Paper published in a book (Scientific congresses, symposiums and conference proceedings)
LLMs and Prompting for Unit Test Generation: A Large-Scale Evaluation
OUEDRAOGO, Wendkûuni Arzouma Marc Christian; KABORE, Abdoul Kader; TIAN, Haoye et al.
2024In Proceedings - 2024 39th ACM/IEEE International Conference on Automated Software Engineering, ASE 2024
Editorial reviewed
 

Files


Full Text
3691620.3695330.pdf
Publisher postprint (777.95 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
automatic test generation; empirical evaluation; large language models; prompt engineering; unit tests; Automatic test generation; Empirical evaluations; Language model; Large language model; Large-scales; Prompt engineering; Time constraints; Unit test generations; Unit testing; Unit tests; Artificial Intelligence; Software; Safety, Risk, Reliability and Quality
Abstract :
[en] Unit testing, essential for identifying bugs, is often neglected due to time constraints. Automated test generation tools exist but typically lack readability and require developer intervention. Large Language Models (LLMs) like GPT and Mistral show potential in test generation, but their effectiveness remains unclear.This study evaluates four LLMs and five prompt engineering techniques, analyzing 216 300 tests for 690 Java classes from diverse datasets. We assess correctness, readability, coverage, and bug detection, comparing LLM-generated tests to EvoSuite. While LLMs show promise, improvements in correctness are needed. The study highlights both the strengths and limitations of LLMs, offering insights for future research.
Disciplines :
Computer science
Author, co-author :
OUEDRAOGO, Wendkûuni Arzouma Marc Christian  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KABORE, Abdoul Kader  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SNT Office > Project Coordination
TIAN, Haoye  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Tegawendé François d A BISSYANDE ; University of Melbourne, Australia
SONG, Yewei  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KOYUNCU, Anil  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Tegawendé François d A BISSYANDE ; Bilkent University, Turkey
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
LO, David ;  Singapore Management University, Singapore
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
External co-authors :
yes
Language :
English
Title :
LLMs and Prompting for Unit Test Generation: A Large-Scale Evaluation
Publication date :
27 October 2024
Event name :
Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering
Event place :
Sacramento, Usa
Event date :
28-10-2024 => 01-11-2024
By request :
Yes
Main work title :
Proceedings - 2024 39th ACM/IEEE International Conference on Automated Software Engineering, ASE 2024
Publisher :
Association for Computing Machinery, Inc
ISBN/EAN :
9798400712487
Peer reviewed :
Editorial reviewed
Funders :
ACM
ACM SIGAI
Google
IEEE
Special Interest Group on Software Engineering (SIGSOFT)
University of California, Davis (UC Davis)
Funding number :
17185670
Funding text :
This work is supported by funding from the Fonds National de la Recherche Luxembourg (FNR) under the Aides la Formation- Recherche (AFR) (grant agreement No. 17185670).
Available on ORBilu :
since 06 February 2025

Statistics


Number of views
106 (4 by Unilu)
Number of downloads
72 (0 by Unilu)

Scopus citations®
 
7
Scopus citations®
without self-citations
6
OpenCitations
 
0
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBilu