Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Computing the restricted algebraic immunity, and application to WPB functions.
Bonamino, Luca; MEAUX, Pierrick
2025In Computing the restricted algebraic immunity, and application to WPB functions
Peer reviewed
 

Documents


Texte intégral
restrictedAI.pdf
Preprint Auteur (604.59 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Boolean functions; Algebraic immunity; Restricted algebraic immunity; Weightwise almost perfectly balanced functions
Résumé :
[en] Algebraic immunity is a fundamental property in the security analysis of stream ciphers and Boolean functions, measuring the resistance of a function against algebraic attacks. In this work, we focus on the computation of algebraic immunity and, more specifically, on its generalization to restricted algebraic immunity, which considers annihilators constrained to specific subsets of (F_2)^n. While the computation of algebraic immunity has been studied using methods based on Reed-Muller codes and iterative rank-based algorithms, these approaches have not been formally adapted to the restricted setting. We address this gap by establishing the theoretical foundations required for the adaptation of these techniques and providing explicit algorithms for computing restricted algebraic immunity. To assess the efficiency of our algorithms, we conduct practical experiments comparing the computational cost of the Reed-Muller and iterative approaches in terms of time and memory. As a case study, we analyze the algebraic immunity restricted to the slices of (F_2)^n , i.e. the sets of binary vectors of fixed Hamming weight, denoted AI_k . The slices are of particular interest in areas of cryptography, such as side-channel analysis and stream cipher design, where the input weight may be partially predictable. We further investigate restricted algebraic immunity for Weightwise (Almost) Perfectly Balanced (W(A)PB) functions, which have been extensively studied since 2017. Our results include an empirical analysis of AI_k distributions for WPB functions with 4, 8, and 16 variables, as well as an evaluation of AI_k for various known function families.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Bonamino, Luca
MEAUX, Pierrick  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Coron
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Computing the restricted algebraic immunity, and application to WPB functions.
Date de publication/diffusion :
04 mars 2025
Nom de la manifestation :
nternational Conference on Cryptology and Network Security (CANS)
Lieu de la manifestation :
Osaka, Japon
Date de la manifestation :
17th - 20th November 2025
Manifestation à portée :
International
Titre de l'ouvrage principal :
Computing the restricted algebraic immunity, and application to WPB functions
Maison d'édition :
Springer
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 04 mars 2025

Statistiques


Nombre de vues
212 (dont 12 Unilu)
Nombre de téléchargements
145 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu