Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Datasets for Advanced Bankruptcy Prediction: A survey and Taxonomy
WANG, Xin Lin; Kräussl, Zsófia; BRORSSON, Mats Håkan
2024
 

Documents


Texte intégral
2411.01928v1.pdf
Postprint Auteur (1.86 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Bankruptcy prediction is an important research area that heavily relies on data science. It aims to help investors, managers, and regulators better understand the operational status of corporations and predict potential financial risks in advance. To improve prediction, researchers and practitioners have begun to utilize a variety of different types of data, ranging from traditional financial indicators to unstructured data, to aid in the construction and optimization of bankruptcy forecasting models. Over time, not only instrumentalized data improved, but also instrumentalized methodology for data structuring, cleaning, and analysis. With the aid of advanced analytical techniques that deploy machine learning and deep learning algorithms, bankruptcy assessment became more accurate over time. However, due to the sensitivity of financial data, the scarcity of valid public datasets remains a key bottleneck for the rapid modeling and evaluation of machine learning algorithms for targeted tasks. This study therefore introduces a taxonomy of datasets for bankruptcy research, and summarizes their characteristics. This paper also proposes a set of metrics to measure the quality and the informativeness of public datasets The taxonomy, coupled with the informativeness measure, thus aims at providing valuable insights to better assist researchers and practitioners in developing potential applications for various aspects of credit assessment and decision making by pointing at appropriate datasets for their studies.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Xin Lin  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Kräussl, Zsófia
BRORSSON, Mats Håkan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Langue du document :
Anglais
Titre :
Datasets for Advanced Bankruptcy Prediction: A survey and Taxonomy
Date de publication/diffusion :
novembre 2024
Projet FnR :
FNR15403349 - SCRiPT - Sme Credit Risk Platform, 2020 (01/04/2021-31/03/2024) - Radu State
Intitulé du projet de recherche :
SCRIPT
Disponible sur ORBilu :
depuis le 06 janvier 2025

Statistiques


Nombre de vues
93 (dont 10 Unilu)
Nombre de téléchargements
201 (dont 1 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu