[en] [en] BACKGROUND: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial.
RESULTS: We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations.
CONCLUSION: These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biotechnology Computer science
Author, co-author :
Šmelko, Adam; Department of Distributed and Dependable Systems, Charles University, Prague, Czech Republic
KRATOCHVIL, Miroslav ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Barillot, Emmanuel; Institut Curie, Université PSL, 75005, Paris, France ; INSERM, U900, 75005, Paris, France ; Mines ParisTech, Université PSL, 75005, Paris, France
Noël, Vincent; Institut Curie, Université PSL, 75005, Paris, France. vincent.noel@curie.fr ; INSERM, U900, 75005, Paris, France. vincent.noel@curie.fr ; Mines ParisTech, Université PSL, 75005, Paris, France. vincent.noel@curie.fr
External co-authors :
yes
Language :
English
Title :
Maboss for HPC environments: implementations of the continuous time Boolean model simulator for large CPU clusters and GPU accelerators.
H2020 - 951773 - PerMedCoE - HPC/Exascale Centre of Excellence in Personalised Medicine - PerMedCoE
Funders :
Horizon 2020 Framework Programme Charles University, SSV European Union
Funding text :
The research leading to these results has received funding from the European Union\u2019s Horizon 2020 Programme under the PerMedCoE Project ( http://www.permedcoe.eu ), grant agreement n 951773. The project was partially supported by Charles University, SVV project number 260698.
Brodland GW. How computational models can help unlock biological systems. In: Seminars in cell and developmental biology, vol 47. Elsevier; 2015. pp. 62–73.
P. Bongrand Understanding how cells probe the world: a preliminary step towards modeling cell behavior? Int J Mol Sci 2023 24 3 2266 10.3390/ijms24032266 36768586 9916635
D. Machado R.S. Costa M. Rocha E.C. Ferreira B. Tidor I. Rocha Modeling formalisms in systems biology AMB Express 2011 1 1 14 10.1186/2191-0855-1-45
A. Fauré A. Naldi C. Chaouiya D. Thieffry Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle Bioinformatics 2006 22 14 124 131 10.1093/bioinformatics/btl210
H. Sizek A. Hamel D. Deritei S. Campbell E. Ravasz Regan Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive pi3k PLoS Comput Biol 2019 15 3 1006402 1:CAS:528:DC%2BC1MXhtVSisL%2FE 10.1371/journal.pcbi.1006402
H.F. Fumiã M.L. Martins Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes PLoS ONE 2013 8 7 1 11 1:CAS:528:DC%2BC3sXht1CmtLzN 10.1371/journal.pone.0069008
D.J. Wooten S.M. Groves D.R. Tyson Q. Liu J.S. Lim R. Albert C.F. Lopez J. Sage V. Quaranta Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers PLoS Comput Biol 2019 15 10 1 29 1:CAS:528:DC%2BB3cXhtFSltrk%3D 10.1371/journal.pcbi.1007343
A. Montagud J. Béal L. Tobalina P. Traynard V. Subramanian B. Szalai R. Alföldi L. Puskás A. Valencia E. Barillot J. Saez-Rodriguez L. Calzone Patient-specific Boolean models of signalling networks guide personalised treatments Elife 2022 11 72626 10.7554/eLife.72626
L. Licata P. Lo Surdo M. Iannuccelli A. Palma E. Micarelli L. Perfetto D. Peluso A. Calderone L. Castagnoli G. Cesareni Signor 2.0, the signaling network open resource 2.0: 2019 update Nucleic Acids Res 2020 48 D1 504 510 1:CAS:528:DC%2BB3cXhslWltbvM 10.1093/nar/gkz949
D. Türei T. Korcsmáros J. Saez-Rodriguez Omnipath: guidelines and gateway for literature-curated signaling pathway resources Nat Methods 2016 13 12 966 967 1:CAS:528:DC%2BC28XhvFOis77E 10.1038/nmeth.4077 27898060
S.S. Aghamiri V. Singh A. Naldi T. Helikar S. Soliman A. Niarakis Automated inference of Boolean models from molecular interaction maps using CaSQ Bioinformatics 2020 36 16 4473 4482 1:CAS:528:DC%2BB3MXht12hsrjO 10.1093/bioinformatics/btaa484 32403123 7575051
Chevalier S, Noël V, Calzone L, Zinovyev A, Paulevé L. Synthesis and simulation of ensembles of Boolean networks for cell fate decision. In: Computational methods in systems biology: 18th international conference, CMSB 2020, Konstanz, Germany, September 23–25, 2020, Proceedings, vol 18. Springer; 2020. pp. 193–209. https://doi.org/10.1007/978-3-030-60327-4_11.
N. Beneš L. Brim O. Huvar S. Pastva D. Šafránek Boolean network sketches: a unifying framework for logical model inference Bioinformatics 2023 39 4 158 1:CAS:528:DC%2BB3sXhsFOqt7vK 10.1093/bioinformatics/btad158
M. Prugger L. Einkemmer S.P. Beik P.T. Wasdin L.A. Harris C.F. Lopez Unsupervised logic-based mechanism inference for network-driven biological processes PLoS Comput Biol 2021 17 6 1 30 1:CAS:528:DC%2BB3MXhtlChtbnN 10.1371/journal.pcbi.1009035
G. Stoll E. Viara E. Barillot L. Calzone Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm BMC Syst Biol 2012 6 1 1 18 10.1186/1752-0509-6-116
G. Stoll B. Caron E. Viara A. Dugourd A. Zinovyev A. Naldi G. Kroemer E. Barillot L. Calzone Maboss 2.0: an environment for stochastic Boolean modeling Bioinformatics 2017 33 14 2226 2228 1:CAS:528:DC%2BC1cXitFOht77I 10.1093/bioinformatics/btx123 28881959
D.T. Gillespie A general method for numerically simulating the stochastic time evolution of coupled chemical reactions J Comput Phys 1976 22 4 403 434 1:CAS:528:DyaE2sXnvFCisw%3D%3D 10.1016/0021-9991(76)90041-3
D.T. Gillespie A. Hellander L.R. Petzold Perspective: stochastic algorithms for chemical kinetics J Cheml Phys 2013 138 17
Fortune S, Wyllie J. Parallelism in random access machines. In: Proceedings of the tenth annual ACM symposium on theory of computing; 1978. pp. 114–118.
Karlsson M, Dahlgren F, Stenstrom P. A prefetching technique for irregular accesses to linked data structures. In: Proceedings sixth international symposium on high-performance computer architecture. HPCA-6 (Cat. No. PR00550). IEEE; 2000. pp. 206–217. https://doi.org/10.1109/HPCA.2000.824351.
Emde Boas P. Preserving order in a forest in less than logarithmic time. In: 16th Annual symposium on foundations of computer science (sfcs 1975). IEEE; 1975. pp. 75–84. https://doi.org/10.1016/0020-0190(77)90031-X.
CUDA NVRTC. 2023. https://docs.nvidia.com/cuda/nvrtc/index.html. Accessed 14 Feb 2024.
Šmelko A. sysbio-curie/hpcmaboss-artifact: updated scripts, plots, data and instructions to reproduce the benchmarks for the MaBoSS HPC paper. https://doi.org/10.5281/zenodo.11128107.