Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Taxonomy of Software Log Smells
SAARIMÄKI, Nyyti; Shin, Donghwan; BIANCULLI, Domenico
2024
 

Documents


Texte intégral
main.pdf
Preprint Auteur (743.34 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Software Engineering
Résumé :
[en] Background: Logging is an important part of modern software projects; logs are used in several tasks such as debugging and testing. Due to the complex nature of logging, it remains a difficult task with several pitfalls that could have serious consequences. Several other domains of software engineering have mitigated such threats by identifying the early signs of more serious issues, i.e., "smells". However, this concept is not yet properly defined for logging. Objective: The goal of this study is to create a taxonomy of log smells that can help developers write better logging code. To further help the developers and to identify issues that need more attention from the research community, we also map the identified smells to existing tools addressing them. Methods: We identified logging issues and tools by conducting a survey of the scientific literature. After extracting relevant data from 45 articles, we used them to define logging issues using open coding technique and classified the defined issues using card sorting. We classify the tools based on their reported output. Results: The paper presents a taxonomy of ten log smells, describing several facets for each of them. We also review existing tools addressing some of these facets, highlighting the lack of tools addressing some log smells and identifying future research opportunities to close this gap.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SAARIMÄKI, Nyyti  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Shin, Donghwan
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Langue du document :
Anglais
Titre :
Taxonomy of Software Log Smells
Date de publication/diffusion :
décembre 2024
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR17373407 - Automated Log Smell Detection And Removal, 2022 (01/09/2023-31/08/2026) - Domenico Bianculli
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
FNR17373407
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), grant referenceC22/IS/17373407/LOGODOR. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the authors have applied a Creative Commons Attribution 4.0 International (CC BY4.0) license to any Author Accepted Manuscript version arising from this submission.
Disponible sur ORBilu :
depuis le 10 janvier 2025

Statistiques


Nombre de vues
121 (dont 7 Unilu)
Nombre de téléchargements
117 (dont 4 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu