Paper published on a website (Scientific congresses, symposiums and conference proceedings)
Onboard Machine Learning for Satellite Edge Computing: The SPAICE Project Use Case
GARCES SOCARRAS, Luis Manuel; CUIMAN MARQUEZ, Raudel; ORTIZ GOMEZ, Flor de Guadalupe et al.
2025European Data Handling & Data Processing Conference
Editorial reviewed
 

Files


Full Text
SPAICE_EDHPC_IEEE_Submission.pdf
Author preprint (3.1 MB) Creative Commons License - Attribution, Non-Commercial, ShareAlike
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Onboard satellite processing; Flexible payload; Adaptive beamforming; Machine learning; Convolutional neural networks; Versal ACAP
Abstract :
[en] This work addresses the challenge of implementing an artificial intelligence-driven flexible payload onboard for next-generation satellites. Within the SPAICE project, we present the design and hardware deployment of hardware-optimized machine learning models for flexible payload and adaptive beamforming. The models are restructured to reduce memory and parameter overhead, then quantized and compiled for the Versal ACAP AI platform. Optimization strategies, including Cross-Layer Equalization and Fast Fine-Tuning, mitigate quantization losses while maintaining near-floating-point accuracy. Experimental results demonstrate significantly faster inference than workstation implementations, confirming the feasibility of deploying advanced machine learning models onboard satellites for real-time, reconfigurable payload operation with high computational efficiency.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
GARCES SOCARRAS, Luis Manuel  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CUIMAN MARQUEZ, Raudel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg
VASQUEZ-PERALVO, Juan Andres ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
GONZALEZ RIOS, Jorge Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SigCom > Team Symeon CHATZINOTAS
CHEHAITLY, Mouhamad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MALMIR, Sahar ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
NIK, Amirhossein ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
KAZANSKII Arkadii;  Unilu - University of Luxembourg > FSTM
THOEMEL, Jan  ;  University of Luxembourg
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VARADARAJULU, Swetha  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
MERLANO DUNCAN, Juan Carlos  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
QUEROL, Jorge  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
More authors (6 more) Less
External co-authors :
no
Language :
English
Title :
Onboard Machine Learning for Satellite Edge Computing: The SPAICE Project Use Case
Publication date :
October 2025
Event name :
European Data Handling & Data Processing Conference
Event organizer :
European Space Agency
IEEE
Event place :
Elche, Spain
Event date :
From the 13th to the 17th of October 2025
Event number :
2nd
Audience :
International
Peer reviewed :
Editorial reviewed
Source :
Name of the research project :
U-AGR-8064 - ESA-SPAICE - CHATZINOTAS Symeon
Funders :
ESA - European Space Agency
Funding number :
4000134522/21/NL/FGL
Funding text :
This work has been supported by the European Space Agency (ESA), which funded it under Contract No. 4000134522/21/NL/FGL, ”Satellite Signal Processing Techniques using a Commercial Off-The-Shelf AI Chipset (SPAICE).” Please note that the views of the authors of this paper do not necessarily reflect the views of ESA
Available on ORBilu :
since 29 October 2025

Statistics


Number of views
56 (4 by Unilu)
Number of downloads
55 (2 by Unilu)

Bibliography


Similar publications



Contact ORBilu