Onboard Machine Learning for Satellite Edge
Computing: The SPAICE Project Use Case

Luis M. Garcés-Socarrds’, Raudel Cuiman®, Flor Ortiz', Juan A. VésqueZ-PeralvoT, Jorge L. Gonzalez-RiosT,
Mouhamad ChehaitlyT, Arkadii Kazanskii*, Sahar MalmirT, Amirhossein NikT, Jan ThoemelT, Sumit Kumarb,
Marcele Kuhfuss’, Swetha VaradajuluT, Eva LagunasT, Juan C. M. Duncan’, Jorge QuerolT, Symeon Chatzinotas'
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
> Luxembourg Institute of Science and Technology (LIST)

Abstract—This work addresses the challenge of implementing
an artificial intelligence-driven flexible payload onboard for next-
generation satellites. Within the SPAICE project, we present the
design and hardware deployment of hardware-optimized machine
learning models for flexible payload and adaptive beamforming.
The models are restructured to reduce memory and parameter
overhead, then quantized and compiled for the Versal ACAP
Al platform. Optimization strategies, including Cross-Layer
Equalization and Fast Fine-Tuning, mitigate quantization losses
while maintaining near-floating-point accuracy. Experimental
results demonstrate significantly faster inference than worksta-
tion implementations, confirming the feasibility of deploying
advanced machine learning models onboard satellites for real-
time, reconfigurable payload operation with high computational
efficiency.

Index Terms—Onboard satellite processing, Flexible payload,
Adaptive beamforming, Machine learning, Convolutional neural
networks, Versal ACAP

I. INTRODUCTION

Recent advances in satellite communications have high-
lighted the growing demand for greater flexibility and au-
tonomy in payload operations. Conventional satellite systems
depend heavily on ground-based processing, which introduces
latency, limits adaptability, and increases operational costs.
As mission requirements become more dynamic, onboard
processing has emerged as a promising approach to enable
real-time decision-making under strict resource constraints.

Rapid advancement of machine learning (ML) and artificial
intelligence (Al) has led to their integration into a wide range
of applications, including space-based systems, autonomous
navigation, and communication networks. In the case of Low
Earth Orbit (LEO) satellites, the limited visibility windows to
ground stations make fast and autonomous decision-making
essential. Moreover, functional splits in next-generation satel-
lite communication architectures require a flexible distribution
of signal processing tasks between the space and ground
segments. In this context, efficient onboard ML integration
enables real-time adaptation to traffic and channel dynamics,
maximizing resource utilization while ensuring service relia-
bility.

This work has been supported by the European Space Agency (ESA), which
funded it under Contract No. 4000134522/21/NL/FGL, “Satellite Signal Pro-
cessing Techniques using a Commercial Off-The-Shelf Al Chipset (SPAICE).”

Please note that the views of the authors of this paper do not necessarily reflect
the views of ESA

However, deploying ML models in resource-constrained
environments, such as onboard satellites and edge computing
platforms, faces several challenges. These include computa-
tional limitations, memory constraints, power efficiency, and
the need for real-time inference under dynamic conditions. Un-
like traditional ML deployment on high-performance comput-
ing systems, where abundant resources enable complex model
execution, embedded hardware platforms require substantial
model optimization, quantization, and hardware-specific adap-
tations to achieve an optimal balance between performance and
efficiency.

Machine learning for onboard satellite studies have focused
initially on limited use cases and a narrow range of methods,
restricting the generality of the results. Furthermore, the short
evaluation periods have hindered comprehensive assessment
and comparison against traditional non-ML solutions, leaving
the practical benefits and limitations of onboard ML largely
unexplored [1], [2]. Additionally, achieving acceptable perfor-
mance requires extensive and well-labeled training datasets,
which are often difficult to store or access in space environ-
ments, along with significant computing capabilities and power
for running the training process on the satellite [3], [4].

A practical solution to mitigate these problems when inte-
grating ML techniques into the onboard payload is to execute
the training and validation of the payload model offline using
a set of input/output values, as depicted in Figure 1. This pre-
trained model is then incorporated into the satellite payload
processor to perform the inference process. In this approach,
any changes to the trained model must be implemented on
the ground and subsequently updated onboard. The feeder
uplink signals are processed onboard according to the demand
requirements for the satellite’s coverage area. Based on the
model’s outputs, the system generates control instructions for
the low physical layer, thereby improving transmission effi-
ciency, managing network congestion, and optimizing band-
width and power allocation [5].

The integration of Al and ML into satellite systems has
been explored, with a focus on onboard autonomy and efficient
resource management. Davidson et al. [6] demonstrate this
within the Flexible and Intelligent Payload Chain (FIPC) sub-
system, combining reconfigurable architectures with machine
learning techniques to support autonomous payload control,



OFFLINE PROCESS

TRAINING l

[MODEL TRAINING|
AND VALIDATION

TRAINED NN
MODEL

ONBOARD Al

INFERENCE

CORE
NETWORK

SPACE SEGMENT PAYLOAD
OPERATION (SOC)

INTERMEDIATE ROUTER

Fig. 1: Onboard Al Payload application [5].

while highlighting the challenges of balancing computational
efficiency, flexibility, and reliability in space-qualified hard-
ware and the importance of modular design. Similarly, Shen-
wai et al. [7] review the transformative impact of Al across
the aerospace sector, underlining its growing role in enabling
autonomy in dynamic environments, including satellite com-
munications, Earth observation, and spectrum management.
Complementing these perspectives, Kashyap and Gupta [§]
survey resource allocation techniques in multibeam satellites,
contrasting conventional optimization methods with AI/ML-
based approaches and emphasizing the potential of data-driven
techniques to enhance efficiency and adaptability, while noting
the practical challenges imposed by computational, real-time,
and hardware constraints of satellite payloads.

In this context, this paper presents the implementation, opti-
mization, and evaluation of two ML models designed for flex-
ible resource allocation on a Versal ACAP Al device as part of
the Satellite Signal Processing Techniques using a Commercial
Off-The-Shelf AI Chipset (SPAICE) project. SPAICE’s objec-
tive is to leverage onboard intelligence to improve decision-
making processes in satellite-based communication networks,
particularly adaptive radio resource management (RRM) [9].
The paper explains the model’s architecture, adaptation, and
quantization for onboard processing constraints, while main-
taining the expected accuracy. It also examines the model’s
onboard execution and performance metrics, comparing pre-
and post-quantization model performance in terms of latency
and prediction accuracy to assess their suitability for onboard
deployment.

II. MACHINE LEARNING FOR FLEXIBLE PAYLOAD IN
ONBOARD SATELLITE APPLICATIONS

The use of regenerative satellite payloads motivates the
adoption of flexible payload architectures and advanced beam
management algorithms, which can be further accelerated
through artificial intelligence and machine learning running
directly on board. Regenerative payloads are capable of pro-
cessing signals in the digital domain, enabling features such as
inter-satellite links to relay connectivity to multiple gateways.
This capability improves the link budget on the user link, im-

proves the spectral efficiency on the feeder link, and simplifies
the implementation of user and gateway handovers [5].

A flexible payload is a mission payload designed to be
reconfigurable in orbit, allowing operators to adapt its func-
tionality to evolving requirements after launch. Unlike tra-
ditional fixed payloads, which are hardwired for specific
frequencies, coverage areas, and signal processing parameters,
a flexible payload leverages technologies such as digital sig-
nal processors, beamforming networks, and software-defined
radios. These technologies enable adjustments of frequency
plans, beam shapes, bandwidth allocation, and routing on
demand. The combination of regenerative and flexible payload
capabilities allows satellites to dynamically respond to chang-
ing resource demands, emerging applications, and unexpected
events. This flexibility ultimately extends mission life and
maximizes return on investment [3], [10], [11].

Those principles are applied in the SPAICE project, which
develops an Artificial Intelligence Satellite Telecommunica-
tions Testbed (AISTT), shown in Figure 2. The project im-
plements a partial regenerative payload on a LEO satellite
for Al-accelerated flexible payload and beam management
algorithms, focusing on 5G New Radio. The testbed proposes
the onboard integration of Next Generation NodeB (gNB)
functionalities, enabling the evaluation of different functional
split options between the space and ground segments. This
allows the testbed to assess trade-offs between latency, feeder
link load, and onboard processing complexity. The selected
application features a software-controlled satellite payload
connected to a multibeam Direct Radiating Array (DRA)
antenna with hybrid beamforming, enabling dynamic adjust-
ments to bandwidth, power, and beamwidth [5], [12]-[15].

The AISTT architecture integrates a Scenario Generator,
a Base Station Emulator, an onboard payload, a Channel
Emulator (ChEM), and user equipment (UE). The scenario
generator is a MATLAB script within the payload control
center that produces the inputs for the AI/ML algorithms,
including traffic demand (R), beam pointing angles (Az and
El), minimum Side Lobe Level (SLLy,;,), and beamforming
coefficient phasors (e7%%).

The Base Station Emulator is a Next Generation NodeB
distributed unit (gNB-DU) running OpenAir-Interface (OAI)
that generates the downlink signal and receives the uplink. For
implementation purposes, the partially regenerative functions
running on the satellite payload are implemented on the
downlink Low-PHY layer, which is the only link emulated
on the physical layer due to hardware constraints.

The onboard payload is the principal component of the
AISTT. It is composed of the AI/ML inference system and
the Software-Defined Radio (SDR) as a Radio Frequency (RF)
front-end. The inference system runs on a Versal ACAP Al
Edge device, which executes the machine learning models,
obtains the beamforming coefficients, and feeds them back
to the payload control center. The SDR, powered by an
RFSoC FPGA board, performs payload processing by re-
ceiving/transmitting the downlink/uplink signals to the gNB-
DU computers via an Ethernet interface. It also receives the



Dk

(=5

Processing
Time-domain
Beamformer '

&
5
E

ETEHRNET

Adaptive
Beamformer
Coefficient
generator

SL.
c
&
=
S
g
S
=]
=
£
o
o

3
)

AMD Versal Al SERIES

Flexible Payload
ETHERNET

64,0

ULnk

L2

s

=

— |

A——30
UEPC
.

DLnk/ULnk —

Base Station Emulation

SDR RFSoC Board

_J{crounp J

Fig. 2: AISTT functional diagram.

channel matrix coefficients (ChE M) required to decode
the downlink signals after mixing them in the time-domain
beamformer. This operation is not computed onboard since,
in a real scenario, channel emulation is not required.

The Channel Emulator receives the RF signal from the
AI/ML payload, applies the channel effects, and sends it
to the UE side. The UE aggregates all the traffic demand
corresponding to all the users served by the beam. At the
same time, the OAI UE generates different user information
that is retransmitted to the gNB-DU (uplink) to modify the
downlink requirements.

A. Models’ selection

The inference system executes two machine learning models
running in sequence. The first, the Flexible Payload model, is
implemented in TensorFlow 2 (TF2) as a Keras sequential
convolutional neural network (CNN) model, as shown in
Figure 3a. The model is trained on a dataset, where each
sample consists of a 401 x 501 matrix representing the traffic
demand (R) as a function of the satellite position. The model
classifies the output into 50 classes using a cost function
designed to maximize the Effective Isotropic Radiated Power
(EIRP), beamwidth, and bandwidth per beam.

When inspecting the model using the Vitis Al tools, several
layers of the designed architecture—highlighted in red and
yellow in Figure 3a—were reported as unsupported for the
Deep Learning Processing Unit (DPU) IP core of AMD
devices, responsible for the ML acceleration, requiring the
execution of the operations of those layers in the CPU. The
Dense layer after the Flatten operation requires a large matrix
multiplication not supported by the hardware accelerator. The
Dropout layer is removed during inference, and the softmax
activation has to be implemented in SW.

As one of the project’s objectives is to maximize per-
formance and reduce inference latency, the architecture has
been modified to remove the large fully connected lay-
ers—highlighted in blue in Figure 3b. The original Flatten and
Dense layers, which together represented more than 47 million
parameters, were replaced by a fully convolutional design that
progressively reduces spatial dimensions through additional
MaxPooling2D layers. The final classification is performed by
a Conv2D layer with one channel per class, followed by a
GlobalAveragePooling2D operation. After training, the model
achieved an accuracy of 1.00 with a negligible loss, as reported
in Table I. This result may vary depending on the weight
values assigned by the tool each time the model is trained.

On the other hand, the Adaptive Beamforming model is a
simpler Keras sequential CNN, illustrated in Figure 4a. Its in-
put consists of a six-element vector dataset with a cost function
to achieve the desired EIRP, beamwidth, and minimum SLL
for the satellite position. The output corresponds to one of 15
predefined matrices for beam coefficient configurations. Due
to the simplicity of the model and the number of parameters,
the only layer that has been modified is the softmax activation
of the last Dense layer, as shown in Figure 4b. In this case, the
model achieved an accuracy of 0.99887 with a loss of 0.00546,
as shown in Table II.

B. Models’ quantization

The models must be quantized for the hardware implemen-
tation to reduce the precision of the weights from floating-
point to an eight-bit representation. Although this process
slightly impacts the model’s accuracy, it optimizes the archi-
tecture for size, speed, and energy efficiency, making it suitable
for deployment on resource-constrained devices. Furthermore,
it ensures compatibility with hardware accelerators specifically
optimized for low-precision formats.

During the quantization process, two versions have been
evaluated: one without optimization parameters and the other
with Cross-Layer Equalization (CLE) and Fast Fine-Tuning
(FFT) enabled. CLE balances the weight distributions across
consecutive layers, reducing scale mismatches and mitigating
quantization errors without altering the network’s function-
ality. On the other hand, FFT leverages a small calibration
dataset to adapt the quantized model parameters, helping
to recover the accuracy loss typically introduced during the
quantization process [16], [17].

The performance results of the float models after quantiza-
tion for the Flexible Payload model are presented in Tables I.
The model’s quantization reduces the accuracy of the float
model by 0.0015 in the non-optimized and optimized versions.
When the model is re-trained, this gap is reduced while
exhibiting lower loss values. For the Adaptive Beamforming
model (Table II), quantization preserves the accuracy relative
to the float model, with the re-trained and optimized version
achieving the lowest overall loss.

Although the overall accuracy of the model exceeds 0.99,
an analysis of the accuracy per class is necessary to ensure
correct performance across all classes. Figure 5 presents
the bar graphs of the accuracy per class of the quantized
Flexible Payload model versions, where each class represents



Model: model

Model: model

Layer Output Shape Param # Layer Output Shape Param #
InputLayer (None, 401, 501, 1) 0 InputLayer (None, 401, 501, 1) 0
Conv2D<relu> (None, 399, 499, 32) 320 Conv2D<relu> (None, 399, 499, 32) 320
MaxPooling2D (None, 199, 249, 32) 0 MaxPooling2D (None, 199, 249, 32) 0
Conv2D<relu> (None, 197, 247, 64) 18496 Conv2D<relu> (None, 197, 247, 64) 18496
MaxPooling2D (None, 98, 123, 64) 0 MaxPooling2D (None, 98, 123, 64) 0
Conv2D<relu> (None, 96, 121, 128) 73856 Conv2D<relu> (None, 96, 121, 128) 73856
MaxPooling2D (None, 48, 60, 128) 0 MaxPooling2D (None, 48, 60, 128) 0
Flatten (None, 368640) 0 Conv2D<relu> (None, 48, 60, 128) 16512
Dense<relu> (None, 128) 47186048 MaxPooling2D (None, 24, 30, 128) 0
Dropout (None, 128) 0 MaxPooling2D (None, 12, 15, 128) 0
Dense<softmax> (None, 50) 6450 MaxPooling2D (None, 6, 7, 128) 0
Conv2D<linear> (None, 6, 7, 50) 6450
GlobalAverage— (None, 50) 0
Pooling2D
Total params: 47,285,170 Total params: 115,634
Trainable params: 47,285,170 Trainable params: 115,634
Non-trainable params: 0 Non-trainable params: 0

Fig. 3: Flexible payload model structure: a) computer model, b) adapted model for Versal Al Edge implementation.

Model: model

Model: model

Layer Output Shape Param # Layer Output Shape Param #
InputLayer (None, 6) 0 InputLayer (None, 6) 0
Dense<relu> (None, 64) 448 Dense<relu> (None, 64) 448
Dense<relu> (None, 64) 4160 Dense<relu> (None, 64) 4160
Dense<softmax> (None, 15) 975 Dense<linear> (None, 15) 975
Total params: 5,583 Total params: 5,583
Trainable params: 5,583 Trainable params: 5,583

Non-trainable params:

0

Non-trainable params:

0

Fig. 4: Adaptive beamforming model structure: a) computer model, b) adapted model for Versal Al Edge implementation.

TABLE I: Performance report of Flexible Payload model:
Accuracy and loss during training & quantization.

TABLE III: Performance report of Flexible Payload model:
Accuracy, loss and inference time onboard.

TABLE II: Performance report of Adaptive Beamforming
model: Accuracy and loss during training & quantization.

Model Type Opt. Accuracy Loss
Float None 0.99887 0.00546
g Quantized None 0.99515 0.03781
A CLE & FFT | 0.99650 0.03462
< Retrained None 0.99357 0.02180
CLE & FFT | 0.99639 0.00903

the required power, width, and bandwidths per beam in the
satellite. The application of CLE and FFT does not improve
the accuracy per class, as shown in Figures Sa and 5b, where
three classes fail to reach maximum accuracy, with a minimum
of 0.97. In contrast, re-training improves the accuracy of one
class, but negatively affects others, with minimum accuracies
of 0.34 without optimization (Figure 5c) and 0.62 when CLE
and FFT are applied (Figure 5d).

Similar analyses have been carried out for the quantized
Adaptive Beamformer models, as shown in Figure 6, where
each class represents an activation matrix for the DRA antenna
per beam. In the quantized versions (Figures 6a and 6b), only
three classes do not reach the maximum accuracy, with a
minimum of 0.93. After re-training, more than 66% of the
classes are affected, with minimum accuracies of 0.76 in the
non-optimized version (Figure 6¢) and 0.77 in the optimized
one (Figure 6d).

Model Type Opt. Accuracy Loss Model Type Opt. Accuracy Loss Time
Float None 1.00000 | 0.00001 B Quant None 0.98804 | 0.01106 | 0.00312
= Quantized None 0.99853 | 0.00565 = * [TCLE & FFT | 0.99165 | 0.00835 | 0.00400
g CLE & FFT | 0.99853 | 0.00646 B Retra None 0.99280 | 0.00711 | 0.00312
- Retrained None 0.99944 | 0.00139 clram. - —TE & FFT | 0.99334 | 0.00666 | 0.00310
CLE & FFT | 0.99808 | 0.00225

C. Models’compilation

Once the models are quantized, the next step is their
conversion to the specific DPU IP block that executes them
using the Vitis-Al compilation tools. This approach enables
straightforward portability of the models to any supported
AMD device.

To test the accuracy and inference speed of the compiled
models for the iWave, each one has been executed separately
with a test dataset of more than 8800 samples and compared
with the reference values. On the Flexible Payload model, the
reported minimum accuracy is greater than 0.98 (only 0.01
lower compared to the quantized model on the PC), with
a maximum loss of less than 0.02 for the version without
optimization, shown in Table IIl. The re-trained model with
CLE and FFT optimization reports the best results.

Analyzing the per-class accuracy in Figure 7, it decreases
in some cases, reaching a minimum of 0.06 in class 18 for the
retrained model with optimizations. The most stable results
are achieved by the quantized model with CLE and FFT, with
only two classes below 0.90: class 18 (0.62) and class 47
(0.81), both of which had maximum accuracy before the on-
board conversion. The average inference time is less than 4 ms,
with slight variations depending on the type of model and the
utilization of memory, processor, and DPU on the board.

For the Adaptive Beamforming model (Table IV), the ac-
curacy is above 0.96 (0.03 lower than the quantized results),



Flexible Payload quantized model no CLE & no FFT: Flexible Payload quantized model CLE & FFT:

Accuracy per class Accuracy per class
1.04 i i gy PP Ralalalalalalalalalalininlalalalalalebalalalaial-talalnialalalatalatal 1.0 Z8oma o oo il falalalalalaialalalaliniatalaliaietalalalaialatal-talninialalaiatalatel
0.8 0.8 4
> >
g 061 g o6
5 E
8 8
< <
0.4 4 ‘ ‘ 0.4
0.2 0.2 4
0.0+ 0.0 4

O HNMT O DN O HNMSHNON 0N —NM OISO O HAMT INON DN OHNMTFNONONOHNNTINONDNOHNMTNON DA HNM IO OR
A A A A AN N NN NN NN N NNNNAND IMMNNT SIS

Class a) Class b)

Flexible Payload re-trained quantized model no CLE & no FFT: Flexible Payload re-trained quantized model CLE & FFT:
Accuracy per class Accuracy per class

90090
888888

1.04

0.8 1 0.8 1

9 9
Jo0s6 go6
5 5
g g
< <

0.4 0.4+

0.2 0.2

0.0 0.0

O HNMTNONONOANMTNONDNOHNMNTNONDNO—NMTFNONONO=HNM T NONO0 O HNMTFNON0NOHNMFNON OO =HNMTNONONO—HNMTINONONO=HNM T NONOD
SRR O 0ERR2RRRIRCRRER R AR mmmamRnT T IS I T T 9T SRR O 0ERR2RRRARGERER RPN mmmamRAT T ST T T T

Class C) Class M d)
Fig. 5: Per-class accuracy of the flexible payload model under different configurations: a) without optimization, b) with CLE

and FFT, c) re-trained without optimization, d) re-trained with CLE and FFT.

Adaptive Beamforming quantized model no CLE & no FFT: Adaptive Beamforming quantized model CLE & FFT:
Accuracy per class Accuracy per class
g 8 & 8 8 8 8 8 8 8 8 3§ 8 8 & 8 8 8 8 8 & 8 8 8§ 38 8
104 wmo = = S o~ 104 R 3 S5 2 2 3 3
0.8 0.8 4
> >
E 0.6 4 E 0.6 4
5 5
g §
<
0.4+ 0.4 4
0.2 0.24
0.0 - 0.0~
Class Class
a) b)
Adaptive Beamforming re-trained quantized model no CLE & no FFT: Adaptive Beamforming re-trained quantized model CLE & FFT:
Accuracy per class Accuracy per class
E E g g8 8 g B P 3 s s S -
1.0 = S 0 e = 1.0 = R
0.8 1 0.8 1
> >
E 0.6 4 E 0.6 4
5 5
S S
< <
0.44 0.44
0.24 0.24
0.0- 0.0-
o — o~ m < n < ~ © o o - o~ m < o - o~ m < n ©o ~ © o o - o~ m <
2 A4 &8 3 3 2 4 & 38 3

Class C) Class d)
Fig. 6: Per-class accuracy of the adaptive beamforming model under different configurations: a) without optimization, b) with
CLE and FFT, c) re-trained without optimization, d) re-trained with CLE and FFT.



Flexible Payload quantized model no CLE & no FFT:
Accuracy per class in the iWave

0.8 1

o
o

Accuracy

o
IS

0.2 4

0.0 -

OO, NONDOOHNM IO DN
I NNNOMT SIS TSI

Class a)

Flexible Payload re-trained quantized model no CLE & no FFT:
Accuracy per class in the iWave

9992902992929929233822
558838833583388838888
e o P o o P P ]

0.8 1

4
o

Accuracy

°
IS

0.2 1

0.0 -

LNOSDNOHNMFNONONOHNN T NONDD
N IANMNT TSI TSI

Class C)

Flexible Payload quantized model CLE & FFT:
Accuracy per class in the iWave

1.0

0.8

14
o

Accuracy

o
>

0.2 4

0.0 -

NONONOHNMTNON DO
A A HN N NN NN N NN N A MM MM MA MM T

Class b)

Flexible Payload re-trained quantized model CLE & FFT:
Accuracy per class in the iWave

299999939993939
888

1.04

0.8 1

o
o

Accuracy

IS
IS

0.2 4

o
S
5

0.0 -

< LN DNOHNMF OO HNM T NOND
A A A A AN N NN NNNNNNAMNMOMMMONT S S ST TS

Class d)

Fig. 7: Per-class accuracy of the flexible payload model onboard under different configurations: a) without optimization, b)
with CLE and FFT, c) re-trained without optimization, d) re-trained with CLE and FFT.

TABLE 1IV: Performance report of Adaptive Beamforming
model: Accuracy, loss and inference time onboard.

Model Type Opt. Accuracy Loss Time
£ Quant None 0.96537 0.03463 | 0.00018
b4 ) CLE & FFT | 0.96548 0.03452 | 0.00018
gé Retrain None 0.96165 0.03835 | 0.00018
’ CLE & FFT | 0.96086 0.03914 | 0.00018

while the loss is below 0.04. The per-class accuracy in Figure 8
shows similar variations across the four versions, with only
one class below 0.90 (class 2 with a minimum of 0.76). This
reduction compared with the PC quantized results is partially
compensated in the re-trained version with optimization, which
achieves the best performance. The inference time is similar
for all versions.

III. SYSTEM INTEGRATION AND EXECUTION

The execution of the models for the onboard payload
is managed by standalone software that interacts with the
Scenario Generator to provide the model inputs and receive
the results via TCP sockets, as illustrated in Figure 9. The
Scenario Generator transmits a new set of inputs to the
machine learning model and waits for its response. When the
processor in the Versal device detects the new input data set
in the TCP socket, it is read and processed by executing the
two machine learning algorithms in the DPU, which leverages
the Al Engines (AIE) integrated into the Versal architecture to
accelerate computation. After execution, the results are sent
back to the Scenario Generator, which reads and processes

them. This cycle is performed once every second, when new
values are sent to the ML algorithms.

On the Versal side, after the TCP read operation, the traffic
demand (R), corresponding to the coverage area, is normalized
and provided as input to the Flexible Payload model. An
arg.max function is then applied to the model output to map
the arbitrary class scores (F'P.,ss), thereby replacing the
softmax activation in the original model’s final layer. The
resulting class is translated into seven EIRPs, beamwidths
(042, and 0FL, ), and bandwidths (BW), through a look-
up table (FPayl. Class LUT).

In the second step, the per-beam EIRP; and beamwidths
(045,p, and 0%, ) are combined with the satellite posi-
tion (Az, El) and the required minimum Side Lobe Level
(SLL,,;»), obtained from the Scenario Generator. These in-
puts are normalized and provided to the Adaptive Beamform-
ing model. The execution of this model produces arbitrary
scores, which are converted into a class (ABclass;) using
the arg.max operation and decoded into the beamforming
coefficient activation matrix for each beam (|W;|) by a look-up
table (Abeam. Class LUT). Finally, the coefficient activation
matrix is combined with the beamforming phasors (e OW) from
the Scenario Generator (Coefficient Generator), yielding the
complete beamforming coefficients for the actual beam (W;).

This procedure is repeated for all beams, and the result-
ing beamforming coefficients (W), the per-beam bandwidths
(BW), and the classes are returned to the Scenario Generator



Adaptive Beamforming quantized model no CLE & no FFT:
Accuracy per class in the iWave

0.8 1

o
o

Accuracy

o
IS

0.2 4

0.0 -
<
—

- & om
= & A
Class a)

Adaptive Beamforming re-trained quantized model no CLE & no FFT:
Accuracy per class in the iWave

S
<
=

@
o
S

2
& &
=) S

0.8 1

Accuracy
o
EY

°
IS

0.2 1

0.0-
© A N M & . © ~ ® O o oA ~N m <
R ]

Class C)

( SCENARIO GENERATOR PC ( AMD Versal Al Edge )

MATLAB PETALINUX

PROCESSOR ) \_
| J J

Fig. 9: Scenario Generator and onboard Al Payload integra-
tion.

Az | Bl SLL i, &)
for i from 0 to 6

LUT
Input
arg.max
AB lass
Coefficient
generator
TCP Write
Socket

s
g2
58
b

Input
normlization

Flexible Payload
FPayl. Class

EIRP, §%500 0%,

T

Wi ABciass

Fig. 10: Onboard Al Payload algorithm.

via a TCP write operation. The blocks highlighted in red in
Figure 10 are executed in the DPU using the AIE, while the
remaining blocks are executed in the board processor.

The average performance per stage for the entire system is
shown in Table V after 10000 executions. Once the data is
received, the flexible payload operation lasts 6.45 ms, where
the highest delay corresponds to the inference process.

Comparing the execution of the original model on a work-
station PC, powered by a dual Intel Xeon Gold 6230 CPU with
a total of 80 processing cores up to 2.1 GHz and 512 GB

Adaptive Beamforming quantized model CLE & FFT:
Accuracy per class in the iWave

3
<

o
<
]

1.0

n
o
S

0.8

14
o

Accuracy

o
>

0.2 4

0.0 -

© A &N mM ¥ 1w © ~ © o o )
- -

14

-~
=R
Class b)

Adaptive Beamforming re-trained quantized model CLE & FFT:
Accuracy per class in the iWave

1.00

2
b
S

0.99
0.99

1.04

wn
o
S

0.8 1

Accuracy
o
EY

°
IS

0.2 4

0.0 -

Class - d)
Fig. 8: Per-class accuracy of the adaptive beamforming model onboard under different configurations: a) without optimization,
b) with CLE and FFT, c) re-trained without optimization, d) re-trained with CLE and FFT.

TABLE V: Performance report: Complete AI/ML algorithm
execution

Stage Operation Time iWave | Time PC
Communication Data reception 0.01470 0.00000
Data scaling 0.00280 0.00188
. Inference 0.00356 0.11688
Flexible Payload arg.max 0.00006 0.00000
Class LUT search | 0.00003 0.00063
Data scaling 0.00007 0.00009
Inference 0.00026 0.09991
Adaptive Beamform. arg.max 0.00004 0.00005
Class LUT search | 0.00002 0.00000
Coeff. generation | 0.00005 0.00027
Communication Data transfer 0.00010 0.00000
Total 0.02434 0.82125

DDR4 RAM, the onboard implementation is more than 18
times faster. This improvement is due to the optimizations
applied and the use of hardware accelerators in the onboard
implementation, as well as the PC’s processing load. On the
other hand, the adaptive beamforming requires 441 pus, which
is more than 227 times faster than the execution on the PC.

The inference time reported on both models is higher than
in the standalone execution. This increment is a result of the
additional overhead incurred when switching models on the
DPU.

Considering the execution of adaptive beamforming seven
times, the total onboard processing latency is 24.34 ms, repre-
senting an efficiency gain of more than 33 times compared to
the PC implementation. This latency is compatible with coarse



control loops, including satellite scenarios [18], [19]. From an
absolute perspective, the system can adapt to changes in traffic
demand in under one second, while ensuring a pointing error
of less than 1°.

IV. CONCLUSIONS & FUTURE WORK

This work has presented the design, optimization, quanti-
zation, and hardware deployment of two machine learning
models for onboard satellite payload processing. Several layers
are inefficient for hardware acceleration due to their high
parameter count and memory demands. Those layers need to
be replaced to reduce the number of model parameters and
improve the execution feasibility in the DPU after quantiza-
tion.

Re-training the quantized models has improved the accuracy
of specific underperforming classes, but it can also introduce
degradations in other classes. These errors could lead to subop-
timal resource allocation, such as incorrect beam assignment,
reduced spectral efficiency, or transient underserved regions.

After model compilation and deployment in the DPU, the
overall accuracy remains high, but reductions have been ob-
served in some classes compared with the float and quantized
versions executed on the PC.

The models have been successfully executed on the Versal
ACAP AT platform, achieving an execution time that enables
updating the beamforming coefficients and bandwidth 40
times per second. This demonstrates a significant acceleration
compared to execution on a workstation PC.

For future work, additional data will be generated for the
low-accuracy classes, and the models will be retrained to
improve their performance. At the same time, the full AISTT
is under development to enable simulation of different mission
scenarios and hardware configurations, providing valuable
insights and ensuring that future satellite missions can be
further optimized for performance and efficiency.

REFERENCES

[1] GMYV, Centre Tecnologic de Telecomunicacions de Catalunya, Reply,
Eutelsat, and European Space Agency, “Machine Learning and Artificial
Intelligence for Satellite Communication (SATAI),” p. 1, 2020. [Online].
Available: https://connectivity.esa.int/projects/satai

[2] Joanneum Research, Inmarsat Navigation Ventures Ltd, Graz University
of Technology, and European Space Agency, “Machine Learning and
Artificial Intelligence for Satellite Communication (MLSAT),” p. 1,
2020. [Online]. Available: https://connectivity.esa.int/projects/mlsat

[3] F. Ortiz, V. Monzén Baeza, L. M. Garcés-Socarrds, J. A. Visquez-
Peralvo, J. L. Gonzélez Rios et al., “Onboard Processing in Satellite
Communications Using Al Accelerators,” Aerospace, vol. 10, no. 2,

. 101, 1 2023. [Online]. Available: https://www.mdpi.com/2226-
4310/10/2/101

[4] G. Fontanesi, F. Ortiz, E. Lagunas, L. M. Garces-Socarras, V. M. Baeza
et al., “Artificial Intelligence for Satellite Communication: A Survey,”
IEEE Communications Surveys and Tutorials, 2025.

[5] L. M. Garcés-Socarrds, A. Nik, F. Ortiz, J. A. Vasquez-Peralvo, J. L.
Gonzalez et al., “Artificial Intelligence Satellite Telecommunication
Testbed using Commercial Off-The-Shelf Chipsets,” in The First Joint
European Space Agency / IAA Conference on Al in and for Space
(SPAICE2024), D. Dold, A. Hadjiivanov, and D. Izzo, Eds., ESA
European Centre for Space Applications and Telecommunications
(ECSAT). Harwell, UK: European Space Agency (ESA), 9 2024, pp.
169-174. [Online]. Available: https://zenodo.org/records/13885551

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

R. Davidson, A. H. Diaz, E. Simons, S. Hadfield, C. Bridges et al., “The
Development of an Onboard Processing Environment within the Flexible
and Intelligent Payload Chain Sub-system for Small EO Satellites,”
Proceedings of the 2023 European Data Handling and Data Processing
Conference for Space, EDHPC 2023, 2023.

P. G. Shenwai, A. Choudhary, T. Pokuri, A. Basak,
M. Manikandan er al, “On the Role of Artificial Intelligence
in Aerospace Engineering: Current State of the Art and Future
Trajectories,” The Aeronautical Journal, pp. 1-27, 2025. [Online].
Available: https://www.cambridge.org/core/journals/aeronautical-
journal/article/on-the-role-of-artificial-intelligence-in-
aerospace-engineering-current-state-of-the-art-and-future-

trajectories/ A6OD4FABFC73CDE81FAOF4F79A4FBCSF

S. Kashyap and N. Gupta, “Resource Allocation Techniques
in  Multibeam Satellites: Conventional Methods vs. AI/ML
Approaches,” International Journal of Satellite Communications
and Networking, vol. 43, no. 2, pp. 97-121, 3 2025. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1002/sat.1548
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1548
https://onlinelibrary.wiley.com/doi/10.1002/sat.1548

Interdisciplinary Centre for Security Reliability and Trust (SnT) and
European Space Agency (ESA), “Satellite Signal Processing Techniques
using a Commercial Off-The-Shelf AI Chipset (SPAICE),” p. 1, 2022.
[Online]. Available: https://connectivity.esa.int/projects/spaice

E. Godino, L. Escolar, and A. P. Honold, “Flexible Payload
Operations of Satellite Communication Systems,” in 2018 SpaceOps
Conference. Marseille, France: American Institute of Aeronautics
and Astronautics, may 2018, p. 9. [Online]. Available: www.gmv.com
https://arc.aiaa.org/doi/10.2514/6.2018-2653

F. Vidal, H. Legay, G. Goussetis, M. Garcia Vigueras,
S. Tubau et al, “A methodology to benchmark flexible
payload architectures in a megaconstellation use case,”
International ~ Journal ~— of  Satellite ~ Communications  and
Networking, vol. 39, no. 1, pp. 29-46, 1 2021. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1002/sat.1344

https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1344
https://onlinelibrary.wiley.com/doi/10.1002/sat.1344

J. A. Viasquez-Peralvo, J. Querol, F. Ortiz, J. L. Gonzélez Rios,
E. Lagunas er al, “Flexible Beamforming for Direct Radiating
Arrays in Satellite Communications,” [EEE Access, vol. 11,
no. August, pp. 79684-79696, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10197375/

F. Ortiz, J. A. Vasquez-Peralvo, J. Querol, E. Lagunas, J. L.
Gonzalez Rios et al., “Supervised Learning Based Real-Time Adaptive
Beamforming On-board Multibeam Satellites,” in [8th European
Conference on Antennas and Propagation (EuCAP). Glasgow,
United Kingdom: IEEE, 3 2024, pp. 1-5. [Online]. Available:
https://arxiv.org/abs/2311.01334

J. A. Vasquez-Peralvo, J. Querol, F. Ortiz, J. L. Gonzalez-Rios, E. La-
gunas et al., “MultiBeam Beamforming for Direct Radiating Arrays
in Satellite Communications Using Genetic Algorithm,” /EEE Open
Journal of the Communications Society, 2024.

L. M. Garcés-Socarrds, A. Nik, F. Ortiz, J. A. Viasquez-Peralvo,
J. Luis et al., “Artificial Intelligence implementation of onboard flexible
payload and adaptive beamforming using commercial off-the-shelf
devices,” in 5th ESA Workshop on Advanced Flexible Telecom
Payloads, ESA. Didcot, United Kingdom: ESA, may 2025, p. 8.
[Online]. Available: https://arxiv.org/abs/2505.01853v1

AMD Inc., “Vitis Al User Guide,” AMD Inc., Tech. Rep., 9 2023.
[Online]. Available: https://docs.amd.com/r/en-US/ug1414-vitis-ai/Vitis-
AI-Overview

Y. Fukuda, K. Yoshida, and T. Fujino, “Evaluation of Model
Quantization Method on Vitis-Al for Mitigating Adversarial Examples,”
IEEE Access, vol. 11, pp. 87200-87209, 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10216964

J. L. Gonzalez-Rios, L. Martinez-Marrero, E. Lagunas, J. Krivochiza,
L. M. Garcés-Socarrds et al., “Doppler Shift in Precoded Cooperative
Multi-Gateway Satellite Systems: Effects and Mitigation,” in [EEE
Wireless Communications and Networking Conference (WCNC 2024).
Dubai, United Arab Emirates: IEEE, 4 2024.

L. Martinez Marrero, J. C. M. Duncan, J. L. Gonzalez, J. Krivochiza,
S. Chatzinotas et al., “Accurate Phase Synchronization for Precoding-
Enabled GEO Multibeam Satellite Systems,” IEEE Open Journal of the
Communications Society, vol. 5, pp. 712-729, 2024.



