Zhang, C., Xue, S., Li, J., Wu, J., Du, B., Liu, D., Chang, J., Multi-aspect enhanced graph neural networks for recommendation. Neural Netw. 157 (2023), 90–102, 10.1016/j.neunet.2022.10.001.
Wang, J., Louca, R., Hu, D., Cellier, C., Caverlee, J., Hong, L., Time to shop for valentine's day: Shopping occasions and sequential recommendation in E-commerce. Proceedings of the 13th ACM International Conference on Web Search and Data Mining, 2020, ACM, Houston, 645–653, 10.1145/3336191.3371836.
Zhang, F., Tang, J., Liu, X., Hou, Z., Dong, Y., Zhang, J., Liu, X., Xie, R., Zhuang, K., Zhang, X., Lin, L., Yu, P.S., Understanding WeChat user preferences and “wow” diffusion. IEEE Trans. Knowl. Data Eng. 34:12 (2022), 6033–6046, 10.1109/TKDE.2021.3064233.
Yi, J., Wu, F., Zhu, B., Yao, J., Tao, Z., Sun, G., Xie, X., UA-FedRec: Untargeted attack on federated news recommendation. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, ACM, Long Beach, 5428–5438, 10.1145/3580305.3599923.
Terroso-Sáenz, F., Arcas-Túnez, F., Muñoz, A., Nation-wide touristic flow prediction with graph neural networks and heterogeneous open data. Inf. Fusion 91 (2023), 582–597, 10.1016/j.inffus.2022.11.005.
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M., Lightgcn: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, ACM, Virtual Event, China, 639–648, 10.1145/3397271.3401063.
Zhang, M., Wu, S., Yu, X., Liu, Q., Wang, L., Dynamic graph neural networks for sequential recommendation. IEEE Trans. Knowl. Data Eng. 35:5 (2023), 4741–4753, 10.1109/TKDE.2022.3151618.
Hsu, C., Li, C., Retagnn: Relational temporal attentive graph neural networks for holistic sequential recommendation. Proceedings of the Web Conference, 2021, ACM / IW3C2, Ljubljana, 2968–2979, 10.1145/3442381.3449957.
Jiang, Y., Huang, C., Huang, L., Adaptive graph contrastive learning for recommendation. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, ACM, Long Beach, 4252–4261, 10.1145/3580305.3599768.
Wang, Z., Zhu, Y., Liu, H., Wang, C., Learning graph-based disentangled representations for next POI recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, ACM, Madrid, 1154–1163, 10.1145/3477495.3532012.
Tang, R., Yong, Z., Mei, Y., Li, X., Li, J., Ding, J., Mo, X., Degrading the accuracy of interlayer link prediction: A method based on the analysis of node importance. International Journal of Modern Physics C, 2024, 2442004.
Zhou, Y., Guo, J., Sun, H., Song, B., Yu, F.R., Attention-guided multi-step fusion: A hierarchical fusion network for multimodal recommendation. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, ACM, Taipei, 1816–1820, 10.1145/3539618.3591950.
Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y., End-to-end attention-based large vocabulary speech recognition. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2016, IEEE, Shanghai, 4945–4949, 10.1109/ICASSP.2016.7472618.
Stacey, J., Belinkov, Y., Rei, M., Supervising model attention with human explanations for robust natural language inference. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022, AAAI Press, Virtual Event, 11349–11357, 10.1609/aaai.v36i10.21386.
Liu, W., Su, J., Chen, C., Zheng, X., Leveraging distribution alignment via stein path for cross-domain cold-start recommendation. Proceedings of the 34th Advances in Neural Information Processing Systems, 2021, MIT Press, Virtual Event, 19223–19234.
Sun, G., Shen, Y., Zhou, S., Chen, X., Liu, H., Wu, C., Lei, C., Wei, X., Fang, F., Self-supervised interest transfer network via prototypical contrastive learning for recommendation. Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023, AAAI Press, Washington, 4614–4622, 10.1609/aaai.v37i4.25584.
Xie, X., Sun, F., Liu, Z., Wu, S., Gao, J., Zhang, J., Ding, B., Cui, B., Contrastive learning for sequential recommendation. Proceedings of the 38th IEEE International Conference on Data Engineering, 2022, IEEE, Kuala Lumpur, 1259–1273, 10.1109/ICDE53745.2022.00099.
Yu, J., Yin, H., Xia, X., Chen, T., Cui, L., Nguyen, Q.V.H., Are graph augmentations necessary?: Simple graph contrastive learning for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, ACM, Madrid, 1294–1303, 10.1145/3477495.3531937.
Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., Huang, J.X., Hypergraph contrastive collaborative filtering. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, ACM, Madrid, 70–79, 10.1145/3477495.3532058.
Zhou, Z., Zhang, L., Yang, N., Contrastive collaborative filtering for cold-start item recommendation. Proceedings of the ACM Web Conference 2023, 2023, ACM, Austin, 928–937, 10.1145/3543507.3583286.
Cai, X., Huang, C., Xia, L., Ren, X., Lightgcl: Simple yet effective graph contrastive learning for recommendation. Proceedings of the 7th International Conference on Learning Representations, 2023, OpenReview.net, Kigali, 1–15.
Wang, Y., Wang, X., Huang, X., Yu, Y., Li, H., Zhang, M., Guo, Z., Wu, W., Intent-aware recommendation via disentangled graph contrastive learning. Proceedings of the 32th International Joint Conference on Artificial Intelligence, 2023, ijcai.org, Macao, 2343–2351, 10.24963/ijcai.2023/260.
Jin, W., Liu, X., Zhao, X., Ma, Y., Shah, N., Tang, J., Automated self-supervised learning for graphs. Proceedings of the 10th International Conference on Learning Representations, 2022, OpenReview.net, Virtual Event, 1–20.
Xia, L., Huang, C., Huang, C., Lin, K., Yu, T., Kao, B., Automated self-supervised learning for recommendation. Proceedings of the ACM Web Conference 2023, 2023, ACM, Austin, 992–1002, 10.1145/3543507.3583336.
Xia, L., Huang, C., Zhang, C., Self-supervised hypergraph transformer for recommender systems. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, ACM, Washington, 2100–2109, 10.1145/3534678.3539473.
Wang, J., Ren, J., Graphormer based contrastive learning for recommendation. Appl. Soft Comput., 159, 2024, 111626.
Zhang, Y., Shen, J., Zhang, R., Zhao, Z., Network representation learning via improved random walk with restart. Knowledge- Based- Syst., 263, 2023, 110255, 10.1016/j.knosys.2023.110255.
Fang, S., Xu, Z., Wu, S., Xie, S., Efficient robust principal component analysis via block krylov iteration and CUR decomposition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, IEEE, Vancouver, 1348–1357, 10.1109/CVPR52729.2023.00136.
Wang, X., He, X., Wang, M., Feng, F., Chua, T., Neural graph collaborative filtering. Proceedings of the 42th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, 2019, ACM, Paris, 165–174, 10.1145/3331184.3331267.
Wang, C., Yu, Y., Ma, W., Zhang, M., Chen, C., Liu, Y., Ma, S., Towards representation alignment and uniformity in collaborative filtering. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, ACM, Washington, 1816–1825, 10.1145/3534678.3539253.
Zhang, J., Shi, X., Zhao, S., King, I., STAR-GCN: stacked and reconstructed graph convolutional networks for recommender systems. Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, ijcai.org, Macao, 4264–4270, 10.24963/ijcai.2019/592.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J., Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, ACM, London, 974–983, 10.1145/3219819.3219890.
Song, X., Lian, J., Huang, H., Wu, M., Jin, H., Xie, X., Friend recommendations with self-rescaling graph neural networks. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, ACM, Washington, 3909–3919, 10.1145/3534678.3539192.
Ren, X., Xia, L., Zhao, J., Yin, D., Huang, C., Disentangled contrastive collaborative filtering. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, ACM, Taipei, 1137–1146, 10.1145/3539618.3591665.
Zheng, J., Mai, J., Wen, Y., Explainable session-based recommendation with meta-path guided instances and self-attention mechanism. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, ACM, Madrid, 2555–2559, 10.1145/3477495.3531895.
Fan, Z., Liu, Z., Wang, Y., Wang, A., Nazari, Z., Zheng, L., Peng, H., Yu, P.S., Sequential recommendation via stochastic self-attention. Proceedings of the ACM Web Conference 2022, 2022, ACM, Lyon, 2036–2047, 10.1145/3485447.3512077.
Chen, H., Zhou, K., Jiang, Z., Yeh, C.M., Li, X., Pan, M., Zheng, Y., Hu, X., Yang, H., Probabilistic masked attention networks for explainable sequential recommendation. Proceedings of the 32th International Joint Conference on Artificial Intelligence, 2023, ijcai.org, Macao, 2068–2076, 10.24963/ijcai.2023/230.
Tran, V., Salha-Galvan, G., Sguerra, B., Hennequin, R., Attention mixtures for time-aware sequential recommendation. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, ACM, Taipei, 1821–1826, 10.1145/3539618.3591951.
Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X., Self-supervised graph learning for recommendation. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021, ACM, Canada, 726–735, 10.1145/3404835.3462862.
Ma, Y., He, Y., Zhang, A., Wang, X., Chua, T., CrossCBR: Cross-view contrastive learning for bundle recommendation. Zhang, A., Rangwala, H., (eds.) Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, ACM, Washington, 1233–1241, 10.1145/3534678.3539229.
Wang, Y., Liu, Y., Wang, Q., Wang, C., Li, C., Poisoning self-supervised learning based sequential recommendations. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, ACM, Taipei, 300–310, 10.1145/3539618.3591751.
Lin, Z., Tian, C., Hou, Y., Zhao, W.X., Improving graph collaborative filtering with neighborhood-enriched contrastive learning. Proceedings of the 7th ACM Web Conference 2022, 2022, ACM, Lyon, 2320–2329, 10.1145/3485447.3512104.
Yang, Y., Huang, C., Xia, L., Huang, C., Luo, D., Lin, K., Debiased contrastive learning for sequential recommendation. Proceedings of the ACM Web Conference 2023, 2023, ACM, Austin, 1063–1073, 10.1145/3543507.3583361.
Yang, Y., Wu, Z., Wu, L., Zhang, K., Hong, R., Zhang, Z., Zhou, J., Wang, M., Generative-contrastive graph learning for recommendation. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, ACM, Taipei, 1117–1126, 10.1145/3539618.3591691.
Li, H., Liu, T., Wu, X., Li, S., Correlated SVD and its application in bearing fault diagnosis. IEEE Trans. Neural Networks Learn. Syst. 34:1 (2023), 355–365, 10.1109/TNNLS.2021.3094799.
van den Oord, A., Li, Y., Vinyals, O., Representation learning with contrastive predictive coding. CoRR, 2018, 1–13 URL http://arxiv.org/abs/1807.03748.
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T., Disentangled graph collaborative filtering. Proceedings of the 43th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, ACM, Virtual Event, 1001–1010, 10.1145/3397271.3401137.
Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J., Next-item recommendation with sequential hypergraphs. Proceedings of the 43th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, ACM, Virtual Event, 1101–1110, 10.1145/3397271.3401133.
Jiang, S., Qiu, Y., Mo, X., Tang, R., Wang, W., An effective node injection approach for attacking social network alignment. IEEE Transactions on Information Forensics and Security, 2024.