[en] The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group)
Precision for document type :
Review article
Disciplines :
Microbiology
Author, co-author :
Kunath, Benoit J ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg. bjkunath@ncsu.edu
H2020 - 863664 - ExpoBiome - Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease
FnR Project :
FNR10404093 - microCancer - Non-invasive Microbiome-derived Multi-omic Biomarkers For Early-stage Colorectal Cancer Detection, 2015 (01/01/2016-30/04/2019) - Paul Wilmes FNR13684739 - metaPUF - The Dark Metaproteome: Identifying Proteins Of Unknown Function In The Human Gut Microbiome, 2019 (01/04/2020-31/03/2022) - Paul Wilmes FNR14591557 - MICROH_CRC - Investigating The Role Of The Microbiome In Colorectal Cancer, 2020 (01/06/2021-30/11/2024) - Elisabeth Letellier FNR16965254 - PEAQ_MP - Protein Expression And Absolute Quantification In Metaproteomics, 2022 (01/06/2022-30/11/2022) - Benoit Kunath
Funders :
FNR - Luxembourg National Research Fund Fulbright Commission F.R.S.-FNRS - Fonds de la Recherche Scientifique European Union
Funding text :
This project received funding from the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation programme (grant agreement No. 863664). This work was further supported by the Luxembourg National Research Fund (FNR) under grants CORE/15/BM/10404093 and CORE/19/BM/13684739 to P.W. This work was also supported by a Fulbright Research Scholarship from the Commission for Educational Exchange between the United States, Belgium and Luxembourg to P.W. Additional funding was provided by the FNR under INTERMOBILITY/23/17856242. E.L. was supported by the FNR and the Fondation Cancer Luxembourg under grant CORE/C20/BM/14591557, as well as by FNRS-T\u00E9l\u00E9vie grants 7.4565.21, 7.6603.02, 7.4560.22.
J.A. Gilbert et al. Current understanding of the human microbiome Nat. Med. 2018 24 392 400 1:CAS:528:DC%2BC1cXnt1Kit7s%3D 29634682 7043356 10.1038/nm.4517
K. Honda D.R. Littman The microbiota in adaptive immune homeostasis and disease Nature 2016 535 75 84 1:CAS:528:DC%2BC28XhtFensLzK 27383982 10.1038/nature18848
J.A. Gilbert et al. Microbiome-wide association studies link dynamic microbial consortia to disease Nature 2016 535 94 103 1:CAS:528:DC%2BC28XhtFensLzF 27383984 10.1038/nature18850
C. Duvallet S.M. Gibbons T. Gurry R.A. Irizarry E.J. Alm Meta-analysis of gut microbiome studies identifies disease-specific and shared responses Nat. Commun. 2017 8 29209090 5716994 10.1038/s41467-017-01973-8
P.J. Turnbaugh et al. An obesity-associated gut microbiome with increased capacity for energy harvest Nature 2006 444 1027 1031 17183312 10.1038/nature05414
X. Zhang et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment Nat. Med. 2015 21 895 905 1:CAS:528:DC%2BC2MXht1WltLjE 26214836 10.1038/nm.3914
A. Paun C. Yau J.S. Danska The influence of the microbiome on type 1 diabetes J. Immunol. 2017 198 590 595 1:CAS:528:DC%2BC2sXhtFWrsbo%3D 28069754 10.4049/jimmunol.1601519
D.N. Frank et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases Proc. Natl Acad. Sci. USA 2007 104 13780 13785 1:CAS:528:DC%2BD2sXpvVGjsbg%3D 17699621 1959459 10.1073/pnas.0706625104
M. Kilian The oral microbiome—friend or foe? Eur. J. Oral. Sci. 2018 126 5 12 30178561 10.1111/eos.12527
J.L. Baker A. Edlund Exploiting the oral microbiome to prevent tooth decay: has evolution already provided the best tools? Front. Microbiol. 2018 9 3323 30687294 10.3389/fmicb.2018.03323
L. Sedghi V. DiMassa A. Harrington S.V. Lynch Y.L. Kapila The oral microbiome: role of key organisms and complex networks in oral health and disease Periodontol 2000 2021 87 107 131 34463991 8457218 10.1111/prd.12393
J.L. Pathak Y. Yan Q. Zhang L. Wang L. Ge The role of oral microbiome in respiratory health and diseases Respir. Med. 2021 185 106475 34049183 10.1016/j.rmed.2021.106475
M. Irfan R.Z.R. Delgado J. Frias-Lopez The oral microbiome and cancer Front. Immunol. 2020 11 591088 1:CAS:528:DC%2BB3MXitVCmu7Y%3D 33193429 7645040 10.3389/fimmu.2020.591088
G. Hajishengallis Periodontitis: from microbial immune subversion to systemic inflammation Nat. Rev. Immunol. 2015 15 30 44 1:CAS:528:DC%2BC2cXitFKltb7L 25534621 4276050 10.1038/nri3785
G. Hajishengallis T. Chavakis Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities Nat. Rev. Immunol. 2021 21 426 440 1:CAS:528:DC%2BB3MXisV2ht78%3D 33510490 7841384 10.1038/s41577-020-00488-6 This review highlights the potential causal links between periodontitis and other chronic inflammation-driven disorders, emphasising their multifaceted mechanistic causality.
D. Zheng T. Liwinski E. Elinav Interaction between microbiota and immunity in health and disease Cell Res. 2020 30 492 506 32433595 7264227 10.1038/s41422-020-0332-7
Y. Fan O. Pedersen Gut microbiota in human metabolic health and disease Nat. Rev. Microbiol. 2021 19 55 71 1:CAS:528:DC%2BB3cXhslGhsbrJ 32887946 10.1038/s41579-020-0433-9
K. Hou et al. Microbiota in health and diseases Signal. Transduct. Target. Ther. 2022 7 135 35461318 9034083 10.1038/s41392-022-00974-4
Fedoruk, M. J. & Hong, S. in Encyclopedia of Toxicology 3rd edn (ed. Wexler, P.) 702–705 (Academic, 2014).
T. Takiishi C.I.M. Fenero N.O.S. Câmara Intestinal barrier and gut microbiota: shaping our immune responses throughout life Tissue Barriers 2017 5 28956703 5788425 10.1080/21688370.2017.1373208
J. König et al. Human intestinal barrier function in health and disease Clin. Transl. Gastroenterol. 2016 7 27763627 5288588 10.1038/ctg.2016.54
J.R. Willis T. Gabaldón The human oral microbiome in health and disease: from sequences to ecosystems Microorganisms 2020 8 308 1:CAS:528:DC%2BB3cXhtlSjsbrI 32102216 7074908 10.3390/microorganisms8020308
J.L. Baker J.L. Mark Welch K.M. Kauffman J.S. McLean X. He The oral microbiome: diversity, biogeography and human health Nat. Rev. Microbiol. 2023 22 89 104 37700024 11084736 10.1038/s41579-023-00963-6 This review examines the biogeography of several oral niches at the species level, presenting not only bacteria but also microeukaryotes, archaea and viruses.
P.I. Diaz A. Dongari-Bagtzoglou Critically appraising the significance of the oral mycobiome J. Dent. Res. 2021 100 133 140 1:CAS:528:DC%2BB3MXhslKru7Y%3D 32924741 10.1177/0022034520956975
E. Caselli et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture BMC Microbiol. 2020 20 120 1:CAS:528:DC%2BB3cXpvFCmsL4%3D 32423437 7236360 10.1186/s12866-020-01801-y
J. Lloyd-Price G. Abu-Ali C. Huttenhower The healthy human microbiome Genome Med. 2016 8 27122046 4848870 10.1186/s13073-016-0307-y
G.P. Donaldson S.M. Lee S.K. Mazmanian Gut biogeography of the bacterial microbiota Nat. Rev. Microbiol. 2016 14 20 32 1:CAS:528:DC%2BC2MXhslWhsLnP 26499895 10.1038/nrmicro3552
E.T. Hillman H. Lu T. Yao C.H. Nakatsu Microbial ecology along the gastrointestinal tract Microbes Env. 2017 32 300 313 10.1264/jsme2.ME17017
S.F. Assimakopoulos C. Triantos I. Maroulis C. Gogos The role of the gut barrier function in health and disease Gastroenterol. Res. Pract. 2018 11 261 263 10.14740/gr1053w
T. Ding P.D. Schloss Dynamics and associations of microbial community types across the human body Nature 2014 509 357 360 1:CAS:528:DC%2BC2cXotV2iurc%3D 24739969 4139711 10.1038/nature13178
T.S. Schmidt et al. Extensive transmission of microbes along the gastrointestinal tract eLife 2019 8 30747106 6424576 10.7554/eLife.42693 This study presents a metagenomic approach describing that the transmission to, and subsequent colonization of, the large intestine by oral microorganisms is common even among healthy individuals.
B.J. Kunath et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses Microbiome 2022 10 1:CAS:528:DC%2BB3sXkslelsQ%3D%3D 36578059 9795701 10.1186/s40168-022-01435-4 This paper confirms the transmission of oral microorganisms to the gut and shows strain-level activities using metatranscriptomics and metaproteomics.
N. Kamada G.Y. Chen N. Inohara G. Núñez Control of pathogens and pathobionts by the gut microbiota Nat. Immunol. 2013 14 685 690 1:CAS:528:DC%2BC3sXpsFKrsLY%3D 23778796 4083503 10.1038/ni.2608
M. Nakajima et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver PLoS ONE 2015 10 26218067 4517782 10.1371/journal.pone.0134234
S. Vaishnava C.L. Behrendt A.S. Ismail L. Eckmann L.V. Hooper Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host–microbial interface Proc. Natl Acad. Sci. USA 2008 105 20858 20863 1:CAS:528:DC%2BD1MXksFSntQ%3D%3D 19075245 2603261 10.1073/pnas.0808723105
K. Atarashi et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation Science 2017 358 359 365 1:CAS:528:DC%2BC2sXhs1Kns7zP 29051379 5682622 10.1126/science.aan4526 This study demonstrates that ectopic gut colonization by oral bacteria results in expansion of colitogenic T cells and the promotion of colitis in murine models.
J. Bao et al. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota Int. J. Oral. Sci. 2022 14 32 1:CAS:528:DC%2BB38XitVOitr%2FF 35732628 9217941 10.1038/s41368-022-00183-3
M. Tsukasaki et al. Host defense against oral microbiota by bone-damaging T cells Nat. Commun. 2018 9 29453398 5816021 10.1038/s41467-018-03147-6
J. Abed et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system Front. Cell. Infect. Microbiol. 2020 10 400 1:CAS:528:DC%2BB3cXisFCru73E 32850497 7426652 10.3389/fcimb.2020.00400
F. Imhann et al. Proton pump inhibitors affect the gut microbiome Gut 2016 65 740 748 1:CAS:528:DC%2BC2sXivVSrtL4%3D 26657899 10.1136/gutjnl-2015-310376
W. Guo et al. Depletion of gut microbiota impairs gut barrier function and antiviral immune defense in the liver Front. Immunol. 2021 12 636803 1:CAS:528:DC%2BB3MXpvVyhsbw%3D 33841420 8027085 10.3389/fimmu.2021.636803
R.H. Hunt et al. The stomach in health and disease Gut 2015 64 1650 1668 1:STN:280:DC%2BC287psFyktQ%3D%3D 26342014 10.1136/gutjnl-2014-307595
K. Sato et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system Sci. Rep. 2017 7 28761156 5537233 10.1038/s41598-017-07196-7
M. Martínez-García E. Hernández-Lemus Periodontal inflammation and systemic diseases: an overview Front. Physiol. 2021 12 709438 34776994 8578868 10.3389/fphys.2021.709438
D.E. Ramadan N. Hariyani R. Indrawati R.D. Ridwan I. Diyatri Cytokines and chemokines in periodontitis Eur. J. Dent. 2020 14 483 495 32575137 7440949 10.1055/s-0040-1712718
E. Könönen U.K. Gursoy Oral prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts Front. Microbiol. 2021 12 798763 35069501 10.3389/fmicb.2021.798763
S.J. Salter et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses BMC Biol. 2014 12 25387460 4228153 10.1186/s12915-014-0087-z
A. Heintz-Buschart et al. Small RNA profiling of low biomass samples: identification and removal of contaminants BMC Biol. 2018 16 29759067 5952572 10.1186/s12915-018-0522-7
T. Van Rossum P. Ferretti O.M. Maistrenko P. Bork Diversity within species: interpreting strains in microbiomes Nat. Rev. Microbiol. 2020 18 491 506 32499497 7610499 10.1038/s41579-020-0368-1 This paper discusses high-resolution strain and subspecies analyses in metagenomic data and how within-species variation can be studied and stratified directly within microbial communities.
L.M. Sedghi M. Bacino Y.L. Kapila Periodontal disease: the good, the bad, and the unknown Front. Cell. Infect. Microbiol. 2021 11 766944 1:CAS:528:DC%2BB38XhtVCntbnO 34950607 8688827 10.3389/fcimb.2021.766944
M.A. Curtis P.I. Diaz T.E. Van Dyke The role of the microbiota in periodontal disease Periodontol 2000 2020 83 14 25 32385883 10.1111/prd.12296
H. Tuominen J. Rautava JOral Microbiota and cancer development Pathobiology 2021 88 116 126 1:CAS:528:DC%2BB3MXnvVaiu7w%3D 33176328 10.1159/000510979
J. Strauss et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host Inflamm. Bowel Dis. 2011 17 1971 1978 21830275 10.1002/ibd.21606
A. Carrillo-de-Albornoz E. Figuero D. Herrera A. Bascones-Martínez Gingival changes during pregnancy: II. Influence of hormonal variations on the subgingival biofilm J. Clin. Periodontol. 2010 37 230 240 20088983 10.1111/j.1600-051X.2009.01514.x
L. Abusleme et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation ISME J. 2013 7 1016 1025 1:CAS:528:DC%2BC3sXms1Witrg%3D 23303375 3635234 10.1038/ismej.2012.174
S. Kitamoto H. Nagao-Kitamoto R. Hein T.M. Schmidt N. Kamada The bacterial connection between the oral cavity and the gut diseases J. Dent. Res. 2020 99 1021 1029 1:STN:280:DC%2BB38risFakuw%3D%3D 32464078 7375741 10.1177/0022034520924633
E.A. Franzosa et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease Nat. Microbiol. 2019 4 293 305 1:CAS:528:DC%2BC1cXisVyhtbnM 30531976 10.1038/s41564-018-0306-4 This study integrates metagenomic analyses with in-depth metabolomic measurements and highlights possible mechanistic relationships that are perturbed in IBD.
M. Schirmer et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome Nat. Microbiol. 2018 3 337 346 1:CAS:528:DC%2BC1cXlvFSjug%3D%3D 29311644 6131705 10.1038/s41564-017-0089-z This study integrates metagenomic analysis with metatranscriptomic measurements, identifying keystone species in terms of activities and providing finer insight into the role of the microbiome in IBD.
D. Vandeputte et al. Quantitative microbiome profiling links gut community variation to microbial load Nature 2017 551 507 511 1:CAS:528:DC%2BC2sXhvVKqtb%2FM 29143816 10.1038/nature24460 This paper presents a method that can provide information about the extent or directionality of changes in taxa abundance or metabolic potential by bypassing compositionality effects in the reconstruction of gut microbiota interaction networks.
T. Ohkusa et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody J. Gastroenterol. Hepatol. 2002 17 849 853 12164960 10.1046/j.1440-1746.2002.02834.x
D. Gevers et al. The treatment-naive microbiome in new-onset Crohn’s disease Cell Host Microbe 2014 15 382 392 1:CAS:528:DC%2BC2cXks1Omu7Y%3D 24629344 4059512 10.1016/j.chom.2014.02.005
K.F. Kirk H.L. Nielsen O. Thorlacius-Ussing H. Nielsen Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease Gut Pathog. 2016 8 27252786 4888738 10.1186/s13099-016-0111-7
J.-W. Huh T.-Y. Roh Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis BMC Microbiol. 2020 20 208 1:CAS:528:DC%2BB3cXhtlyntbbP 32660414 7359021 10.1186/s12866-020-01887-4
Y.-C. Lee et al. The periodontopathic pathogen, Porphyromonas gingivalis, involves a gut inflammatory response and exacerbates inflammatory bowel disease Pathogens 2022 11 84 1:CAS:528:DC%2BB38XntlersLk%3D 35056032 8779656 10.3390/pathogens11010084
H.S. Said et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers DNA Res. 2014 21 15 25 1:CAS:528:DC%2BC2cXisFKgsLY%3D 24013298 10.1093/dnares/dst037
Z. Xun Q. Zhang T. Xu N. Chen F. Chen Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles Front. Microbiol. 2018 9 1136 29899737 5988890 10.3389/fmicb.2018.01136
J. Kelsen et al. Alterations of the subgingival microbiota in pediatric Crohn’s disease studied longitudinally in discovery and validation cohorts Inflamm. Bowel Dis. 2015 21 2797 2805 26288001 10.1097/MIB.0000000000000557
H. Elzayat et al. Deciphering salivary microbiome signature in Crohn’s disease patients with different factors contributing to dysbiosis Sci. Rep. 2023 13 1:CAS:528:DC%2BB3sXitlaqsrzJ 37932491 10628307 10.1038/s41598-023-46714-8
M.M.H. Abdelbary et al. The oral–gut axis: salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease Front. Cell. Infect. Microbiol. 2022 12 1010853 1:CAS:528:DC%2BB3sXltlOgs7w%3D 36275026 9585322 10.3389/fcimb.2022.1010853
T. Zhang et al. Dynamics of the salivary microbiome during different phases of Crohn’s disease Front. Cell. Infect. Microbiol. 2020 10 544704 1:CAS:528:DC%2BB3MXisF2lsrY%3D 33123492 7574453 10.3389/fcimb.2020.544704
G.R. Madsen et al. The impact of periodontitis on inflammatory bowel disease activity Inflamm. Bowel Dis. 2023 29 396 404 35552410 10.1093/ibd/izac090
V. Koutsochristou et al. Dental caries and periodontal disease in children and adolescents with inflammatory bowel disease: a case–control study Inflamm. Bowel Dis. 2015 21 1839 1846 25985243 10.1097/MIB.0000000000000452
Y.-Y. She et al. Periodontitis and inflammatory bowel disease: a meta-analysis BMC Oral. Health 2020 20 32164696 7069057 10.1186/s12903-020-1053-5
G. Baima et al. Periodontitis prevalence and severity in inflammatory bowel disease: a case–control study J. Periodontol. 2023 94 313 322 1:CAS:528:DC%2BB38XivFSku7rL 36111636 10.1002/JPER.22-0322
S.N. Papageorgiou et al. Inflammatory bowel disease and oral health: systematic review and a meta-analysis J. Clin. Periodontol. 2017 44 382 393 28117909 10.1111/jcpe.12698
P. Zhou X. Li I.-H. Huang F. Qi Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments Appl. Environ. Microbiol. 2017 83 e01079 e01117 1:CAS:528:DC%2BC1cXislajsb8%3D 28778894 5601340 10.1128/AEM.01079-17
M. Lenartova et al. The oral microbiome in periodontal health Front. Cell. Infect. Microbiol. 2021 11 629723 1:CAS:528:DC%2BB3MXit1Gkt7fF 33828997 8019927 10.3389/fcimb.2021.629723
J. Carrion et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential J. Immunol. 2012 189 3178 3187 1:CAS:528:DC%2BC38XhtlWqsbnE 22891282 10.4049/jimmunol.1201053
Y. Xue et al. Indoleamine 2,3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages Cell Death Dis. 2018 9 29500439 5834448 10.1038/s41419-018-0389-0
Y. Chen et al. Fusobacterium nucleatum facilitates ulcerative colitis through activating IL-17F signaling to NF-κB via the upregulation of CARD3 expression J. Pathol. 2020 250 170 182 1:CAS:528:DC%2BB3cXhsF2lsbY%3D 31610014 10.1002/path.5358
W. Tang et al. Impairment of intestinal barrier function induced by early weaning via autophagy and apoptosis associated with gut microbiome and metabolites Front. Immunol. 2021 12 804870 1:CAS:528:DC%2BB38XhtlKgsbfL 34975919 8714829 10.3389/fimmu.2021.804870
Y.-K. Feng et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice J. Neuroinflammation 2020 17 1:CAS:528:DC%2BB3cXis1Wiu7vN 33213462 7677837 10.1186/s12974-020-02027-5
S. van der Post et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB) J. Biol. Chem. 2013 288 14636 14646 23546879 3656315 10.1074/jbc.M113.459479
S. Kitamoto et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis Cell 2020 182 447 462.e14 1:CAS:528:DC%2BB3cXhtFylur7L 32758418 7414097 10.1016/j.cell.2020.05.048 This study shows that oral bacteria-specific TH17 cells, which expand during experimental periodontitis, migrate to the gut where they are activated by translocated oral bacteria and contribute to the development of colitis.
G. El Tekle W.S. Garrett Bacteria in cancer initiation, promotion and progression Nat. Rev. Cancer 2023 23 600 618 1:CAS:528:DC%2BB3sXhtlOjsrzE 37400581 10.1038/s41568-023-00594-2
D. Ternes et al. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol. 2020 28 401 423 1:CAS:528:DC%2BB3cXhslWjurw%3D 32298617 10.1016/j.tim.2020.01.001 This review presents new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome’s role in cancer pathogenesis.
R.C. Simpson E.R. Shanahan R.A. Scolyer G.V. Long Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors Nat. Rev. Clin. Oncol. 2023 20 697 715 37488231 10.1038/s41571-023-00803-9 This review discusses the mechanisms by which the microbiota modulates antitumour immunity.
V. Gopalakrishnan et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science 2018 359 97 103 1:CAS:528:DC%2BC1cXjslOrsA%3D%3D 29097493 10.1126/science.aan4236
V. Matson et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients Science 2018 359 104 108 1:CAS:528:DC%2BC1cXjslOksg%3D%3D 29302014 6707353 10.1126/science.aao3290
B. Routy et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors Science 2018 359 91 97 1:CAS:528:DC%2BC1cXjslOrsw%3D%3D 29097494 10.1126/science.aan3706
B. Flemer et al. The oral microbiota in colorectal cancer is distinctive and predictive Gut 2018 67 1454 1463 1:CAS:528:DC%2BC1MXhvVKlsLs%3D 28988196 10.1136/gutjnl-2017-314814
S. Li et al. Prognostic impact of oral microbiome on survival of malignancies: a systematic review and meta-analysis Syst. Rev. 2024 13 1:CAS:528:DC%2BB2cXjsF2ntb8%3D 38273347 10809532 10.1186/s13643-023-02419-7
W.-H. Lee et al. Bacterial alterations in salivary microbiota and their association in oral cancer Sci. Rep. 2017 7 29184122 5705712 10.1038/s41598-017-16418-x
S. Pushalkar et al. Microbial diversity in saliva of oral squamous cell carcinoma FEMS Immunol. Med. Microbiol. 2011 61 269 277 1:CAS:528:DC%2BC3MXks1Ggt7s%3D 21205002 3078631 10.1111/j.1574-695X.2010.00773.x
B.L. Schmidt et al. Changes in abundance of oral microbiota associated with oral cancer PLoS ONE 2014 9 24887397 4041887 10.1371/journal.pone.0098741
P.J. Torres et al. Characterization of the salivary microbiome in patients with pancreatic cancer PeerJ 2015 3 26587342 4647550 10.7717/peerj.1373
B.A. Peters et al. Oral microbiome composition reflects prospective risk for esophageal cancers Cancer Res. 2017 77 6777 6787 1:CAS:528:DC%2BC2sXhvFWhsLbP 29196415 5726431 10.1158/0008-5472.CAN-17-1296
X. Fan et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case–control study Gut 2018 67 120 127 1:CAS:528:DC%2BC1cXitFaktr3J 27742762 10.1136/gutjnl-2016-312580
K. Conde-Pérez et al. Parvimonas micra can translocate from the subgingival sulcus of the human oral cavity to colorectal adenocarcinoma Mol. Oncol. 2023 18 1143 1173 37558206 11076991 10.1002/1878-0261.13506
R.J. Knippel J.L. Drewes C.L. Sears The cancer microbiome: recent highlights and knowledge gaps Cancer Discov. 2021 11 2378 2395 1:CAS:528:DC%2BB3MXis1ynt7%2FE 34400408 8487941 10.1158/2159-8290.CD-21-0324
L. Wen et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment J. Dent. Res. 2020 99 666 675 1:CAS:528:DC%2BB3cXhtVSgsr3P 32298192 10.1177/0022034520909312
D.S. Michaud et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study Gut 2013 62 1764 1770 22990306 10.1136/gutjnl-2012-303006
E. Saba et al. Oral bacteria accelerate pancreatic cancer development in mice Gut 2024 73 770 786 38233197 10.1136/gutjnl-2023-330941
M.N. Sztukowska et al. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells Cell. Microbiol. 2016 18 844 858 1:CAS:528:DC%2BC28Xns1Gjsg%3D%3D 26639759 5135094 10.1111/cmi.12554
J. Haerinck S. Goossens G. Berx The epithelial–mesenchymal plasticity landscape: principles of design and mechanisms of regulation Nat. Rev. Genet. 2023 24 590 609 1:CAS:528:DC%2BB3sXhtVSitbrP 37169858 10.1038/s41576-023-00601-0
D. Ternes et al. The gut microbial metabolite formate exacerbates colorectal cancer progression Nat. Metab. 2022 4 458 475 1:CAS:528:DC%2BB38XhsV2gtL7P 35437333 9046088 10.1038/s42255-022-00558-0 This study describes molecular signatures linking CRC phenotypes with Fusobacterium spp. abundance and identifies formate as a gut-derived oncometabolite relevant for CRC progression.
Y. Komiya et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity Gut 2019 68 1335 1337 29934439 10.1136/gutjnl-2018-316661
K. Nosho et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer World J. Gastroenterol. 2016 22 557 566 1:CAS:528:DC%2BC28XhsV2mt7nP 26811607 4716059 10.3748/wjg.v22.i2.557
T. Tahara et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma Cancer Res. 2014 74 1311 1318 1:CAS:528:DC%2BC2cXktF2rs7w%3D 24385213 4396185 10.1158/0008-5472.CAN-13-1865
H.S. Kim et al. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers Front. Cell. Infect. Microbiol. 2023 13 1101291 1:CAS:528:DC%2BB3sXit1Sgt7nM 36960042 10028079 10.3389/fcimb.2023.1101291
C. Gur et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack Immunity 2015 42 344 355 1:CAS:528:DC%2BC2MXisVygt7o%3D 25680274 4361732 10.1016/j.immuni.2015.01.010
M. Kosuke et al. Fusobacterium nucleatum and T cells in colorectal carcinoma JAMA Oncol. 2015 1 653 661 10.1001/jamaoncol.2015.1377
G. Serna et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer Ann. Oncol. 2020 31 1366 1375 1:STN:280:DC%2BB38njtVajug%3D%3D 32569727 10.1016/j.annonc.2020.06.003
M.R. Rubinstein et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1 EMBO Rep. 2019 20 30833345 6446206 10.15252/embr.201847638
X. Li et al. Fusobacterium nucleatum promotes the progression of colorectal cancer through Cdk5-activated Wnt/β-catenin signaling Front. Microbiol. 2020 11 545251 33488528 10.3389/fmicb.2020.545251
S. Coppenhagen-Glazer et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth Infect. Immun. 2015 83 1104 1113 1:CAS:528:DC%2BC2MXivFKrsLc%3D 25561710 4333458 10.1128/IAI.02838-14
T. Yu et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy Cell 2017 170 548 563.e16 1:CAS:528:DC%2BC2sXht1GisLjO 28753429 5767127 10.1016/j.cell.2017.07.008
Y. Liu et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma Br. J. Cancer 2021 124 963 974 1:CAS:528:DC%2BB3cXisFOrt77J 33299132 10.1038/s41416-020-01198-5
S.-S. Jiang et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer Cell Host Microbe 2023 31 781 797.e9 1:CAS:528:DC%2BB3sXovFyjur4%3D 37130518 10.1016/j.chom.2023.04.010
M. Zepeda-Rivera et al. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche Nature 2024 628 424 432 1:CAS:528:DC%2BB2cXmsVWgt78%3D 38509359 11006615 10.1038/s41586-024-07182-w
D.L. Higashi et al. Who is in the driver’s seat? Parvimonas micra: an understudied pathobiont at the crossroads of dysbiotic disease and cancer Environ. Microbiol. Rep. 2023 15 254 264 36999244 10316381 10.1111/1758-2229.13153
E. Bergsten et al. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes Gut Microbes 2023 15 2265138 37842920 10580862 10.1080/19490976.2023.2265138
L. Zhao et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients Oncogene 2022 41 4200 4210 1:CAS:528:DC%2BB38XhvFCjurbL 35882981 9439953 10.1038/s41388-022-02395-7
J. Xu et al. Alteration of the abundance of Parvimonas micra in the gut along the adenoma–carcinoma sequence Oncol. Lett. 2020 20 106 32831925 7439112 10.3892/ol.2020.11967
R.J. Genco et al. The subgingival microbiome relationship to periodontal disease in older women J. Dent. Res. 2019 98 975 984 1:CAS:528:DC%2BC1MXhsFams7jE 31329044 6651762 10.1177/0022034519860449
J. Marchesan et al. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens Mol. Oral. Microbiol. 2016 31 243 258 1:CAS:528:DC%2BC28XntFCjsbc%3D 26177212 10.1111/omi.12116
A. Sakanaka et al. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms mSystems 2022 7 35852319 10.1128/msystems.00170-22
D.-W. Zheng et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy Nat. Biomed. Eng. 2019 3 717 728 1:CAS:528:DC%2BC1MXhsVartbnN 31332342 10.1038/s41551-019-0423-2
Y. Zhang Epidemiology of esophageal cancer World J. Gastroenterol. 2013 19 5598 5606 24039351 3769895 10.3748/wjg.v19.i34.5598
Y. Yano A. Etemadi C.C. Abnet Microbiome and cancers of the esophagus: a review Microorganisms 2021 9 1764 34442842 8398938 10.3390/microorganisms9081764
X. Chen et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China PLoS ONE 2015 10 26641451 4671675 10.1371/journal.pone.0143603
Q. Zhao et al. Alterations of oral microbiota in chinese patients with esophageal cancer Front. Cell. Infect. Microbiol. 2020 10 541144 1:CAS:528:DC%2BB3MXptVeisb8%3D 33194789 7609410 10.3389/fcimb.2020.541144
E.J. Snider et al. Barrett’s esophagus is associated with a distinct oral microbiome Clin. Transl. Gastroenterol. 2018 9 135 29491399 5862155 10.1038/s41424-018-0005-8
D. Shao et al. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China Cancer 2019 125 3993 4002 1:CAS:528:DC%2BC1MXitVCltLzL 31355925 10.1002/cncr.32403
D. Li et al. Characterization of the esophageal microbiota and prediction of the metabolic pathways involved in esophageal cancer Front. Cell. Infect. Microbiol. 2020 10 268 1:CAS:528:DC%2BB3cXisFakurzK 32676460 7333312 10.3389/fcimb.2020.00268
K. Yamamura et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis Clin. Cancer Res. 2016 22 5574 5581 1:CAS:528:DC%2BC28XhvVCqurzE 27769987 10.1158/1078-0432.CCR-16-1786
S. Gao et al. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer Infect. Agent. Cancer 2016 11 26788120 4717526 10.1186/s13027-016-0049-x
J.J. Farrell et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer Gut 2012 61 582 588 1:CAS:528:DC%2BC38XmsFOisL8%3D 21994333 10.1136/gutjnl-2011-300784
C.-S. Stingu K. Eschrich A.C. Rodloff R. Schaumann H. Jentsch Periodontitis is associated with a loss of colonization by Streptococcus sanguinis J. Med. Microbiol. 2008 57 495 499 18349371 10.1099/jmm.0.47649-0
W. Teughels et al. Bacteria interfere with A. actinomycetemcomitans colonization J. Dent. Res. 2007 86 611 617 1:STN:280:DC%2BD2szntFGksA%3D%3D 17586706 10.1177/154405910708600706
O. Andrukhov et al. Serum cytokine levels in periodontitis patients in relation to the bacterial load J. Periodontol. 2011 82 885 892 1:CAS:528:DC%2BC3MXoslOru7c%3D 21138356 10.1902/jop.2010.100425
E. Gemmell R.I. Marshall G.J. Seymour Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease Periodontol 2000 1997 14 112 143 1:STN:280:DyaK1c3ivFertA%3D%3D 9567968 10.1111/j.1600-0757.1997.tb00194.x
W.M. Nauseef N. Borregaard Neutrophils at work Nat. Immunol. 2014 15 602 611 1:CAS:528:DC%2BC2cXhtVShu7rI 24940954 10.1038/ni.2921
N. Fine et al. Primed PMNs in healthy mouse and human circulation are first responders during acute inflammation Blood Adv. 2019 3 1622 1637 1:CAS:528:DC%2BC1MXit1aht7jL 31138591 6538871 10.1182/bloodadvances.2018030585
N. Fine et al. Periodontal inflammation primes the systemic innate immune response J. Dent. Res. 2021 100 318 325 1:CAS:528:DC%2BB3MXkvFCnurw%3D 33078669 10.1177/0022034520963710
N. Fine et al. Distinct oral neutrophil subsets define health and periodontal disease states J. Dent. Res. 2016 95 931 938 1:CAS:528:DC%2BC28XitFWrtr3J 27270666 10.1177/0022034516645564
G. Hajishengallis T. Chavakis E. Hajishengallis J.D. Lambris Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis J. Leukoc. Biol. 2015 98 539 548 1:CAS:528:DC%2BC2MXhslerurjJ 25548253 10.1189/jlb.3VMR1014-468R
M. Rossol et al. LPS-induced cytokine production in human monocytes and macrophages Crit. Rev. Immunol. 2011 31 379 446 1:CAS:528:DC%2BC38Xht1Slsb4%3D 22142165 10.1615/CritRevImmunol.v31.i5.20
V. Zijnge T. Kieselbach J. Oscarsson Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans PLoS ONE 2012 7 1:CAS:528:DC%2BC38XhtFanu7jE 22848560 3405016 10.1371/journal.pone.0041662
M.F. Konig et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis Sci. Transl. Med. 2016 8 369ra176 27974664 5384717 10.1126/scitranslmed.aaj1921
T. Stobernack et al. Extracellular proteome and citrullinome of the oral pathogen Porphyromonas gingivalis J. Proteome Res. 2016 15 4532 4543 1:CAS:528:DC%2BC28Xhs1elsb7N 27712078 10.1021/acs.jproteome.6b00634
C. Farrugia et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis FEBS J. 2021 288 1479 1495 1:CAS:528:DC%2BB3cXhsV2lsr7P 32681704 10.1111/febs.15486
M.A. Gimbrone Jr G. García-Cardeña Endothelial cell dysfunction and the pathobiology of atherosclerosis Circ. Res. 2016 118 620 636 1:CAS:528:DC%2BC28XislOmsrs%3D 26892962 4762052 10.1161/CIRCRESAHA.115.306301
J.S. Bajaj et al. Periodontal therapy favorably modulates the oral–gut–hepatic axis in cirrhosis Am. J. Physiol. Gastrointest. Liver Physiol. 2018 315 G824 G837 30118351 6293251 10.1152/ajpgi.00230.2018
H.A. Schenkein P.N. Papapanou R. Genco M. Sanz Mechanisms underlying the association between periodontitis and atherosclerotic disease Periodontol 2000 2020 83 90 106 32385879 10.1111/prd.12304
F. D’Aiuto M. Orlandi J.C. Gunsolley Evidence that periodontal treatment improves biomarkers and CVD outcomes J. Clin. Periodontol. 2013 40 S85 S105 23627337
M. Sanz et al. Periodontitis and cardiovascular diseases: consensus report J. Clin. Periodontol. 2020 47 268 288 32011025 7027895 10.1111/jcpe.13189
W.J. Teeuw V.E.A. Gerdes B.G. Loos Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis Diabetes Care 2010 33 421 427 20103557 2809296 10.2337/dc09-1378
A. Teshome A. Yitayeh The effect of periodontal therapy on glycemic control and fasting plasma glucose level in type 2 diabetic patients: systematic review and meta-analysis BMC Oral. Health 2016 17 27473177 4967318 10.1186/s12903-016-0249-1
Tanwar, H. et al. Unraveling the link between periodontitis and inflammatory bowel disease: challenges and outlook. Preprint at arXivhttps://doi.org/10.48550/arXiv.2308.10907 (2023).
Y. Zhang et al. The association between periodontitis and inflammatory bowel disease: a systematic review and meta-analysis Biomed. Res. Int. 2021 2021 6692420 33778080 7981176
D. Pietropaoli et al. Occurrence of spontaneous periodontal disease in the SAMP1/YitFc murine model of Crohn disease J. Periodontol. 2014 85 1799 1805 25019175 4460836 10.1902/jop.2014.140316
F. Teles Y. Wang G. Hajishengallis H. Hasturk J.T. Marchesan Impact of systemic factors in shaping the periodontal microbiome Periodontol 2000 2021 85 126 160 33226693 10.1111/prd.12356
R.J. Genco M. Sanz Clinical and public health implications of periodontal and systemic diseases: an overview Periodontol 2000 2020 83 7 13 32385880 10.1111/prd.12344
E. Xiao et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity Cell Host Microbe 2017 22 120 128.e4 1:CAS:528:DC%2BC2sXhtFygtrvL 28704648 5701758 10.1016/j.chom.2017.06.014
F. D’Aiuto et al. Systemic effects of periodontitis treatment in patients with type 2 diabetes: a 12 month, single-centre, investigator-masked, randomised trial Lancet Diabetes Endocrinol. 2018 6 954 965 30472992 10.1016/S2213-8587(18)30038-X This study shows favourable effects of local periodontal treatment on systemic inflammatory markers and glycaemic control in patients with type 2 diabetes mellitus.
P.M. Duarte et al. Local levels of inflammatory mediators in uncontrolled type 2 diabetic subjects with chronic periodontitis J. Clin. Periodontol. 2014 41 11 18 1:CAS:528:DC%2BC3sXhvFequ7vJ 24206042 10.1111/jcpe.12179
E. Lalla I.B. Lamster D.M. Stern A.M. Schmidt Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: mechanisms and insights into therapeutic modalities Ann. Periodontol. 2001 6 113 118 1:STN:280:DC%2BD387lsFKktw%3D%3D 11887453 10.1902/annals.2001.6.1.113
K. Sato et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid MBio 2021 12 34061595 10.1128/mBio.00771-21
Kato, T. et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere3, https://doi.org/10.1128/msphere.00460-18 (2018).
V. Blasco-Baque et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response Gut 2017 66 872 885 1:CAS:528:DC%2BC1cXhtFKms73M 26838600 10.1136/gutjnl-2015-309897
J.A. Goettel et al. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3 Blood 2015 125 3886 3895 1:CAS:528:DC%2BC2MXhtFCmsbzM 25833964 4473116 10.1182/blood-2014-12-618363
A. Wahl et al. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection Nat. Biotechnol. 2023 42 905 915 37563299 11073568 10.1038/s41587-023-01906-5
L. Bai B.-Y. Chen Y. Liu W.-C. Zhang S.-Z. Duan A mouse periodontitis model with humanized oral bacterial community Front. Cell. Infect. Microbiol. 2022 12 842845 1:CAS:528:DC%2BB38Xhs1GgsLrI 35273925 8902145 10.3389/fcimb.2022.842845
B. Li et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice Int. J. Oral. Sci. 2019 11 10 30833566 6399334 10.1038/s41368-018-0043-9
L. de Nies et al. Altered infective competence of the human gut microbiome in COVID-19 Microbiome 2023 11 36894986 9995755 10.1186/s40168-023-01472-7
N. Segata et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples Genome Biol. 2012 13 1:CAS:528:DC%2BC38XpvVWksL4%3D 22698087 3446314 10.1186/gb-2012-13-6-r42
W. van ’t Hof E.C.I. Veerman A.V. Nieuw Amerongen A.J.M. Ligtenberg Antimicrobial defense systems in saliva Monogr. Oral. Sci. 2014 24 40 51 24862593 10.1159/000358783
A.V.N. Amerongen E.C.I. Veerman Saliva—the defender of the oral cavity Oral. Dis. 2002 8 12 22 11936451 10.1034/j.1601-0825.2002.1o816.x
A.M. Lynge Pedersen D. Belstrøm The role of natural salivary defences in maintaining a healthy oral microbiota J. Dent. 2019 80 S3 S12 1:CAS:528:DC%2BC1MXhvFeqs7o%3D 30696553 10.1016/j.jdent.2018.08.010
M. Ahuja et al. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity Cell Metab. 2017 25 635 646 1:CAS:528:DC%2BC2sXjvF2hsbc%3D 28273482 5345693 10.1016/j.cmet.2017.02.007
T.C. Martinsen K. Bergh H.L. Waldum Gastric juice: a barrier against infectious diseases Basic. Clin. Pharmacol. Toxicol. 2005 96 94 102 1:CAS:528:DC%2BD2MXhvVert7g%3D 15679471 10.1111/j.1742-7843.2005.pto960202.x
S.M. Tennant et al. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens Infect. Immun. 2008 76 639 645 1:CAS:528:DC%2BD1cXhsFOqsbY%3D 18025100 10.1128/IAI.01138-07
S.C. Bischoff et al. Intestinal permeability—a new target for disease prevention and therapy BMC Gastroenterol. 2014 14 189 25407511 4253991 10.1186/s12876-014-0189-7
M.A. Odenwald J.R. Turner The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017 14 9 21 1:CAS:528:DC%2BC28XhvV2gtLvK 27848962 10.1038/nrgastro.2016.169
J. Pott M. Hornef Innate immune signalling at the intestinal epithelium in homeostasis and disease EMBO Rep. 2012 13 684 698 1:CAS:528:DC%2BC38XhtVeht77K 22801555 3410395 10.1038/embor.2012.96
A. Dillon D.D. Lo M cells: intelligent engineering of mucosal immune surveillance Front. Immunol. 2019 10 1499 1:CAS:528:DC%2BB3cXhsV2gu7s%3D 31312204 6614372 10.3389/fimmu.2019.01499
K.E. Huus C. Petersen B.B. Finlay Diversity and dynamism of IgA–microbiota interactions Nat. Rev. Immunol. 2021 21 514 525 1:CAS:528:DC%2BB3MXjslKgtLs%3D 33568782 10.1038/s41577-021-00506-1
J.M. Pickard M.Y. Zeng R. Caruso G. Núñez Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease Immunol. Rev. 2017 279 70 89 1:CAS:528:DC%2BC2sXhsVShu7nM 28856738 5657496 10.1111/imr.12567
C.T. Parker B.J. Tindall G.M. Garrity (eds) International code of nomenclature of prokaryotes Int. J. Syst. Evol. Microbiol. 2019 69 S1 S111 10.1099/ijsem.0.000778
M. Tikhonov R.W. Leach N.S. Wingreen Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution ISME J. 2015 9 68 80 25012900 10.1038/ismej.2014.117
A. Amir et al. Deblur rapidly resolves single-nucleotide community sequence patterns mSystems 2017 2 e00191 e00216 28289731 5340863 10.1128/mSystems.00191-16
J.S. Johnson et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis Nat. Commun. 2019 10 31695033 6834636 10.1038/s41467-019-13036-1
J. Alneberg et al. Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes Microbiome 2018 6 30266101 6162917 10.1186/s40168-018-0550-0
M. Zolfo A. Tett O. Jousson C. Donati N. Segata MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples Nucleic Acids Res. 2017 45 27651451 10.1093/nar/gkw837
C.S. Smillie et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation Cell Host Microbe 2018 23 229 240.e5 1:CAS:528:DC%2BC1cXivVSlsr0%3D 29447696 8318347 10.1016/j.chom.2018.01.003
D.T. Truong A. Tett E. Pasolli C. Huttenhower N. Segata Microbial strain-level population structure and genetic diversity from metagenomes Genome Res. 2017 27 626 638 1:CAS:528:DC%2BC2sXmtlSqsbs%3D 28167665 5378180 10.1101/gr.216242.116
S. Nayfach B. Rodriguez-Mueller N. Garud K.S. Pollard An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography Genome Res. 2016 26 1612 1625 1:CAS:528:DC%2BC2sXhs1Ogsb4%3D 27803195 5088602 10.1101/gr.201863.115
D. Albanese C. Donati Strain profiling and epidemiology of bacterial species from metagenomic sequencing Nat. Commun. 2017 8 29273717 5741664 10.1038/s41467-017-02209-5
A. Shaiber A.M. Eren Composite metagenome-assembled genomes reduce the quality of public genome repositories mBio 2019 10 e00725 e00819 1:CAS:528:DC%2BB3cXotFGjtb8%3D 31164461 6550520 10.1128/mBio.00725-19
A. Lo Curto et al. Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion Food Microbiol. 2011 28 1359 1366 21839386 10.1016/j.fm.2011.06.007
M. Minekus et al. A standardised static in vitro digestion method suitable for food—an international consensus Food Funct. 2014 5 1113 1124 1:CAS:528:DC%2BC2cXovVanur4%3D 24803111 10.1039/C3FO60702J
N. Zmora et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features Cell 2018 174 1388 1405.e21 1:CAS:528:DC%2BC1cXhs1Omu7bK 30193112 10.1016/j.cell.2018.08.041
P. Van den Abbeele et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX Appl. Environ. Microbiol. 2010 76 5237 5246 20562281 2916472 10.1128/AEM.00759-10
P. Van den Abbeele et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli Microb. Biotechnol. 2012 5 106 115 21989255 10.1111/j.1751-7915.2011.00308.x
M. Minekus P. Marteau R. Havenaar J.H.J.H.I. Veld A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine Altern. Lab. Anim. 1995 23 197 209 10.1177/026119299502300205
J. Thévenot et al. Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the human large intestine and interactions with probiotic yeasts and resident microbiota Appl. Environ. Microbiol. 2013 79 1058 1064 23204410 3568547 10.1128/AEM.03303-12
L. Etienne-Mesmin et al. In vitro modelling of oral microbial invasion in the human colon Microbiol. Spectr. 2023 11 36971547 10.1128/spectrum.04344-22
M. Calatayud et al. Salivary and gut microbiomes play a significant role in in vitro oral bioaccessibility, biotransformation, and intestinal absorption of arsenic from food Environ. Sci. Technol. 2018 52 14422 14435 1:CAS:528:DC%2BC1cXitFaqsb7J 30403856 6300781 10.1021/acs.est.8b04457
M. Marzorati et al. The HMI™ module: a new tool to study the host–microbiota interaction in the human gastrointestinal tract in vitro BMC Microbiol. 2014 14 133 24884540 4039060 10.1186/1471-2180-14-133
P. Shah et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface Nat. Commun. 2016 7 1:CAS:528:DC%2BC28XnslegtbY%3D 27168102 4865890 10.1038/ncomms11535
S. Jalili-Firoozinezhad et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip Nat. Biomed. Eng. 2019 3 520 531 1:CAS:528:DC%2BC1MXhtFensrbJ 31086325 6658209 10.1038/s41551-019-0397-0
M. Xavier et al. From mouth to gut: microfluidic in vitro simulation of human gastro-intestinal digestion and intestinal permeability Analyst 2023 148 3193 3203 1:CAS:528:DC%2BB3sXhtFCgtLfE 37259813 10.1039/D2AN02088B
M. Molero-Abraham et al. Human oral epithelial cells impair bacteria-mediated maturation of dendritic cells and render T cells unresponsive to stimulation Front. Immunol. 2019 10 1434 1:CAS:528:DC%2BB3cXhsV2ks7g%3D 31316504 6611079 10.3389/fimmu.2019.01434
Y. Zhang et al. Stable reconstructed human gingiva–microbe interaction model: differential response to commensals and pathogens Front. Cell. Infect. Microbiol. 2022 12 991128 1:CAS:528:DC%2BB3sXlvVKrt7k%3D 36339338 9631029 10.3389/fcimb.2022.991128
L. Shang et al. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function Sci. Rep. 2018 8 30375445 6207751 10.1038/s41598-018-34390-y
L. Shang et al. Commensal and pathogenic biofilms alter Toll-like receptor signaling in reconstructed human gingiva Front. Cell. Infect. Microbiol. 2019 9 282 1:CAS:528:DC%2BB3cXmsVGgu7s%3D 31448244 6692492 10.3389/fcimb.2019.00282
M. Adelfio et al. Three-dimensional humanized model of the periodontal gingival pocket to study oral microbiome Adv. Sci. 2023 10 10.1002/advs.202205473
C. Rahimi et al. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials Biomicrofluidics 2018 12 054106 30310527 6158033 10.1063/1.5048938
H. Makkar Y. Zhou K.S. Tan C.T. Lim G. Sriram Modeling crevicular fluid flow and host–oral microbiome interactions in a gingival crevice-on-chip Adv. Healthc. Mater. 2023 12 36398428 10.1002/adhm.202202376