electroencephalography; frequency tagging; magnetoencephalography; source estimation; visual word recognition; Neuroscience (miscellaneous)
Abstract :
[en] Fast periodic visual stimulation (FPVS) allows the objective measurement of brain responses of human word discrimination (i.e., reproducible word-category-selective responses) with a high signal-to-noise ratio. This approach has been successfully employed over the last decade in a number of scalp electroencephalography (EEG) studies. Three important advances for research on word-selective brain responses were achieved in the present study: (1) we extend previous evidence of robust word-category-selective responses to the English language, (2) report results for combined EEG and MEG signals, and (3) source estimation results. English words were presented periodically (2 Hz) among different types of letter strings (10 Hz; consonant strings, non-words, pseudo-words) while recording simultaneous EEG and MEG in 25 participants who performed a simple non-linguistic colour detection task. Data were analysed in sensor and in source space. With only 4 minutes of stimulation, we observed a robust word discrimination response in each condition, even when words were embedded in sequences of word-like pseudo-words. This response was larger in non-words and largest in consonant strings. We observed left-lateralised responses in all conditions in the majority of our participants. Cluster-based permutation tests revealed that these responses were left-lateralised in sensor as well as in source space, with peaks in left posterior regions. Our results demonstrate that the FPVS approach can elicit robust English word discrimination responses in EEG and MEG within only a few minutes of recording time. Together with source estimation, this can provide novel insights into the neural basis of visual word recognition in healthy and clinical populations.
Disciplines :
Neurosciences & behavior
Author, co-author :
Hauk, Olaf; MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
MARCHIVE, Marion ✱; University of Luxembourg ; Université de Lorraine, CNRS, UMR 7365, Nancy, France
Volfart, Angelique; School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
SCHILTZ, Christine ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
Rossion, Bruno; Université de Lorraine, CNRS, UMR 7365, Nancy, France ; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
Ralph, Matthew A. Lambon; MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
LOCHY, Aliette ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment ; Research Institute for Psychological Science, University of Louvain, Belgium
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Word-selective EEG/MEG responses in the English language obtained with fast periodic visual stimulation (FPVS)
The project was partly funded by a Lorraine Universit\u00E9 d\u2019Excellence (LUE) grant to foster international collaborations between Universit\u00E9 de Lorraine and University of Luxembourg (UL_IRP 2022). A.L. is supported by the Fonds National de la Recherche du Luxembourg (FNR-CORE C21/SC/16241557/READINGBRAIN). M.A.L.R. and O.H. are supported by intra-mural funding from the Medical Research Council (UK: MC_UU_00030/9). M.M. is supported by Lorraine Universit\u00E9 d\u2019Excellence with a DrEAM grant. For the purpose of open access, the author has applied a CC BY public copy-right license to any Author Accepted Manuscript version arising from this submission.
Ahlfors, S. P., Han, J., Lin, F. H., Witzel, T., Belliveau, J. W., Hamalainen, M. S., & Halgren, E. (2010). Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum Brain Mapp, 31(1), 140–149. https://doi.org/10.1002/hbm.20851
Aristei, S., Lochy, A., Rossion, B., & Schiltz, C. (2017). A task independent brain signature of multilingual early visual word recognition. Paper presented at the Conference of the European Society for Cognitive Psychology (ESCoP). https://doi.org/10.1101/2021.07.20.452909
Barnes, L., Petit, S., Badcock, N. A., Whyte, C. J., & Woolgar, A. (2021). Word detection in individual subjects is difficult to probe with fast periodic visual stimulation. Front Neurosci, 15, 602798. https://doi.org/10.3389/Fnins.2021.602798
Behrmann, M., & Plaut, D. C. (2014). Bilateral hemispheric processing of words and faces: Evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb Cortex, 24(4), 1102–1118. https://doi.org/10.1093/cercor/bhs390
Behrmann, M., & Plaut, D. C. (2015). A vision of graded hemispheric specialization. Ann N Y Acad Sci, 1359, 30–46. https://doi.org/10.1111/nyas.12833
Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657–661. https://doi.org/10.1038/nature26147
Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. J Neuroling, 26(1), 214–238. https://doi.org/10.1016/j.jneuroling.2012.08.001
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(Pt 2), 291–307. https://doi.org/10.1093/brain/123.2.291
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain, 125(Pt 5), 1054–1069. https://doi.org/10.1093/brain/awf094
de Ghelcke, A. V., Rossion, B., Schiltz, C., & Lochy, A. (2020). Impact of learning to read in a mixed approach on neural tuning to words in beginning readers. Front Psychol, 10, 3043. https://doi.org/10.3389/Fpsyg.2019.03043
de Ghelcke, A. V., Rossion, B., Schiltz, C., & Lochy, A. (2021). Developmental changes in neural letter-selectivity: A 1-year follow-up of beginning readers. Dev Sci, 24(1), e12999. https://doi.org/10.1111/desc.12999
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends Cogn Sci, 9(7), 335–341. https://doi.org/10.1016/j.tics.2005.05.004
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. https://doi.org/10.1126/science.1194140
Duyck, W., Desmet, T., Verbeke, L. P. C., & Brysbaert, M. (2004). WordGen: A tool for word selection and nonword generation in Dutch, English, German, and French. Behav Res Methods Instrum Comput, 36(3), 488–499. https://doi.org/10.3758/Bf03195595
Evans, G. A., Lambon Ralph, M. A., & Woollams, A. M. (2012). What’s in a word? A parametric study of semantic influences on visual word recognition. Psychon Bull Rev, 19(2), 325–331. https://doi.org/10.3758/s13423-011-0213-7
Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Goldenholz, D. M., Ahlfors, S. P., Hamalainen, M. S., Sharon, D., Ishitobi, M., Vaina, L. M., & Stufflebeam, S. M. (2009). Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum Brain Mapp, 30(4), 1077–1086. https://doi.org/10.1002/hbm.20571
Grainger, J. (1992). Chapter 7 Orthographic neighborhoods and visual word recognition. Adv Psychol, 94, 131–146. https://doi.org/10.1016/s0166-4115(08)62792-2
Grainger, J., & Segui, J. (1990). Neighborhood frequency effects in visual word recognition: A comparison of lexical decision and masked identification latencies. Percept Psychophys, 47(2), 191–198. https://doi.org/10.3758/bf03205983
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hamalainen, M. (2013). MEG and EEG data analysis with MNE-Python. Front Neurosci, 7, 267. https://doi.org/10.3389/fnins.2013.00267
Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys, 65, 413–497. https://doi.org/10.1103/RevModPhys.65.413
Hämäläinen, M. S., & Ilmoniemi, R. J. (1984). Interpreting measured magnetic fields of the brain: Minimum norm estimates of current distributions. Helsinki University of Technology, Technical Report TKK-F-A559. https://doi.org/10.1007/bf02512476
Hauk, O., Rice, G. E., Volfart, A., Magnabosco, F., Ralph, M. A. L., & Rossion, B. (2021). Face-selective responses in combined EEG/MEG recordings with fast periodic visual stimulation (FPVS). Neuroimage, 242, 118460. https://doi.org/10.1016/j.neuroimage.2021.118460
Hauk, O., Stenroos, M., & Treder, M. S. (2022). Towards an objective evaluation of EEG/MEG source estimation methods - The linear approach. Neuroimage, 255, 119177. https://doi.org/10.1016/j.neuroimage.2022.119177
Henson, R. N., Mouchlianitis, E., & Friston, K. J. (2009). MEG and EEG data fusion: Simultaneous localisation of face-evoked responses. Neuroimage, 47(2), 581–589. https://doi.org/10.1016/j.neuroimage.2009.04.063
Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20(2), 693–712. https://doi.org/10.1016/s1053-8119(03)00343-4
Lochy, A., Jacques, C., Maillard, L., Colnat-Coulbois, S., Rossion, B., & Jonas, J. (2018). Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci U S A, 115(32), E7595–E7604. https://doi.org/10.1073/pnas.1718987115
Lochy, A., Rossion, B., Ralph, M. L., Volfart, A., Hauk, O., & Schiltz, C. (2024). Linguistic and attentional factors—Not statistical regularities—Contribute to word-selective neural responses with FPVS-oddball paradigms. Cortex, 173, 339–354. https://doi.org/10.1016/j.cortex.2024.01.007
Lochy, A., Van Belle, G., & Rossion, B. (2014). Visual representation of words in the left occipito-temporal cortex as evidenced by EEG frequency-tagging. Perception, 43(1), 137–138. https://doi.org/10.1016/j.neuropsychologia.2014.11.007
Lochy, A., Van Belle, G., & Rossion, B. (2015). A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia, 66, 18–31. https://doi.org/10.1016/j.neuropsychologia.2014.11.007
Lochy, A., Van Reybroeck, M., & Rossion, B. (2016). Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers. Proc Natl Acad Sci U S A, 113(30), 8544–8549. https://doi.org/10.1073/pnas.1520366113
Lutz, C. G., Coraj, S., Fraga-González, G., & Brem, S. (2024). The odd one out—Orthographic oddball processing in children with poor versus typical reading skills in a fast periodic visual stimulation EEG paradigm. Cortex, 172, 185–203. https://doi.org/10.1016/j.cortex.2023.12.010
Marchive, M., Rossion, B., & Lochy, A. (accepted). Optimal word reading rate as evidenced by frequency-tagging electrophysiology. J Cogn Neurosci.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
Molins, A., Stufflebeam, S. M., Brown, E. N., & Hamalainen, M. S. (2008). Quantification of the benefit from integrating MEG and EEG data in minimum l(2)-norm estimation. Neuroimage, 42(3), 1069–1077. https://doi.org/10.1016/j.neuroimage.2008.05.064
Perea, M. (2015). Neighborhood effects in visual word recognition and reading. In The Oxford handbook of reading, 1, pp. 76–87. Oxford. https://doi.org/10.1093/oxfordhb/9780199324576.013.7
Perea, M., Acha, J., & Fraga, I. (2008). Lexical competition is enhanced in the left hemisphere: Evidence from different types of orthographic neighbors. Brain Lang, 105(3), 199–210. https://doi.org/10.1016/j.bandl.2007.08.005
Pescuma, V. N., Ktori, M., Beyersmann, E., Sowman, P. F., Castles, A., & Crepaldi, D. (2022). Automatic morpheme identification across development: Magnetoencephalography (MEG) evidence from fast periodic visual stimulation. Front Psychol, 13, 932952. https://doi.org/10.3389/fpsyg.2022.932952
Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of “neighborhood size” in reading and lexical decision. J Exp Psychol Hum Percept Perform, 25(4), 1142–1158. https://doi.org/10.1037/0096-1523.25.4.1142
Retter, T. L., Jiang, F., Webster, M. A., & Rossion, B. (2020). All-or-none face categorization in the human brain. Neuroimage, 213, 116685. https://doi.org/10.1016/j.neuroimage.2020.116685
Roberts, D. J., Woollams, A. M., Kim, E., Beeson, P. M., Rapcsak, S. Z., & Lambon Ralph, M. A. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage. Cereb Cortex, 23(11), 2568–2580. https://doi.org/10.1093/cercor/bhs224
Rossion, B., Retter, T. L., & Liu-Shuang, J. (2020). Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci, 52(10), 4283–4344. https://doi.org/10.1111/ejn.14865
Rossion, B., Torfs, K., Jacques, C., & Liu-Shuang, J. (2015). Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J Vis, 15(1), 15.1.18. https://doi.org/10.1167/15.1.18
Schurz, M., Wimmer, H., Richlan, F., Ludersdorfer, P., Klackl, J., & Kronbichler, M. (2015). Resting-state and task-based functional brain connectivity in developmental dyslexia. Cereb Cortex, 25(10), 3502–3514. https://doi.org/10.1093/cercor/bhu184
Taulu, S., & Kajola, M. (2005). Presentation of electromagnetic multichannel data: The signal space separation method. J Appl Phys, 97(12), 124905. https://doi.org/10.1063/1.1935742
Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol, 51(7), 1759–1768. https://doi.org/10.1088/0031-9155/51/7/008
Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143–156. https://doi.org/10.1016/j.neuron.2007.05.031
Volfart, A., Rice, G. E., Lambon Ralph, M. A., & Rossion, B. (2021). Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. Neuroimage, 238, 118228. https://doi.org/10.1016/j.neuroimage.2021.118228
Wandell, B. A., & Le, R. K. (2017). Diagnosing the neural circuitry of reading. Neuron, 96(2), 298–311. https://doi.org/10.1016/j.neuron.2017.08.007
Wang, F., Kaneshiro, B., Toomarian, E. Y., Gosavi, R. S., Hasak, L. R., Moron, S., Nguyen, Q. T. H., Norcia, A. M., & McCandliss, B. D. (2024). Progress in elementary school reading linked to growth of cortical responses to familiar letter combinations within visual word forms. Dev Sci, 27(2), e13435. https://doi.org/10.1111/desc.13435
Wang, F., Nguyen, Q. T. H., Kaneshiro, B., Hasak, L., Wang, A. M., Toomarian, E. Y., Norcia, A. M., & McCandliss, B. D. (2023). Lexical and sublexical cortical tuning for print revealed by steady-state visual evoked potentials (SSVEPs) in early readers. Dev Sci, 26(4). https://doi.org/10.1111/desc.13352
Whitney, C., & Lavidor, M. (2005). Facilitative orthographic neighborhood effects: The SERIOL model account. Cogn Psychol, 51(3), 179–213. https://doi.org/10.1016/j.cogpsych.2005.07.001