Profil

WANG Xin Lin

University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN

ORCID
0000-0003-2275-9424
Main Referenced Co-authors
BRORSSON, Mats  (7)
BLANCO, Braulio  (2)
Kraussl, Zsofia (1)
Kräussl, Zsófia (1)
ZURAD, Maciej (1)
Main Referenced Keywords
automated credit reporting system (1); Automatic feature engineering, Bankruptcy prediction, Credit risk, Imbalanced data (1); bankruptcy prediction (1); Data Fusion (1); Data-driven financial health assessment (1);
Main Referenced Unit & Research Centers
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems (6)
NCER-FT - FinTech National Centre of Excellence in Research (6)
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN) (1)
Main Referenced Disciplines
Computer science (8)

Publications (total 8)

The most downloaded
163 downloads
WANG, X. L., Kraussl, Z., ZURAD, M., & BRORSSON, M. H. (2023). Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. In X. L. WANG, Z. KRÄUSSL, M. Zurad, ... M. H. BRORSSON, Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. Unknown/unspecified: IEEE Xplore. doi:10.1109/iceccme57830.2023.10252608 https://hdl.handle.net/10993/58220

The most cited

2 citations (OpenAlex)

WANG, X. L., Kraussl, Z., ZURAD, M., & BRORSSON, M. H. (2023). Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. In X. L. WANG, Z. KRÄUSSL, M. Zurad, ... M. H. BRORSSON, Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. Unknown/unspecified: IEEE Xplore. doi:10.1109/iceccme57830.2023.10252608 https://hdl.handle.net/10993/58220

WANG, X. L., & BRORSSON, M. H. (In press). Which company adjustment matter? Insights from Uplift Modeling on Financial Health [Paper presentation]. The 9th Workshop on MIning DAta for financial applicationS in conjunction with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery, Vilnius, Lithuania.
Peer reviewed

WANG, X. L. (2025). From Data to Decision: Enhancing SME Financial Health Prediction with Advanced Machine Learning Techniques [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/64305

WANG, X. L., & BRORSSON, M. H. (January 2025). Can Large language model analyze financial statements well? [Paper presentation]. The Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal) In conjunction with COLING-2025, Abu Dhabi, United Arab Emirates.
Peer reviewed

WANG, X. L., Kräussl, Z., & BRORSSON, M. H. (2024). Datasets for Advanced Bankruptcy Prediction: A survey and Taxonomy. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/63483.

WANG, X. L., & BRORSSON, M. (2024). Augmenting Bankruptcy Prediction Using Reported Behavior of Corporate Restructuring. In Intelligent Computers, Algorithms, and Applications. Springer Nature Singapore. doi:10.1007/978-981-97-0065-3_8
Peer reviewed

WANG, X. L., Kraussl, Z., ZURAD, M., & BRORSSON, M. H. (2023). Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. In X. L. WANG, Z. KRÄUSSL, M. Zurad, ... M. H. BRORSSON, Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction. Unknown/unspecified: IEEE Xplore. doi:10.1109/iceccme57830.2023.10252608
Peer reviewed

WANG, X. L., BLANCO, B., & BRORSSON, M. H. (2022). REPORT OF DATA FUSION AND EVALUATION. Luxembourg, Luxembourg: SNT uni.lu. https://orbilu.uni.lu/handle/10993/51574

WANG, X. L., BLANCO, B., & BRORSSON, M. H. (2021). REPORT OF DATA SOURCES. Luxembourg, Luxembourg: SnT Uni.lu. https://orbilu.uni.lu/handle/10993/48690

Contact ORBilu