G. França and J. Bento, “Distributed optimization, averaging via admm, and network topology, ” Proceed. IEEE, vol. 108, no. 11, pp. 1939-1952, 2020.
R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus optimization, ” in Int. Conf. Mach. Learn. PMLR, pp. 1701-1709, 2014.
D. Deplano, N. Bastianello, M. Franceschelli, and K. H. Johansson, “A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence, ” in 2023 62nd IEEE Conf. Decis. Control (CDC), pp. 6442-6448, 2023.
Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed optimization., ” in Proc. Int. Conf. Distrib. Comput. Netw, pp. 1-10, 2015.
E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private distributed convex optimization via functional perturbation, ” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 395-408, 2018.
T. Zhang and Q. Zhu, “Dynamic differential privacy for ADMM-based distributed classification learning, ” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 1, pp. 172-187, 2016.
X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and accuracy of ADMM-based distributed algorithms, ” Proc. Int. Conf. Mach. Learn., pp. 5796-5805, 2018.
Y. Xiong, J. Xu, K. You, J. Liu and L. Wu, “Privacy preserving distributed online optimization over unbalanced digraphs via subgradient rescaling, ” IEEE Trans. Control Netw. Syst., 2020.
N. Gupta, J. Katz, N. Chopra, “Privacy in distributed average consensus, ” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9515-9520, 2017.
Q. Li, I. Cascudo, and M. G. Christensen, “Privacy-preserving distributed average consensus based on additive secret sharing, ” in Proc. Eur. Signal Process. Conf., pp. 1-5, 2019.
K. Tjell and R. Wisniewski, “Privacy preservation in distributed optimization via dual decomposition and ADMM, ” in Proc. IEEE 58th Conf. Decis. Control., pp. 7203-7208, 2020.
K. Tjell, I. Cascudo and R. Wisniewski, “Privacy preserving recursive least squares solutions, ” in Proc. Eur. Control Conf., pp. 3490-3495, 2019.
Z. Xu and Q. Zhu, “Secure and resilient control design for cloud enabled networked control systems, ” in Proc. 1st ACM Workshop Cyber-Phys. Syst.-Secur. Privacy., pp. 31-42, 2015.
Q. Li and M. G. Christensen, “A privacy-preserving asynchronous averaging algorithm based on shamir's secret sharing, ” in Proc. Eur. Signal Process. Conf., pp. 1-5, 2019.
Y. Shoukry et al., “Privacy-aware quadratic optimization using partially homomorphic encryption, ” in IEEE 55th Conf. Decis. Control., pp. 5053-5058, 2016.
C. Zhang, M. Ahmad, and Y. Wang, “ADMM based privacy-preserving decentralized optimization, ” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 565-580, 2019.
Q. Li, R. Heusdens and M. G. Christensen, “Convex optimisation-based privacy-preserving distributed average consensus in wireless sensor networks, ” in Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 5895-5899, 2020.
Q. Li, R. Heusdens and M. G. Christensen, “Convex optimization-based privacy-preserving distributed least squares via subspace perturbation, ” in Proc. Eur. Signal Process. Conf., 2020.
Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-preserving distributed optimization via subspace perturbation: A general framework, ” IEEE Trans. Signal Process., vol. 68, pp. 5983-5996, 2020.
S. O. Jordan, Q. Li, and R. Heusdens, “Privacy-preserving distributed optimisation using stochastic PDMM, ” in Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 8571-8575, 2024.
Q. Li, R. Heusdens, and M. G. Christensen, “Communication efficient privacy-preserving distributed optimization using adaptive differential quantization, ” Signal Process., vol. 194, pp. 108456, 2022.
Q. Li, J. S. Gundersen, M. Lopuhaä-Zwakenberg, and R. Heusdens, “Adaptive differentially quantized subspace perturbation (ADQSP): A unified framework for privacy-preserving distributed average consensus, ” IEEE Trans. Inf. Forensics Security., 2023.
R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and Secret Sharing, Cambridge University Press, 2015.
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers, ” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, 2011.
G. Zhang and R. Heusdens, “Distributed optimization using the primal-dual method of multipliers, ” IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 1, pp. 173-187, 2017.
R. Heusdens and G. Zhang, “Distributed optimisation with linear equality and inequality constraints using pdmm, ” IEEE Trans. Signal Inf. Process. Netw., 2024.
K. Pillutla, S. M Kakade, and Z. Harchaoui, “Robust aggregation for federated learning, ” IEEE Trans. Signal Process., vol. 70, pp. 1142-1154, 2022.
X. Wang, J. He, P. Cheng, and J. Chen, “Differentially private maximum consensus: Design, analysis and impossibility result, ” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 4, pp. 928-939, 2018.
N. KD Venkategowda and S. Werner, “Privacy-preserving distributed maximum consensus, ” IEEE Signal Process. Lett., vol. 27, pp. 1839-1843, 2020.
C. Gratton, N. KD Venkategowda, R. Arablouei, and S. Werner, “Privacy-preserved distributed learning with zeroth-order optimization, ” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 265-279, 2021.
P. Cuff and L. Yu, “Differential privacy as a mutual information constraint, ” in Proc. 23rd ACM SIGSAC Conf. Comput. Commun. Secur., pp. 43-54, 2016.
Q. Li, J. S. Gundersen, R. Heusdens and M. G. Christensen, “Privacy-preserving distributed processing: Metrics, bounds, and algorithms, ” in IEEE Trans. Inf. Forensics Secur., pp. 2090-2103, 2021.
J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and statistical minimax rates, ” in Proc. IEEE Annu. Symp. Found. Comput. Sci., pp. 429-438, 2013.
P. Kairouz, S. Oh, and P. Viswanath, “Extremal mechanisms for local differential privacy, ” in Adv. Neural Inf. Process. Syst., pp. 2879-2887, 2014.
Q. Li, J. S. Gundersen, K. Tjell, R. Wisniewski, and M. G. Christensen, “Privacy-preserving distributed expectation maximization for gaussian mixture model using subspace perturbation, ” in IEEE Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 4263-4267, 2022.
T. M. Cover and J. A. Tomas, Elements of information theory, John Wiley & Sons, 2012.
M. Penrose, Random geometric graphs, vol. 5, OUP Oxford, 2003.
G. V. Steeg, “Npeet, ” https://github.com/gregversteeg/NPEET.