Alzheimer's disease; blood‐based biomarkers; locus coeruleus; neuroinflammation; noradrenaline; Receptor Protein-Tyrosine Kinases; Axl Receptor Tyrosine Kinase; Proto-Oncogene Proteins; AXL protein, human; Biomarkers; Humans; Male; Female; Aged; Magnetic Resonance Imaging; Biomarkers/blood; Cohort Studies; Middle Aged; Alzheimer Disease/blood; Alzheimer Disease/pathology; Alzheimer Disease/diagnostic imaging; Locus Coeruleus/pathology; Locus Coeruleus/diagnostic imaging; Receptor Protein-Tyrosine Kinases/blood; Proto-Oncogene Proteins/blood
Abstract :
[en] [en] INTRODUCTION: Locus coeruleus (LC) is one of the earliest structures altered in Alzheimer's disease (AD). Inflammation is also now considered critical in AD pathology, early stage included. However, no association between LC degeneration and the peripheral inflammation has been reported yet.
METHODS: A cohort of 102 patients was studied for which both magnetic resonance imaging (MRI) scans and blood samples were available. LC integrity was assessed by MRI, and plasma soluble TAMs (Tyro3, Axl, and MerTK) receptor levels were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS: We found that plasma levels of the soluble TAMs receptor Axl were correlated with LC rostral degeneration in the whole cohort (p = 0.007), as well as in the AD+ group (p = 0.017), but not in the AD- group.
DISCUSSION: These results uncover a new relationship between peripheric markers of inflammation and central early AD neurodegeneration.
HIGHLIGHTS: In Alzheimer's disease, no link between locus coeruleus degeneration and microglial activation was reported. Plasma Axl, Tyro3, and MerTK levels and locus coeruleus integrity were assessed in Alzheimer's disease patients. Locus coeruleus integrity positively correlates with plasma AXL, linked to microglia activation. Axl-noradrenergic signaling interplay deserves further larger longitudinal studies.
Disciplines :
Neurology
Author, co-author :
Galgani, Alessandro ✱; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
Lombardo, Francesco; Department of Radiology, Fondazione Toscana "G. Monasterio", Pisa, Italy
Martini, Nicola ; Department of Radiology, Fondazione Toscana "G. Monasterio", Pisa, Italy
Scotto, Marco ; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy ; Istituto Italiano di Tecnologia, Genoa, Italy
Tognoni, Gloria; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Siciliano, Gabriele ; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Ceravolo, Roberto ; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Giorgi, Filippo S ✱; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy ; I.R.C.C.S. Stella Maris, Calambrone, Pisa, Italy
HENEKA, Michael ✱; University of Luxembourg ; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Locus coeruleus integrity correlates with plasma soluble Axl levels in Alzheimer's disease patients.
Publication date :
July 2025
Journal title :
Alzheimer's and Dementia: the Journal of the Alzheimer's Association
Counts SE, Mufson EJ. Chapter 12-Locus coeruleus. In The Human Nervous System. 3rd ed.; Mai JK, Paxinos, G, Eds; Academic Press: San Diego, CA, USA, 2012:425-438. doi:10.1016/B978-0-12-374236-0.10012-4
Poe GR, Foote S, Eschenko O, et al. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020;21: 644-659. doi:10.1038/s41583-020-0360-9
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70: 960-969. doi:10.1097/NEN.0b013e318232a379
Theofilas P, Dunlop S, Heinsen H, Grinberg LT. Turning on the light within: subcortical nuclei of the isodentritic core and their role in Alzheimer's disease pathogenesis. J Alzheimers Dis. 2015;46: 17-34. doi:10.3233/JAD-142682
Theofilas P, Ehrenberg AJ, Dunlop S, et al. Locus coeruleus volume and cell population changes during Alzheimer's disease progression: a stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement. 2017;13: 236-246. doi:10.1016/j.jalz.2016.06.2362
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun. 2017;5: 8. doi:10.1186/s40478-017-0411-2
Jacobs HIL, Becker JA, Kwong K, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer's disease pathology and cognitive decline. Sci Transl Med. 2021;13: eabj2511. doi:10.1126/scitranslmed.abj2511
Dahl MJ, Mather M, Werkle-Bergner M, et al. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer's disease. Neurobiol Aging. 2022;112: 39-54. doi:10.1016/j.neurobiolaging.2021.11.006
Galgani A, Lombardo F, Martini N, et al. Magnetic resonance imaging Locus Coeruleus abnormality in amnestic Mild Cognitive Impairment is associated with future progression to dementia. Eur J Neurol. 2023;30: 32-46. doi:10.1111/ene.15556
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015;14: 388-405. doi:10.1016/S1474-4422(15)70016-5
Giorgi FS, Saccaro LF, Galgani A, et al. The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer's disease. Brain Res Bull. 2019;153: 47-58. doi:10.1016/j.brainresbull.2019.08.007
Heneka MT, Nadrigny F, Regen T, et al. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107: 6058-6063. doi:10.1073/pnas.0909586107
Heneka MT, Gavrilyuk V, Landreth GE, O'Banion MK, Weinberg G, Feinstein DL. Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J Neurochem. 2003;85: 387-398. doi:10.1046/j.1471-4159.2003.01694.x
Jardanhazi-Kurutz D, Kummer MP, Terwel D, Vogel K, Thiele A, Heneka MT. Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience. 2011;176: 396-407. doi:10.1016/j.neuroscience.2010.11.052
Heneka MT, Ramanathan M, Jacobs AH, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006;26: 1343-1354. doi:10.1523/JNEUROSCI.4236-05.2006
Jardanhazi-Kurutz D, Kummer MP, Terwel D, et al. Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int. 2010;57: 375-382. doi:10.1016/j.neuint.2010.02.001
Dahl MJ, Bachman SL, Dutt S, et al. The integrity of dopaminergic and noradrenergic brain regions is associated with different aspects of late-life memory performance. Nat Aging. 2023;3: 1128-1143. doi:10.1038/s43587-023-00469-z
Zhou S, Li Y, Zhang Z, Yuan Y. An insight into the TAM system in Alzheimer's disease. Int Immunopharmacol. 2023;116: 109791. doi:10.1016/j.intimp.2023.109791
Mattsson N, Insel P, Nosheny R, et al. CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders. Transl Psychiatry. 2013;3: e293. doi:10.1038/tp.2013.69
Theeke LA, Liu Y, Wang S, et al. Plasma proteomic biomarkers in Alzheimer's disease and cardiovascular disease: a longitudinal study. Int J Mol Sci. 2024;25: 10751. doi:10.3390/ijms251910751
Pereira JB, Janelidze S, Strandberg O, et al. Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer's disease pathology. Nat Aging. 2022;2: 1138-1144. doi:10.1038/s43587-022-00310-z
Brosseron F, Maass A, Kleineidam L, et al. Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. Neuron. 2022;110: 1009-1022.e4. doi:10.1016/j.neuron.2021.12.016
Hayek D, Ziegler G, Kleineidam L, et al. Different inflammatory signatures based on CSF biomarkers relate to preserved or diminished brain structure and cognition. Mol Psychiatry. 2024;29: 992-1004. doi:10.1038/s41380-023-02387-3
Brosseron F, Maass A, Kleineidam L, et al. Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer's disease: results from the DELCODE study. Alzheimers Res Ther. 2023;15: 13. doi:10.1186/s13195-022-01118-0
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7: 263-269. doi:10.1016/j.jalz.2011.03.005
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7: 270-279. doi:10.1016/j.jalz.2011.03.008
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12: 189-198. doi:10.1016/0022-3956(75)90026-6
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140: 566-572. doi:10.1192/bjp.140.6.566
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44: 2308-2314. doi:10.1212/wnl.44.12.2308
Mammel AE, Hsiung G-YR, Mousavi A, et al. Clinical decision points for two plasma p-tau217 laboratory developed tests in neuropathology confirmed samples. Alzheimer Dement. 2025;17: e70070. doi:10.1002/dad2.70070
Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9: 106-118. doi:10.1038/nrneurol.2012.263
Malikova I, Worth A, Aliyeva D, Khassenova M, Kriajevska MV, Tulchinsky E. Proteolysis of TAM receptors in autoimmune diseases and cancer: what does it say to us?. Cell Death Dis. 2025;16: 1-13. doi:10.1038/s41419-025-07480-9
D'Onghia D, Colangelo D, Bellan M, et al. Gas6/TAM system as potential biomarker for multiple sclerosis prognosis. Front Immunol. 2024;15: 1362960. doi:10.3389/fimmu.2024.1362960
Rosenstein I, Novakova L, Kvartsberg H, et al. Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. J Neuroinflamm. 2024;21: 320. doi:10.1186/s12974-024-03315-0
Weinger JG, Brosnan CF, Loudig O, et al. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J Neuroinflammation. 2011;8: 49. doi:10.1186/1742-2094-8-49
Shibata E, Sasaki M, Tohyama K, et al. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci. 2006;5: 197-200. doi:10.2463/mrms.5.197
Keren NI, Taheri S, Vazey EM, et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage. 2015;113: 235-245. doi:10.1016/j.neuroimage.2015.03.020
Hary AT, Chadha S, Mercaldo N, et al. Locus coeruleus tau validates and informs high-resolution MRI in aging and at earliest Alzheimer's pathology stages. Acta Neuropathol Commun. 2025;13: 44. doi:10.1186/s40478-025-01957-6
Van Egroo M, Riphagen JM, Ashton NJ, et al. Ultra-high field imaging, plasma markers and autopsy data uncover a specific rostral locus coeruleus vulnerability to hyperphosphorylated tau. Mol Psychiatry. 2023;28: 2412-2422. doi:10.1038/s41380-023-02041-y
Giorgi FS, Martini N, Lombardo F, et al. Locus Coeruleus magnetic resonance imaging: a comparison between native-space and template-space approach. J Neural Transm (Vienna). 2022;129: 387-94. doi:10.1007/s00702-022-02486-5
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain. 2024;147: 337-351. doi:10.1093/brain/awad300
Dahl MJ, Mather M, Düzel S, et al. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav. 2019;3: 1203-1214. doi:10.1038/s41562-019-0715-2
Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25: R1051-6. doi:10.1016/j.cub.2015.09.039
Szabadi E. Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol. 2013;27: 659-693. doi:10.1177/0269881113490326
Tondo G, Perani D, Comi C. TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. Dis Markers. 2019;2019: 2387614. doi:10.1155/2019/2387614
Fourgeaud L, Través PG, Tufail Y, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532: 240-244. doi:10.1038/nature17630
Repici A, Ardizzone A, De Luca F, et al. Signaling pathways of AXL receptor tyrosine kinase contribute to the pathogenetic mechanisms of glioblastoma. Cells. 2024;13: 361. doi:10.3390/cells13040361
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016;139(Suppl 2): 154-178. doi:10.1111/jnc.13447
Sugama S, Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem Int. 2021;143: 104943. doi:10.1016/j.neuint.2020.104943
Gyoneva S, Traynelis SF. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J Biol Chem. 2013;288: 15291-15302. doi:10.1074/jbc.M113.458901
Kariolis MS, Miao YR, Jones DS, et al. An engineered Axl “decoy receptor” effectively silences the Gas6-Axl signaling axis. Nat Chem Biol. 2014;10: 977-983. doi:10.1038/nchembio.1636
Prieto AL, Weber JL, Tracy S, Heeb MJ, Lai C. Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res. 1999;816: 646-661. doi:10.1016/s0006-8993(98)01159-7
Lew ED, Oh J, Burrola PG, et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. Elife. 2014;3: e03385. doi:10.7554/eLife.03385
Prouse T, Majumder S, Majumder R. Functions of TAM receptors and ligands protein S and Gas6 in atherosclerosis and cardiovascular disease. Int J Mol Sci. 2024;25: 12736. doi:10.3390/ijms252312736