cathodoluminescence; conductive‐AFM; electron backscatter diffraction; grain boundary; solar cell; AFM; Complex materials; Conductive AFM; Electron back scatter diffraction; Grain-boundaries; Material behaviour; Property; Solar cell absorbers; Tunneling current; Pathology and Forensic Medicine; Histology
Abstract :
[en] Multi-microscopy offers significant benefits to the understanding of complex materials behaviour by providing complementary information from different properties. However, some characterisations may strongly influence other measurements in the same workflow. To acquire reliable and valid datasets, optimising multi-microscopy procedure is necessary. In present work, we studied the influence of the measurement order on the quality of multi-microscopy datasets. Multi-microscopy incorporating tunnelling current AFM (TUNA), electron backscatter diffraction (EBSD), and cathodoluminescence (CL) on a polycrystalline solar cell absorber, Cu(In,Ga)S2 (CIGS), is used as an example. The investigation revealed potential characterisation-induced contaminations, such as surface oxidation and hydrocarbon layer coating, of the sample surface. Their subsequent influence on the measurement results of following correlation techniques was examined. To optimise the dataset quality, multi-microscopy should be carried out in TUNA-EBSD-CL order, from the most to the least surface sensitive techniques. With the optimised multi-microscopy measurement order on a CIGS absorber, we directly correlated the local changes in electrical and opto-electronic properties with the microstructure of grain boundaries (GBs). The described methodology may also provide insightful concepts for applying other AFM-SEM-based multi-microscopy on different semiconductor materials.
Disciplines :
Physics
Author, co-author :
Hu, Yucheng ; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
Kusch, Gunnar; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
ADELEYE, Damilola ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Susanne SIEBENTRITT
SIEBENTRITT, Susanne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Oliver, Rachel; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
External co-authors :
yes
Language :
English
Title :
TUNA-EBSD-CL correlative multi-microscopy study, on the example of Cu(In,Ga)S2 solar cell absorber.
Engineering and Physical Sciences Research Council Henry Royce Institute Fonds National de la Recherche Luxembourg
Funding text :
Cambridge authors would like to acknowledge funding from the EPSRC under EP/V029231/1 and EP/R025193/1. Part of this work was supported by the Henry Royce Institute for the Royce\u2010AFM at Cambridge; Cambridge Royce facilities grant EP/P024947/1 and Sir Henry Royce Institute \u2013 recurrent grant EP/R00661X/1. Authors also wish to thank Prof Marc De Graef and Dr Elena Pasca from Carnegie Mellon University for their kind support on the usage of EBSD indexing software, EMsoft. Luxembourg team would like to thank Fonds National de la Recherche Luxembourg (FNR) for funding in the framework of the MASSENA project (Project No. PRIDE 15/10935404), and the as well as the REACH (Project No. INTER/UKRI/20/15050982).
Bitrus, S., Fitzek, H., Rigger, E., Rattenberger, J., & Entner, D. (2022). Enhancing classification in correlative microscopy using multiple classifier systems with dynamic selection. Ultramicroscopy, 240, 113567.
Raghuwanshi, M., Thöner, B., Soni, P., Wuttig, M., Wuerz, R., & Cojocaru-Mirédin, O. (2018). Evidence of enhanced carrier collection in Cu(In,Ga)Se2 grain boundaries: Correlation with microstructure. ACS Applied Materials and Interfaces, 10, 14759–14766.
Doherty, T. A. S., Winchester, A. J., Macpherson, S., Johnstone, D. N., Pareek, V., Tennyson, E. M., Kosar, S., Kosasih, F. U., Anaya, M., Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Wong, E. L., Madéo, J., Chiang, Y.-H., Park, J.-S., Jung, Y.-K., Petoukhoff, C. E., Divitini, G., Man, M. K. L., & Stranks, S. D. (2020). Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 580, 360–366.
Qin, T. X., You, E. M., Zhang, M. X., Zheng, P., Huang, X. F., Ding, S. Y., Mao, B. W., & Tian, Z. Q. (2021). Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light: Science and Applications, 10, https://doi.org/10.1038/s41377-021-00524-7
O'Hanlon, T. J., Massabuau, F. C. P., Bao, A., Kappers, M. J., & Oliver, R. A. (2021). Directly correlated microscopy of trench defects in InGaN quantum wells. Ultramicroscopy, 231, 113255.
Massabuau, F. C. P., Trinh-Xuan, L., Lodié, D., Thrush, E. J., Zhu, D., Oehler, F., Zhu, T., Kappers, M. J., Humphreys, C. J., & Oliver, R. A. (2013). Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells. Journal of Applied Physics, 113, 073505.
Chen, Q., McKeon, B. S., Zhang, S. Y., Zhang, F., Hu, C., Gfroerer, T. H., Wanlass, M. W., Smith, D. J., & Zhang, Y. (2021). Impact of individual structural defects in GaAs solar cells: A correlative and in operando investigation of signatures, structures, and effects. Advanced Optical Materials, 9, 2001487.
Xiao, C., Jiang, C. S., Blaine, K., Amarasinghe, M., Colegrove, E., Metzger, W. K., Al-Jassim, M. M., Haegel, N. M., & Moutinho, H. (2020). Direct microscopy imaging of nonuniform carrier transport in polycrystalline cadmium telluride. Cell Reports Physical Science, 1, 100230.
Li, H., Harrison, P., Wu, J., & Yao, H. (2018). Probing the correlation of twin boundaries and charge transport of CdTe solar cells using electron backscattering diffraction and conductive atomic force microscopy. ACS Applied Energy Materials, 1, 3646–3653.
Stechmann, G., Zaefferer, S., Schwarz, T., Konijnenberg, P., Raabe, D., Gretener, C., Kranz, L., Perrenoud, J., Buecheler, S., & Nath Tiwari, A. (2017). A correlative investigation of grain boundary crystallography and electronic properties in CdTe thin film solar cells. Solar Energy Materials and Solar Cells, 166, 108–120.
Hu, Y., Kusch, G., Adeleye, D., Siebentritt, S., & Oliver, R. (2024). Characterisation of the interplay between microstructure and opto-electronic properties of Cu(In,Ga)S2 solar cells by using correlative CL-EBSD measurements. Nanotechnology, 35, 295702.
Schwarz, T., Lomuscio, A., Siebentritt, S., & Gault, B. (2020). On the chemistry of grain boundaries in CuInS2 films. Nano Energy, 76, 105081.
Kaigawa, R., Funahashi, K., Fujie, R., Wada, T., Merdes, S., Caballero, R., & Klenk, R. (2010). Tandem solar cells with Cu(In,Ga)S2 top cells on ZnO coated substrates. Solar Energy Materials and Solar Cells, 94, 1880–1883.
Shukla, S., Sood, M., Adeleye, D., Peedle, S., Kusch, G., Dahliah, D., Melchiorre, M., Rignanese, G. M., Hautier, G., Oliver, R., & Siebentritt, S. (2021). Over 15% efficient wide-band-gap Cu(In,Ga)S2 solar cell: Suppressing bulk and interface recombination through composition engineering. Joule, 5, 1816–1831.
Rudmann, D., Da Cunha, A. F., Kaelin, M., Kurdesau, F., Zogg, H., Tiwari, A. N., & Bilger, G. (2004). Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation. Applied Physics Letters, 84, 1129–1131.
Nicoara, N., Manaligod, R., Jackson, P., Hariskos, D., Witte, W., Sozzi, G., Menozzi, R., & Sadewasser, S. (2019). Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nature Communications, 10, 1–8.
Sharma, D., Nicoara, N., Jackson, P., Witte, W., Hariskos, D., & Sadewasser, S. (2024). Charge-carrier-concentration inhomogeneities in alkali-treated Cu(In,Ga)Se2 revealed by conductive atomic force microscopy tomography. Nature Energy, 9, 163–171.
Schwarz, T., Stechmann, G., Gault, B., Cojocaru-Mirédin, O., Wuerz, R., & Raabe, D. (2018). Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se2 grain boundaries. Progress in Photovoltaics: Research and Applications, 26, 196–204.
Abou-Ras, D., Marsen, B., Rissom, T., Frost, F., Schulz, H., Bauer, F., Efimova, V., Hoffmann, V., & Eicke, A. (2012). Enhancements in specimen preparation of Cu(In,Ga)(S,Se) 2 thin films. Micron, 43, 470–474.
El Hajraoui, K., Colombara, D., Virtuoso, J., Waechter, R., Deepak, F. L., & Sadewasser, S. (2021). Atomic-scale interface modification improves the performance of Cu(In1- xGax)Se2/Zn(O,S) heterojunction solar cells. ACS Applied Materials and Interfaces, 13, 44207–44213.
Scholder, O. (2019). scholi/pySPM v0.2.20. Zenodo. https://doi.org/10.5281/zenodo.2650457
Niessen, F., Nyyssönen, T., Gazder, A. A., & Hielscher, R. (2022). Parent grain reconstruction from partially or fully transformed microstructures in MTEX. Journal of Applied Crystallography, 55, 180–194.
Ånes, H. W., Lervik, L. A. H., Natlandsmyr, O., Bergh, T., Prestat, E., Bugten, A. V, Østvold, E. M., Xu, Z., Francis, C., & Nord, M. (2023, November). pyxem/kikuchipy: kikuchipy 0.9.0. Zenodo. https://doi.org/10.5281/zenodo.14251815
Francisco, de la P., Eric, P., Vidar, T. F., Pierre, B., Jonas, L., Petras, J., Tom, F., Magnus, N., Tomas, O., Katherine, E. M., Duncan, N. J., Mike, S., Thomas, A., Joshua, T., pquinn-dls Vadim, M., Alberto, E., Jan, C., … DENSmerijn. (2022). hyperspy/hyperspy: Release v1.7.1. https://doi.org/10.5281/zenodo.6659919
Lähnemann, J., Ferrer Orri, J., Prestat, E., Wiik Ånes, H. N, Johnstone, D., & Tappy, N. (2023). LumiSpy/lumispy: v0.2.2. https://doi.org/10.5281/zenodo.7747350
Ferrer Orri, J., Tennyson, E. M., Kusch, G., Divitini, G., Macpherson, S., Oliver, R. A., Ducati, C., & Stranks, S. D. (2021). Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films. Nano Express, 2, 024002.
Egerton, R. F., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35, 399–409.
Oliver, R. A. (2008). Advances in AFM for the electrical characterization of semiconductors. Reports on Progress in Physics, 71, 076501.
Frammelsberger, W., Benstetter, G., Kiely, J., & Stamp, R. (2007). C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. Applied Surface Science, 253, 3615–3626.
Avouris, P., Martel, R., Hertel, T., & Sandstrom, R. (1998). AFM-tip-induced and current-induced local oxidation of silicon and metals. Applied Physics A, 66, S659–S667.
Hourani, W., Gautier, B., Militaru, L., Albertini, D., & Descamps-Mandine, A. (2011). Study of the physical and electrical degradation of thin oxide films by atomic force microscope. Journal of Vacuum Science & Technology B, 29, 01AA06.
Polspoel, W., Favia, P., Mody, J., Bender, H., & Vandervorst, W. (2009). Physical degradation of gate dielectrics induced by local electrical stress using conductive atomic force microscopy. Journal of Applied Physics, 106, 024101.
Fevola, G., Ossig, C., Verezhak, M., Garrevoet, J., Guthrey, H. L., Seyrich, M., Brückner, D., Hagemann, J., Seiboth, F., Schropp, A., Falkenberg, G., Jørgensen, P. S., Slyamov, A., Balogh, Z. I., Strelow, C., Kipp, T., Mews, A., Schroer, C. G., Nishiwaki, S., … Stuckelberger, M. E. (2024). 3D and multimodal X-ray microscopy reveals the impact of voids in CIGS solar cells. Advanced Science, 11, https://doi.org/10.1002/advs.202301873
Fang, N., Birch, R., & Britton, T. B. (2022). Optimizing broad ion beam polishing of zircaloy-4 for electron backscatter diffraction analysis. Micron, 159, 103268.
Hugenschmidt, M., Adrion, K., Marx, A., Müller, E., & Gerthsen, D. (2023). Electron-beam-induced carbon contamination in STEM-in-SEM: Quantification and mitigation. Microscopy and Microanalysis, 29, 219–234.
Dingley, D. (2004). Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. Journal of Microscopy, 213, 214–224.
Marquardt, K., De Graef, M., Singh, S., Marquardt, H., Rosenthal, A., & Koizuimi, S. (2017). Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials. American Mineralogist, 102, 1843–1855.
Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007). CASINO V2.42 – A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29, 92–101.
Schöppe, P., Schönherr, S., Jackson, P., Wuerz, R., Wisniewski, W., Ritzer, M., Zapf, M., Johannes, A., Schnohr, C. S., & Ronning, C. (2018). Overall distribution of rubidium in highly efficient Cu(In,Ga)Se2 solar cells. ACS Applied Materials and Interfaces, 10, 40592–40598.
Hu, Y., Kusch, G., Adeleye, D., Siebentritt, S., & Oliver, R. (2024). Research data supporting: “TUNA-EBSD-CL correlative multi-microscopy study, on the example of Cu(In,Ga)S₂ solar cell absorber”. Apollo – University of Cambridge Repository, https://doi.org/10.17863/CAM.113109