard-Fuchs Equations, Djursholm, Sweden. |
SCHLICHENMAIER, M. (28 June 2015). N-point Virasoro algebras are multi-point Krichever-Novikov type algebras [Paper presentation]. XXXIV workshop on geometric methods in physics, Bialowieza, Poland. |
SCHLICHENMAIER, M. (04 June 2015). Some naturally defined star products on Kaehler manifolds [Paper presentation]. Research Stay in University of Napoli, Napoli, Italy. |
SCHLICHENMAIER, M. (2015). N-point Virasoro algebras are multi-point Krichever--Novikov type algebras. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/21021. |
SCHLICHENMAIER, M. (2015). Lie Superalgebras of Krichever-Novikov type. In P. KIelanowski, P. Bieliavsky, A. Odzijewicz, M. SCHLICHENMAIER, ... T. Voronov (Eds.), Geometric Methods in Physics, Bialowieza XXXIII (pp. 213-226). Birkhaeuser. Peer reviewed |
SCHLICHENMAIER, M., Kielanowski, P., Bieliavsky, P., Odzijewicz, A., & Voronov, T. (Eds.). (2015). Geometric Methods in Physics, XXXIII workshop Bialowieza, Poland. Birkhaeuser. |
SCHLICHENMAIER, M. (02 December 2014). Lie superalgebras of Krichever-Novikov type [Paper presentation]. Algebra, Deformations and Quantum Group Conference, Luminy, Marseille, France. |
SCHLICHENMAIER, M. (2014). Lie superalgebras of Krichever-Novikov type. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/18756. |
SCHLICHENMAIER, M. (2014). Krichever-Novikov type algebras. An Introduction. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/18141. |
SCHLICHENMAIER, M. (29 June 2014). Lie superalgebras of Krichever-Novikov type [Paper presentation]. XXXIII Workshop on Geometric Methods in Physics, Bialowieza, Poland. |
SCHLICHENMAIER, M. (May 2014). An elementary proof of the vanishing of the second cohomology of the Witt and Virasoro algebra with values in the adjoint module. Forum Mathematicum, 26 (3), 913-929. doi:10.1515/forum-2011-0143 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (02 April 2014). Some naturally defined star products for Kaehler manifolds [Paper presentation]. Belgian Bracket and Quantization workshop, Brussels, Belgium. |
SCHLICHENMAIER, M. (2014). Quasikristalle - 10 zaehlige Symmetrien gibt es nicht - oder doch [Paper presentation]. Serie X University of Luxembourg. |
SCHLICHENMAIER, M. (10 March 2014). Some naturally defined star products for Kaehler manifolds [Paper presentation]. GAP XII Sanya, China, Sanya, China. |
SCHLICHENMAIER, M., Kielanowski, P., Bieliavsky, P., Odzijewicz, A., & Voronov, T. (Eds.). (2014). Geometric Methods in Physics, XXXII Workshop Bialowieza, Poland, Jnue 30 - July 6, 2-13. Springer. |
SCHLICHENMAIER, M., & Bieliavsky, P. (2014). Daniel Sternheimer. In Goemetric Methods in Physics, XXXII workshop (Trends in Mathematics, pp. 3-5). Springer. |
SCHLICHENMAIER, M. (2014). Krichever-Novikov type algebras. Theory and Applications. deGruyter. |
SCHLICHENMAIER, M. (2014). Multipoint Lax operator algebras. Almost-graded structure and central extensions. Sbornik: Mathematics, 205 (5), 117-160. doi:10.1070/SM2014v205n05ABEH004396 Peer reviewed |
SCHLICHENMAIER, M. (2014). From the Virasoro Algebra to Krichever–Novikov Type Algebras and Beyond. In A. Vasil'ev (Ed.), Harmonic and Complex Analysis and its Applications (pp. 325-358). Springer International Publishing. doi:10.1007/978-3-319-01806-5_7 Peer reviewed |
SCHLICHENMAIER, M. (17 October 2013). Some naturally defined star products on K\"ahler manifolds [Paper presentation]. Q-days in Barcelona, CRM, Barcelona, Spain. |
SCHLICHENMAIER, M. (10 September 2013). Some naturally defined star products on K\"ahler manifolds [Paper presentation]. Lens topology and geometry meeting, Lens, France. |
SCHLICHENMAIER, M. (02 July 2013). Some naturally defined star products on K\"ahler manifolds [Paper presentation]. XXXII Workshop on geometric methods in Physics, Bialowieza, Poland. |
SCHLICHENMAIER, M. (07 March 2013). A global operator approach to WZNW models via KN type algebras [Paper presentation]. Mathematics Seminar at University of Aarhus. |
SCHLICHENMAIER, M. (2013). Lie superalgebras of Krichever-Novikov type and their central extensions. Analysis and Mathematical Physics, 3 (3), 235--261. doi:10.1007/s13324-013-0056-7 Peer reviewed |
Kielanowski, P., ALI, S. T., Odesskii, A., Odzijewicz, A., SCHLICHENMAIER, M., & Voronov, T. (Eds.). (2013). Geometric methods in physics. XXXI workshop, Biaowieza, Poland June 24--30, 2012. Selected papers based on the presentations at the workshop. Basel, Unknown/unspecified: Birkhäuser/Springer. doi:10.1007/978-3-0348-0645-9 |
Kielanowski, P., ALI, S. T., Odzijewicz, A., SCHLICHENMAIER, M., & Voronov, T. (Eds.). (2013). Geometric methods in physics. XXX workshop, Bialowieza, Poland June 26 --July 2, 2011. Selected papers based on the presentations at the workshop. Basel, Unknown/unspecified: Birkhäuser. doi:10.1007/978-3-0348-0448-6 |
SCHLICHENMAIER, M. (2013). Symmetries and infinite dimensional Lie algebras. In C. Bartholmé, T. Connor, Y. Dominicy, L. Kidzinski, N. Richard, ... Y. SWAN (Eds.), Notes de la cinquième BSSM (pp. 67-97). Bruxelles, Belgium: ULB. Peer reviewed |
SCHLICHENMAIER, M. (2013). Berezin's coherent states, symbols and transform for compact Kähler manifolds. In Geometric Methods in Physics, XXX Workshop 2011 (pp. 101-116). Springer. doi:10.1007/978-3-0348-0448-6_9 Peer reviewed |
SCHLICHENMAIER, M. (2013). An elementary proof of the formal rigidity of the WItt and Virasoro Algebra. In P. Kielanowski, T. Ali, A. E. Odesskii, A. Odzzijewicz, M. Schlichenmaier, ... T. Voronov (Eds.), Geometric Methods in Physics, XXXI Workshop 2012 (pp. 143--153). Springer. Peer reviewed |
SCHLICHENMAIER, M. (2013). From the Virasoro Algebra to Krichever--Novikov Type Algebras and Beyond. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/11397. |
SCHLICHENMAIER, M. (19 September 2012). Berezin-Toeplitz quantization of compact Kaehler manifolds and its application [Paper presentation]. DMV annual meeting, Saarbruecken, Germany. doi:10.1090/conm/583/11573 |
SCHLICHENMAIER, M. (18 July 2012). Toeplitz operators and TQFT [Paper presentation]. Workshop K-theory and Quantum fields, Vienna, Austria. |
SCHLICHENMAIER, M. (2012). Berezin-Toeplitz quantization and star products for compact Kähler manifolds. In Contemporary Mathematics 583. Mathematical aspects of quantization (pp. 257--294). Providence, RI, Unknown/unspecified: Amer. Math. Soc. doi:10.1090/conm/583/11573 Peer reviewed |
Bordemann, M., Ebrahimi-Fard, K., Abdenacer, M., SCHLICHENMAIER, M., & Waldmann, S. (Eds.). (2012). Nikolai Neumaier. Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg. |
SCHLICHENMAIER, M. (2012). Some naturally defined star products for Kähler manifolds. Travaux Mathématiques, 187--204. Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2012). Krichever-Novikov type algebras - personal recollections of Julius Wess. International Journal of Modern Physics Conference Series, 13, 158-173. doi:10.1142/S2010194512006824 Peer reviewed |
SCHLICHENMAIER, M. (October 2011). Berezin's coherent states, symbols and transform revisited [Paper presentation]. AGMP-7, Mulhouse, France. |
SCHLICHENMAIER, M. (September 2011). Berezin-Toeplitz quantization for compact Kähler manifolds. An introduction (3 Lectures) [Paper presentation]. International School Geoquant 2011, Bejing, China. |
SCHLICHENMAIER, M. (September 2011). Berezin's coherent states, symbols and transform revisited [Paper presentation]. International Conference Geoquant 2011, Tianjin, China. |
SCHLICHENMAIER, M. (2011). Die Clay Milleniumsprobleme und ihr historischer Vorgänger die 23 mathematischen Probleme von Hilbert aus dem Jahr 1900 [Paper presentation]. Vortragsserie fuer Lehrer. |
SCHLICHENMAIER, M. (20 April 2011). More about Berezin-Toeplitz quantization II [Paper presentation]. Courant lecture series. |
SCHLICHENMAIER, M. (19 April 2011). More about Berezin-Toeplitz quantization I [Paper presentation]. Courant lecture series. |
SCHLICHENMAIER, M. (18 April 2011). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Courant lecture series. |
SCHLICHENMAIER, M. (22 February 2011). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. NCTS(Taiwan)- CPT(France) Joint workshop on symplectic geometry and Quantum symmetries in Mathematical Physics, Taiwan. |
SCHLICHENMAIER, M. (11 January 2011). Almost-graded central extensions of Lax operator algebras [Paper presentation]. Workshop Harmonic and Complex Analysis and its Applications, Vienna, Austria. |
SCHLICHENMAIER, M. (07 January 2011). Almost-graded central extensions of Lax operator algebras [Paper presentation]. 40th Meeting Of Seminar Sophus Lie, Marburg, Castle Rauischholzhausen, Germany. |
SCHLICHENMAIER, M., Sergeev, A. E., & Sheinman, O. E. (Eds.). (2011). Geometry and quantization. Lectures presented at the 3rd international school and conference, Geoquant, Luxembourg City, Luxembourg, August 31--September 5, 2009. Travaux Mathématiques 19. Luxembourg: University of Luxembourg Faculty of Science, Technology and Communication. 277~p. |
SCHLICHENMAIER, M. (2011). Almost-Graded Central Extensions of Lax Operator Algebras. Banach Center Publications, 93, 129-144. Peer reviewed |
SCHLICHENMAIER, M. (2011). Berezin - Toeplitz quantization for compact Kähler manifolds. An introduction. Travaux Mathématiques, 19, 97-124. Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (14 December 2010). Berezin symbols and Berezin transform revisited [Paper presentation]. Conference on Quantization of Singular Spaces, Aarhus, Denmark. |
SCHLICHENMAIER, M. (21 October 2010). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Colloque ``Analyse et Symetries'', Reims, France. |
SCHLICHENMAIER, M. (08 June 2010). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Workshop on Algebraic Geometry and Physics, Saint Jean de Monts, France. |
SCHLICHENMAIER, M. (01 June 2010). An introduction to Krichever-Novikov type algebras [Paper presentation]. Analysis Seminar, Bergen, Norway. |
SCHLICHENMAIER, M. (14 January 2010). Berezin-Toeplitz quantization of compact Kähler manifolds [Paper presentation]. Mathematisches Seminar, Saarbrücken, Germany. |
Kielanowski, P., Buchstaber, V., Anatol, O., SCHLICHENMAIER, M., & Voronov, T. (Eds.). (2010). XXIX workshop on geometric methods in physics, Bia\lowie\Dza Poland, June 27 -- July 3, 2010. Selected papers based on the presentations at the workshop. AIP Conference Proceedings 1307. Melville, NY: American Institute of Physics (AIP). ix, 220~p. EUR~129.95/net - SFR~151.00 - \sterling~95.00 \$~142.00. |
Fialowski, A. E., Fröhlich, J. M. E., & SCHLICHENMAIER, M. (2010). Deformation methods in mathematics and physics. Abstracts from the workshop held September 25th--October 1st, 2010. Oberwolfach Rep, 7 (3), 2503-2560. doi:10.4171/OWR/2010/43 |
SCHLICHENMAIER, M. (January 2010). Berezin-Toeplitz quantization of moduli space [Paper presentation]. Mathemstisches Seminar, Augsburg, Germany. |
SCHLICHENMAIER, M. (January 2010). Quantisierung - 3 Vortraege [Paper presentation]. Vortragsserie LMU, München, Germany. |
SCHLICHENMAIER, M. (2010). Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Advances in Mathematical Physics, 1 (203), 38. doi:10.1155/2010/927280 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (03 December 2009). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Mathematisches Seminar, Dijon, France. |
SCHLICHENMAIER, M. (06 November 2009). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Mathematisches Seminar, Cologne, Germany. |
SCHLICHENMAIER, M. (October 2009). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. CIRM, Saarbrücken, Germany. |
SCHLICHENMAIER, M. (2009). Symmetrien in der Natur. Was sagt uns die Mathematik hierzu [Paper presentation]. Leonardo School, Luxembourg, Luxembourg. |
SCHLICHENMAIER, M. (May 2009). Almost-graded extensions of Lax operator algebras [Paper presentation]. Workshop Noncommutativity and Physics, Bayrischzell, Germany. |
SCHLICHENMAIER, M. (March 2009). Berezin-Toeplitz quantization of moduli spaces [Paper presentation]. Conference on Number Theory and Physics, Vienna, Austria. |
Kielanowski, P., Odzijewicz, A., & SCHLICHENMAIER, M. (Eds.). (2009). XXVIII Workshop on Geometrical Methods in Physics, Bialowieza, Poland, 28 June - 4 July 2009. AIP. |
Mortini, R., & SCHLICHENMAIER, M. (2009). Abel-Preis für Mathematiker Mischa Gromov. Luxemburger Wort, 19 June 2009, p. 16-16. |
SCHLICHENMAIER, M. (2009). Classification of central extensions of Lax operator algebras. In Proceedings of the XXVII Workshop on Geometric Methods in Physics (pp. 227-234). AIP (American Institute of Physics). Peer reviewed |
SCHLICHENMAIER, M. (2009). Deformations of the Witt, Virasoro, and Current Algebra. In S. Silvestrov, E. Paal, V. Abramov, ... A. Stolin (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond (pp. 219-234). Springer. doi:10.1007/978-3-540-85332-9_19 Peer reviewed |
Mortini, R., & SCHLICHENMAIER, M. (2008). Bahnbrechende Leistungen. "Nobelpreis in Mathematik": Abelpreis an Thompson und Tits. Luxemburger Wort, p. 24-24. |
SCHLICHENMAIER, M., & Sheinman, O. K. (2008). Central extensions of Lax operator algebras. Russian Mathematical Surveys, 63 (4), 131-172. doi:10.1070/RM2008v063n04ABEH004550 Peer reviewed |
SCHLICHENMAIER, M., Kielianowski, P., Odzijewicz, A., & Voronov, T. (Eds.). (2008). Proceedings of the XXVII Workshop on Geometric Methods in Physics, Bialowieza July 2008. AIP. |
SCHLICHENMAIER, M. (2008). Classification of central extensions of Lax operator algebras. In Geometric methods in physics (pp. 227--234). Melville, NY, Unknown/unspecified: Amer. Inst. Phys. Peer reviewed |
Fialowski, A., & SCHLICHENMAIER, M. (2007). Global Geometric Deformations of the Virasoro algebra, current and affine algebras by Krichever-Novikov type algebras. Communications in Mathematical Physics, 46 (11), 2708-2724. Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M., & Fialowski, A. (2007). Global Deformations of the Virasoro algebra, current and affine algebra by Krichever-Novikov type algebras. International Journal of Theoretical Physics, 46, 2708-2724. doi:10.1007/s10773-007-9383-5 Peer reviewed |
SCHLICHENMAIER, M. (2007). Berezin-Toeplitz quantization of the moduli space of flat SU(N) connections. Journal of Geometry and Symmetry in Physics, 9, 33-34. doi:10.7546/jgsp-9-2007-33-44 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M., Kielanoswski, P., Odzijewicz, A., Voronov, T., Bohm, A., & Mladenov, I. (Eds.). (2007). Proceedings of the XXV Workshop on Geometric Methods in Physics, Bialowieza July 2006. Bulgarian Academy of Science. |
SCHLICHENMAIER, M. (2007). An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces 2nd enlarged edition. Berlin, Unknown/unspecified: Springer. |
Kielanowski, P., Odzijewicz, A., SCHLICHENMAIER, M., & Voronov, T. (Eds.). (2007). Proceedings of the XXVI Workshop on Geometrical Methods in Physics AIP Conference Proceedings / Mathematical and Statistical Phsyics. American Institute of Physics. |
SCHLICHENMAIER, M. (2007). Higher genus affine Lie algebras of Krichever-Novikov type. In Proceedings of the International Conference “Difference Equations, special functions and orthogonal polynomials” (pp. 589-599). World Scientific. Peer reviewed |
SCHLICHENMAIER, M. (2007). A global operator approach to Wess-Zumino-Novikov-Witten models. In Proceedings of the XXVI Workshop on Geometrical Methods in Physics (pp. 107-119). Peer reviewed |
ALI, S. T., Gazeau, J.-P., Goldin, G. A., Neeb, K.-H., Odzijewicz, A., & SCHLICHENMAIER, M. (Eds.). (2006). XXIV Workshop on Geometric Methods in Physics, Bialowieza, Poland, June 26 - July 2, 2005, Proceedings Special issue of the Journal of Geometry and Symmetry in Physics, containting vol. 5 and 6. Institute of Biophysics, Bulgarian Academy of Sciences. |
SCHLICHENMAIER, M., Fialowski, A., Montigny, M., & Novikov, S. (2006). Deformations and contractions in mathematics and physics. Oberwolfach Reports, 3 (1), 119--186. doi:10.4171/OWR/2006/03 |
SCHLICHENMAIER, M. (2006). Higher genus affine Lie algebras of Krichever-Novikov type. Journal of Geometry and Symmetry in Physics, 5, 103-113. Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2006). Deformations of the Virasoro algebra of Krichever-Novikov type. Journal of Geometry and Symmetry in Physics, 5, 95--105. doi:10.7546/jgsp-5-2006-95-105 Peer reviewed |
ALI, S. T., Emch, G., Odzijewicz, A., SCHLICHENMAIER, M., & Woronowicz, S. L. (Eds.). (2005). Twenty Years of Bialowieza: A Mathematical Anthology Aspects of differential geometric methods in physics. World Scientific. |
Fialowski, A., & SCHLICHENMAIER, M. (2005). Global geometric deformations of current algebras as Krichever-Novikov type algebras. Communications in Mathematical Physics, 260 (3), 579-612. doi:10.1007/s00220-005-1423-5 Peer reviewed |
MOLITOR-BRAUN, C., PONCIN, N., & SCHLICHENMAIER, M. (Eds.). (2005). Proceedings of the 4th Conference on Poisson Geometry 2004 Travaux mathématiques, Vol. XVI. Luxembourg, Unknown/unspecified: University of Luxembourg. |
SCHLICHENMAIER, M., ALI, S. T., Odzijewicz, A., & Kielanowski, P. (Eds.). (2004). Recent Developments in Quantuzation. Proceedings of the XXI Workhsop on Geometric Methods in Physics, Bialowieza June 2002. JNLS. |
SCHLICHENMAIER, M., & Sheinman, O. K. (2004). Knizhnik-Zamolodchikov equations for positive genus and Krichever-Novikov algebras. Russian Mathematical Surveys, 59 (4), 737-770. doi:10.1070/RM2004v059n04ABEH000760 Peer reviewed |
SCHLICHENMAIER, M. (2004). Deformation quantization for almost-Kähler manifolds. Journal of Nonlinear Mathematical Physics, 11 (Supplement), 49-54. doi:10.2991/jnmp.2004.11.s1.6 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2003). Algebra. In Walz (Ed.), Faszination Mathematik (pp. 58-69). Heidelberg, Unknown/unspecified: Spektrum Verlag. |
SCHLICHENMAIER, M. (2003). Several entries. In J. Bagger, S. Duplij, ... W. Siegel (Eds.), Concise Encyclopedia on supersymmetry and non-commutative structures in mathematics and physics. Kluwer. |
SCHLICHENMAIER, M. (2003). several entries in the field algebra, algebraic topology, homological algebra, categories. In Walz (Ed.), Lexikon der Mathematik. Spektrum Verlag. |
Fialowski, A., & SCHLICHENMAIER, M. (2003). Global deformations of the Witt algebra of Krichever-Novikov type. Communications in Contemporary Mathematics, 5 (6), 921-946. doi:10.1142/S0219199703001208 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (2003). Higher genus affine Lie algebras of Krichever-Novikov type. Moscow Mathematical Journal, 3, 1395-1427. Peer reviewed |
SCHLICHENMAIER, M. (2003). Local cocycles and central extensions for multi-point algebras of Krichever-Novikov type. Journal für die Reine und Angewandte Mathematik, 559, 53-94. doi:10.1515/crll.2003.052 Peer reviewed |
SCHLICHENMAIER, M., ALI, S. T., Strasburger, A., & Odzijewicz, A. (Eds.). (2001). Coherent states, quantization and Gravity, Proceedings of Bialowieza workshop on Geometric Methods in Physics XVII, July, 1998. Warsaw University Press. |
SCHLICHENMAIER, M. (2001). Berezin-Toeplitz quantization of compact Kähler manifolds. In Coherent States, Quantization and Gravity, Proceedings of the XVII Workshop on Geometric Methods in Physics (pp. 45-56). Warsaw University Press. Peer reviewed |
SCHLICHENMAIER, M. (2001). Berezin-Toeplitz Quantization and Berezin Transform. In Long Time Behaviour of Classical Quantum Systems. Proceedings of the Bologna APTEX International Conference (pp. 271-287). World Scientific. Peer reviewed |
Landsman, K., Pflaum, M., & SCHLICHENMAIER, M. (Eds.). (2001). Quantization of singular symplectic quotients. Birkhäuser. |
Karabegov, A., & SCHLICHENMAIER, M. (2001). Almost Kähler deformation quantization. Letters in Mathematical Physics, 57 (2), 135-148. doi:10.1023/A:1017993513935 Peer reviewed |
Karabegov, A., & SCHLICHENMAIER, M. (2001). Identification of Berezin-Toeplitz deformation quantization. Journal für die Reine und Angewandte Mathematik, 540, 49-76. doi:10.1515/crll.2001.086 Peer reviewed |
SCHLICHENMAIER, M. (2000). W_(1+\infty) algebras. In Hazewinkel (Ed.), Encycloppedia of Mathematics, Suppl. II (pp. 486-487). Kluwer. |
SCHLICHENMAIER, M. (2000). Elements of a Global Operator Approach to Wess-Zumino-Novikov-Witten Models. In Lie Theory and its Applications in Physics III: Proceedings of the Third International Workshop, Clausthal, Germany, 11-14 July 1999 (pp. 204-220). World Scientific. Peer reviewed |
SCHLICHENMAIER, M. (2000). Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization. In Conférence Moshé Flato 1999: Quantization, Deformations, and Symmetries (pp. 289-306). Kluwer. Peer reviewed |
Berceanu, S., & SCHLICHENMAIER, M. (2000). Coherent state embeddings, polar divisors and Cauchy formulas. Journal of Geometry and Physics, 34, 336-358. doi:10.1016/S0393-0440(99)00075-3 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M., Strasburger, A., ALI, S. T., & Odzijewicz, A. (Eds.). (1999). Coherent states, differential and quantum goemetry, Proceedings of Bialowieza workshop on Geometric Methods in Physics, June 30-Jly6, 1997. Warsawa, Poland: Polish Scientific Publisher. |
SCHLICHENMAIER, M., & Sheinman, O. K. (1999). Wess-Zumino-Witten-Novikov theory, Knizhnik-Zamolodchikov equations, and Krichever-Novikov algebras, I. Russian Mathematical Surveys, 54 (1), 213-250. doi:10.1070/RM1999v054n01ABEH000122 Peer reviewed |
SCHLICHENMAIER, M. (1999). Sugawara operators for higher genus Riemann surfaces. Reports on Mathematical Physics, 43, 323-339. doi:10.1016/s0034-4877(99)80041-x Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (1998). Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds. In Quantization, Coherent States and Poisson Structures. Proceedings of the XIV’th Workshop on Geometric Methods in Physics, Bialowieza, Poland, 9-15 July 1995 (pp. 101-115). Peer reviewed |
SCHLICHENMAIER, M., & Sheinman, O. K. (1998). Sugawara construction and Casimir operators for Krichever-Novikov algebras. Journal of Mathematical Sciences, 92 (2), 3807-3834. doi:10.1007/BF02434007 Peer Reviewed verified by ORBi |
SCHLICHENMAIER, M. (1997). Vertexalgebren eine Einführung. (University of Mannheim, University of Heidelberg, Arbeitsgemeinschaft Mannheim-Heidelberg). |
SCHLICHENMAIER, M. (1997). Operaden und Vertexalgebren. (University of Mannheim, University of Heidelberg, Arbeitsgemeinschaft Mannheim-Heidelberg). |
SCHLICHENMAIER, M. (1997). Deformation quantization of compact Kähler manifolds via Berezin-Toeplitz operators. In Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras: Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics (pp. 396-400). Peer reviewed |
SCHLICHENMAIER, M. (1996). Zwei Anwendungen algebraisch-geometrischer Methoden in der Physik: Berezin-Toeplitz quanisierung und globale Algebren der konformen Feldtheorie, Habilitationsschrift [Postdoctoral thesis & other thesis, University of Mannheim]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/11941 |
SCHLICHENMAIER, M. (1994). Differential operator algebras on compact Riemann surfaces. In Generalized Symmetries in Physics, Clausthal 1993 (pp. 425-434). World Scientific. Peer reviewed |
BORDEMANN, M., Meinrenken, E., & SCHLICHENMAIER, M. (1994). Toeplitz quantization of Kähler manifolds and gl(N), N to infinity, limits. Communications in Mathematical Physics, 165, 281-296. doi:10.1007/BF02099772 Peer reviewed |
SCHLICHENMAIER, M. (1993). Degenerations of generalized Krichever-Novikov algebras on tori. Journal of Mathematical Physics, 34, 3809-3824. doi:10.1063/1.530008 Peer reviewed |
Ruffing, A., Deck, T., & SCHLICHENMAIER, M. (1992). String branchings on complex tori and algebraic representations of generalized Krichever-Novikov algebras. Letters in Mathematical Physics, 26 (1), 23-32. doi:10.1007/BF00420515 Peer reviewed |
BORDEMANN, M., Hoppe, J., Schaller, P., & SCHLICHENMAIER, M. (1991). gl(∞) and geometric quantization. Communications in Mathematical Physics, 138 (2), 209-244. doi:10.1007/BF02099490 Peer reviewed |
SCHLICHENMAIER, M. (1990). Central extensions and semi-infinite wedge representations of Krichever-Novikov algebras for more than two points. Letters in Mathematical Physics, 20, 33-46. doi:10.1007/BF00417227 Peer reviewed |
SCHLICHENMAIER, M. (1990). Krichever-Novikov algebras for more than two points: explicit generators. Letters in Mathematical Physics, 19 (4), 327-336. doi:10.1007/BF00429952 Peer reviewed |
SCHLICHENMAIER, M. (1990). Verallgemeinerte Krichever - Novikov Algebren und deren Darstellungen Dissertation, University of Mannheim, June 1990 [Doctoral thesis, University of Mannheim]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/10473 |
SCHLICHENMAIER, M. (1990). Krichever-Novikov algebras for more than two points. Letters in Mathematical Physics, 19 (2), 151--165. doi:10.1007/BF01045886 Peer reviewed |
SCHLICHENMAIER, M. (1989). An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces. New York, Unknown/unspecified: Springer. |