Article (Scientific journals)
Boosting source code learning with text-oriented data augmentation: an empirical study
DONG, Zeming; HU, Qiang; GUO, Yuejun et al.
2025In Empirical Software Engineering, 30 (3)
Peer Reviewed verified by ORBi
 

Files


Full Text
2303.06808v2.pdf
Author postprint (2.82 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
DONG, Zeming  ;  University of Luxembourg
HU, Qiang  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON
GUO, Yuejun ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON
Zhang, Zhenya
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
PAPADAKIS, Mike ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Le Traon, Yves
Zhao, Jianjun
External co-authors :
yes
Language :
English
Title :
Boosting source code learning with text-oriented data augmentation: an empirical study
Publication date :
18 February 2025
Journal title :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Publisher :
Springer Science and Business Media LLC
Volume :
30
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
Available on ORBilu :
since 24 March 2025

Statistics


Number of views
144 (45 by Unilu)
Number of downloads
156 (3 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBilu