Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Exploring the Use of Software Product Lines for the Combination of Machine Learning Models
Gomez-Vazquez, Marcos; CABOT, Jordi
2024In CORDY, Maxime (Ed.) SPLC 2024 - 28th ACM International Systems and Software Product Line Conference, Proceedings
Peer reviewed
 

Documents


Texte intégral
SPLC_2024 (5).pdf
Postprint Auteur (724.62 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Feature Model; Large Language Model; Machine Learning; Mixture of Experts; Model Merging; Software Product Line; Feature models; Key factors; Language model; Large language model; Machine learning models; Machine-learning; Mixture of experts; Model learning; Model merging; Human-Computer Interaction; Computer Networks and Communications; Computer Vision and Pattern Recognition; Software
Résumé :
[en] The size of Large Language Models (LLMs), and Machine Learning (ML) models in general, is a key factor of their capacity and quality of their responses. But it comes with a high cost, both during the training and the model execution phase. Recently, various model merging techniques and Mixture of Experts (MoE) architectures are gaining popularity as they enable the creation of large models by combining other existing ones (the "experts" in the MoE approach). Creating these combinations remains a deep technical task with many possible configurations to consider. In this sense, this paper aims to democratize the creation of combined ML models by presenting a product line approach to the specification and training of this type of ML architectures from an initial feature model that helps users define, among other aspects, the type of models they want to combine, the combination strategy and even, for the MoE approach, the tasks that should be associated to each expert.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Gomez-Vazquez, Marcos ;  Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
CABOT, Jordi  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PI Cabot ; Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Exploring the Use of Software Product Lines for the Combination of Machine Learning Models
Date de publication/diffusion :
02 septembre 2024
Nom de la manifestation :
28th ACM International Systems and Software Product Line Conference
Lieu de la manifestation :
Dommeldange, Lux
Date de la manifestation :
02-09-2024 => 06-09-2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
SPLC 2024 - 28th ACM International Systems and Software Product Line Conference, Proceedings
Editeur scientifique :
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Maison d'édition :
Association for Computing Machinery
ISBN/EAN :
9798400705939
Peer reviewed :
Peer reviewed
Projet FnR :
FNR16544475 - Better Smart Software Faster (Besser) - An Intelligent Low-code Infrastructure For Smart Software, 2020 (01/01/2022-...) - Jordi Cabot
Organisme subsidiant :
Luxembourg National Research Fund
Namur Digital Institute
Subventionnement (détails) :
This project is supported by the Luxembourg National Research Fund (FNR) PEARL program, grant agreement 16544475.
Disponible sur ORBilu :
depuis le 07 janvier 2025

Statistiques


Nombre de vues
58 (dont 2 Unilu)
Nombre de téléchargements
23 (dont 1 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu