Working paper (E-prints, Working papers et Carnets de recherche)
Training Green AI Models Using Elite Samples
ALSWAITTI, Mohammed; Verdecchia, Roberto; DANOY, Grégoire et al.
2024
 

Documents


Texte intégral
2402.12010v1.pdf
Preprint Auteur (2.07 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Learning; Computer Science - Artificial Intelligence; Computer Science - Neural and Evolutionary Computing; sustainable computing
Résumé :
[en] The substantial increase in AI model training has considerable environmental implications, mandating more energy-efficient and sustainable AI practices. On the one hand, data-centric approaches show great potential towards training energy-efficient AI models. On the other hand, instance selection methods demonstrate the capability of training AI models with minimised training sets and negligible performance degradation. Despite the growing interest in both topics, the impact of data-centric training set selection on energy efficiency remains to date unexplored. This paper presents an evolutionary-based sampling framework aimed at (i) identifying elite training samples tailored for datasets and model pairs, (ii) comparing model performance and energy efficiency gains against typical model training practice, and (iii) investigating the feasibility of this framework for fostering sustainable model training practices. To evaluate the proposed framework, we conducted an empirical experiment including 8 commonly used AI classification models and 25 publicly available datasets. The results showcase that by considering 10% elite training samples, the models' performance can show a 50% improvement and remarkable energy savings of 98% compared to the common training practice.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ALSWAITTI, Mohammed  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
Verdecchia, Roberto
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
PECERO SANCHEZ, Johnatan Eliabeth ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > FSTM Dean Office
Langue du document :
Anglais
Titre :
Training Green AI Models Using Elite Samples
Date de publication/diffusion :
février 2024
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 09 janvier 2025

Statistiques


Nombre de vues
130 (dont 1 Unilu)
Nombre de téléchargements
49 (dont 4 Unilu)

OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu